Antiseptic Agents Elicit Short-Term, Personalized, and Body Site–Specific Shifts in Resident Skin Bacterial Communities

Adam J. SanMiguel¹, Jacquelyn S. Meisel¹, Joseph Horwinski¹, Qi Zheng¹, Charles W. Bradley² and Elizabeth A. Grice¹,³

Despite critical functions in cutaneous health and disease, it is unclear how resident skin microbial communities are altered by topical antimicrobial interventions commonly used in personal and clinical settings. Here we show that acute exposure to antiseptic treatments elicits rapid but short-term depletion of microbial community diversity and membership. Thirteen subjects were enrolled in a longitudinal treatment study to analyze the effects of topical treatments (i.e., ethanol, povidone-iodine, chlorhexidine, and water) on the skin microbiome at two skin sites of disparate microenvironment: forearm and back. Treatment effects were highly dependent on personalized and body site–specific colonization signatures, which concealed community dynamics at the population level when not accounted for in this analysis. The magnitude of disruption was influenced by the identity and abundance of particular bacterial inhabitants. Lowly abundant members of the skin microbiota were more likely to be displaced, and subsequently replaced, by the most abundant taxa prior to treatment. Members of the skin commensal family Propionibactericeae were particularly resilient to treatment, suggesting a distinct competitive advantage in the face of disturbance. These results provide insight into the stability and resilience of the skin microbiome, while establishing the impact of topical antiseptic treatment on skin bacterial dynamics and community ecology.

INTRODUCTION

Skin represents a unique habitat, colonized by an equally unique set of micro-organisms (Grice and Segre, 2011). Previous studies have analyzed these residents in-depth, describing a stable community distinguished by both inter- and intrapersonal differences (Costello et al., 2009; Grice et al., 2009) and the distribution of microbial residents at distinct biogeographic regions (Oh et al., 2014). Microbial residents have important roles in skin health, including immune stimulation and tolerance, and colonization resistance to pathogenic skin microorganisms (Naik et al., 2015; Nakatsuji et al., 2017; Scharschmidt et al., 2017; Zipperer et al., 2016).

Despite these functions, humans are constantly working to disrupt skin microbial communities in personal and clinical settings (Aiello et al., 2008; Dumville et al., 2015; Hovi et al., 2017; Septimus and Schweizer, 2016). While antimicrobial agents are largely employed to reduce infection by pathogenic micro-organisms (Digison, 2007; Echols et al., 2015; Lopez-Gigosos et al., 2017), these treatments can also act on resident cutaneous species (Beausoleil et al., 2012; Carty et al., 2014; Olson et al., 2012). This is especially true for antiseptics, a group of antimicrobial agents used specifically for their indiscriminate mechanisms of action (Kampf and Kramer, 2004; McDonnell and Russell, 1999). As the significance of cutaneous resident micro-organisms becomes increasingly apparent, assessing the impact of these treatments on the stability and resilience of skin microbiota becomes equally important. We recently illustrated the potential for altered skin bacterial communities to impact colonization by Staphylococcus aureus in murine models, while others have expounded their importance in cutaneous diseases, such as atopic dermatitis (Gao et al., 2007; Kobayashi et al., 2015; Kong et al., 2012). These studies have highlighted the significance of skin microbial residents, and necessitated further research into treatment-derived perturbations.

To expand our knowledge in this regard, we designed a longitudinal treatment study to analyze how a “pulse” disturbance generated by topical antiseptics influences skin microbial community ecology using 16S ribosomal RNA gene sequencing. A single treatment was sufficient to elicit a significant impact on skin communities that was personalized and body site–specific. Certain micro-organisms were more likely to be perturbed than others, with both abundance and bacterial identity representing key predictors of this response. These results further our understanding of stability and resilience of cutaneous microbial communities in the face of

1Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; 2Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA; and 3Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Correspondence: Elizabeth A. Grice, Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Boulevard, 1015 Biomedical Research Building III, Philadelphia, Pennsylvania 19104, USA. E-mail: egrice@pennmedicine.upenn.edu

Abbreviation: OTU, operational taxonomic unit

Received 8 January 2018; revised 9 April 2018; accepted 23 April 2018; accepted manuscript published online 9 May 2018; corrected proof published online XXX

© 2018 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.

www.jidonline.org
perturbation, and outline the potential for topical treatments to disrupt skin bacterial residents.

RESULTS
Thirteen subjects were recruited to evaluate the effects of short-term antiseptic treatment on the skin microbiome. Treatments were applied to the volar forearm and the upper back to evaluate alternate skin microenvironments, and each subject received identical treatments to control for interpersonal variability. Subjects received water and alcohol (80% ethanol) on contralateral body sites during their first series of visits, and povidone-iodine and chlorhexidine during their second series of visits, with 2 weeks separating visit series. Swab specimens were collected at baseline, prior to treatment, and at six post-treatment time points (i.e., 1, 6, 12, 24, 36, and 72 hours; Supplementary Figure S1a online). Treated body sites were also accompanied by adjacent, untreated control sites. Specific treatment topography, timing, and subject demographics are provided in Supplementary Figure S1a and Supplementary Table S1 online.

Baseline characteristics of skin microbiota in study cohort
As reported previously (Grice et al., 2009; Oh et al., 2014), we observed a strong impact of biogeography on the skin microbiota. Back communities were dominated by Propionibacteriaceae and Staphylococcaceae (Figure 1a). By contrast, forearm communities were more permissive, hosting increased proportions of additional taxa, including Streptococcaceae and Corynebacteriaceae. Alpha diversity was significantly higher on the forearm compared to back as assessed by multiple metrics, including Shannon diversity, observed species, and equitability (Figure 1b). At the population level, prominent clustering of subjects and body sites was observed by both weighted and unweighted UniFrac metrics (Figure 1c). Interpersonal variability and site specificity were the most significant contributors to variation, followed by time and body symmetry, respectively (Supplementary Figure S1b and S1c).

Treatment elicits personalized and site-specific shifts to skin bacterial community structure
In our initial analyses, we observed that chlorhexidine had very minimal effects on the skin microbiota, which was surprising, given its proven efficacy against pathogenic micro-organisms in hospital settings (Milstone et al., 2008). We performed a series of experiments to conclude that chlorhexidine treatment confounds DNA-based metrics and their interpretation (see Supplementary Materials online). We therefore focused additional investigations on water, alcohol, and povidone-iodine treatments. We first compared baseline microbial communities to post-treatment communities at the 1-hour time point. By the weighted UniFrac metric, treatment was unable to elicit a significant shift in bacterial community structure (Figure 2a). Because interpersonal differences were the strongest contributors to variability in baseline samples and could thus mask more subtle effects of treatment, we further controlled for interpersonal variation. This method revealed significant effects of both water and alcohol at the forearm, but not the back, at 6 hours post treatment (Figure 2b). While both treatments caused a more robust shift in forearm communities than that seen in adjacent controls, neither shifted bacterial communities to a state outside that of the broader study cohort (Figure 2c). Comparisons of alpha diversity and bacterial burden also confirmed these effects, with alcohol eliciting significant decreases in diversity at the forearm, but not the back. However, water and alcohol were found to decrease overall bacterial load at each body site (Supplementary Figure S2a and S2b online).

To determine the taxa most responsible for these shifts, we focused our analyses on bacterial families with the greatest abundances prior to treatment. Corynebacteriaceae, Propionibacteriaceae, Streptococcaceae, and Staphylococcaceae were selected, representing a mean relative abundance of ~70% in pretreatment samples. Most taxa did not significantly change with treatment, with only Streptococcaceae significantly decreased in response to treatment at the forearm (Figure 2d).

Treatment depletes skin bacterial community membership and richness
To determine whether treatment could elicit more significant changes to bacterial community membership, we used unweighted metrics, which are agnostic to the relative proportions of bacterial taxa. Unweighted UniFrac revealed a prominent shift in bacterial communities following treatment at both body sites (Figure 3a). Moreover, when comparing treated communities to their baseline controls, both the back and forearm were significantly disrupted by water, alcohol, and povidone-iodine compared to adjacent controls (Figure 3b). To evaluate the underlying cause of this shift, we analyzed the effect of treatment on the total number of observed species. Water, alcohol, and povidone-iodine all significantly reduced the number of observed species on the forearm compared to adjacent controls (Supplementary Figure S3a online). A similar effect was seen with alcohol on the back.

To further investigate these results, we tested the effect of treatment on the membership of individual bacterial families. Corynebacteriaceae, Incertae Sedis XI, Micrococccaceae, Staphylococcaceae, and Streptococcaceae were all depleted of observed species with treatment (Figure 3c; Supplementary Figure S3b). Moreover, when comparing the richness of these taxa at treated and adjacent control sites, each of these families was significantly decreased at treated, but not untreated, areas of the skin (Figure 3d; Supplementary Figure S3c). This effect did not extend to all highly abundant families, as Propionibacteriaceae remained largely unchanged regardless of treatment or body site.

Skin microbiome converges at distinct community types following treatment
To determine whether a conserved microbial signature defined post-treatment microbial communities, we used an unsupervised approach, Dirichlet multinomial mixture models, which identified eight distinct clusters, or microbial “community types” at the forearm. Individual subjects were often dominated by a single community type (Supplementary Figure S4a and S4b online), but prominently converged to Dirichlet multinomial mixture cluster 1 in response to all treatments, an effect that was not observed at adjacent untreated body sites (Figure 4a; Supplementary Figure S4c). Dirichlet multinomial mixture cluster 1 was differentiated by
decreased bacterial diversity, specifically richness (Figure 4b) and fewer taxon-specific attributes, suggesting a normalization of bacterial residents in response to treatment (Figure 4c). In contrast to the forearm, back communities did not converge following treatment (Supplementary Figure S4d and S4e).

Highly abundant bacterial families contribute most to treatment-derived changes in skin microbiome

Our initial analyses suggested that certain bacterial taxa were disrupted more significantly by treatment than others. To assess this hypothesis, we tested characteristics shown to influence variation in untreated settings. We reasoned that...
the most variable taxa in the absence of treatment were also the most likely to be altered in response to topical intervention. As previous analyses have identified intermediately abundant taxa as the most susceptible to temporal fluctuation (Oh et al., 2016), we assessed the baseline variance of these taxa in our study cohort. Similar to previous findings, we observed a distinct second-order, power-law relationship, with intermediately abundant members varying the most in untreated, baseline communities (Supplementary Figure S5a online).

To test which taxa were specifically responsible for these shifts, we assessed baseline variance at the family level for...
each subject at each body site. Propionibacteriaceae, Streptococcaceae, Staphylococcaceae, Corynebacteriaceae, Micrococcaceae, and Incertae Sedis XI constituted the most variable groups in baseline communities (Supplementary Figure S5b and S5c). Rather than representing intermediately abundant taxa, however, these families were often the most abundant residents in our study cohort, and also the most likely to vary in response to treatment. To investigate this discrepancy more directly, we again compared the variance of baseline taxa in our study cohort to their mean relative abundances, but further controlling for both inter-individual differences and body site specificity. Stratification resulted in a more nuanced effect than the previously observed second-order relationship, with the variance of taxa frequently plateauing when plotted against their mean relative abundances (Figure 5a).

We next tested whether taxonomic variation at baseline predicts post-treatment effects. Specifically, we compared the
baseline variance of bacterial families to their response
following treatment. The most variable taxa in the absence
of treatment were also the most variable with treatment, with
decreases in the relative proportions of most taxa being
offset by increases in Propionibacteriaceae (Figure 5b).
Interpersonal variability strongly contributed to this trend,
as subjects with low variation of a given bacterial family
were also less likely to exhibit shifts by those residents
following treatment. This trend was recapitulated when
comparing the mean relative abundances of taxa to their
mean treatment response as well. Once again, the greatest
differences were observed within the Propionibacteriaceae
family, which was both the most abundant bacterial family
and the most likely to increase following treatment (Figure 5c).

Body site—specificity informs fluctuations of the most
abundant bacterial taxa
Unlike other taxa, we noted that Propionibacteriaceae often
increased in relative abundance following treatment of the
back. A subset of subjects exhibited similar dynamics when
Staphylococcaceae was their most abundant taxon, which
together suggested a personalized response in which the most
abundant taxon was also the most likely to persist following
treatment. To test this hypothesis, we compared the levels
of each subject’s most abundant taxon at baseline to its mean
relative abundance following treatment. In all cases but one,
the most abundant taxon at the back increased in relative
proportion following treatment, regardless of identity, indic-
ating a distinct competitive advantage (Figure 5d).

In contrast to the back, only three subjects had taxa at
the forearm with >50% relative abundance. Although not
absolute, relative proportions of Propionibacteriaceae
increased in multiple subjects following treatment
(Figure 5e). This trend did not extend to all skin residents, as
Corynebacteriaceae, Staphylococcaceae, and Streptococco-
caceae all decreased in abundance at the forearm, regardless
of status. These results thus verify that abundance can be used
to predict treatment effects, but also highlights the impor-
tance of body site to these particular outcomes.

Lowly abundant members of predominant bacterial families
are the most likely to vary in response to treatment
Because our previous investigations outlined the importance
of abundance and bacterial identity to treatment-derived
alterations, we further hypothesized that relative abundance
could be used to predict the fluctuations of all taxa. To test
this, we partitioned operational taxonomic units (OTUs) into
highly or lowly abundant groups based on an abundance
threshold of 0.5%, chosen from the inflection point of OTU
counts at baseline (Supplementary Figure S6a online). We
observed a significant decrease in the number of lowly
abundant OTUs following treatment at both the forearm and
back (Figure 6a), an effect largely due to decreases in
Corynebacteriaceae, Incertae Sedis XI, Staphylococcaceae,
and Streptococcaceae (Figure 6b and 6c; Supplementary
Figure S6b and S6c). By contrast, when evaluating highly
abundant OTUs, only Streptococcaceae at the forearm and
Corynebacteriaceae at the back were reduced significantly, a
result that did not significantly decrease the total number of
highly abundant OTUs. Similar to previous results, we also
observed no significant differences in the membership of
Propionibacteriaceae, regardless of abundance or body site.
These findings confirm that bacterial identity represents a
critical factor when evaluating skin resident stability, and

Figure 4. Dirichlet multinomial modeling identifies convergence at distinct forearm community types following treatment. (a) Longitudinal frequencies of DMM clusters in response to treatment with water, alcohol, and povidone-iodine. (b) Shannon diversity and observed species counts of individual DMM clusters. Data are presented as mean ± standard error of mean. (c) Heat map of square root counts for the top bacterial taxa contributing to cluster identity. Dark bars correspond to greater counts. DMM, Dirichlet multinomial mixture.
underscores the importance of abundance to predictions of treatment response.

DISCUSSION

Despite important functions in cutaneous health and disease, few studies have assessed the impact of disrupting the skin microbiota or dynamics following antimicrobial stress. Herein, we presented the impact of topical antiseptics on human skin bacterial populations, and outlined the importance of key variables to this response.

When evaluating treatments at a comparative level, water, alcohol, and povidone-iodine had similar effects on skin bacterial residents, underscoring the generalized nature of topical interventions to reduce inhabitance by mechanical cleansing (Kampf and Kramer, 2004). This result has been well-established in culture-based systems, where reports have outlined the potential for certain topical treatments to both kill and remove pathogenic micro-organisms, with each feature playing an important role in infection control (Bloomfield et al., 2007; Larson, 1999). Mild, non-antibacterial soaps are also used with the sole purpose of clearance, further emphasizing the importance of this mechanism to skin hygiene and community disruption (Amin et al., 2014; Kim et al., 2015).

While no study to date has investigated the impact of antiseptics on human skin microbiota by sequencing, others have assessed the effects of hand sanitizers and soaps (Two et al., 2016; Zapka et al., 2017). These studies have largely supported culture-based tests, outlining the importance of conserved mechanisms to topical treatment response. For example, a recent study by Zapka et al. (2017) found that water and hand washing often elicited similar alterations to
the skin microbiota as alcohol-based hand sanitizer. A recent comparison of mild and antibacterial soaps has further confirmed these results, showing minimal differences when comparing their impact on colonizing levels of *Staphylococcus epidermidis* (Two et al., 2016).

Like the studies mentioned, our initial analyses suggested a relatively minor impact of treatment on resident microbiota. However, after controlling for personalization and body-site specificity we observed the true impact of our treatment regimens on community diversity and resilience, including the finding that treatment elicited the strongest effects in low-level skin inhabitants. Highly abundant species likely exist at a given skin niche due to an ability to resist acute host-derived and external stressors. As the skin is often colonized by particular strains with temporal stability for years in length (Oh et al., 2016; Sakwinska et al., 2010), this outlines a system by which multiple taxa may exist on the skin surface at a given time, while only a subset are uniquely adapted for long-term colonization.

![Figure 6. Lowly abundant members of prominent taxa are the greatest contributors to treatment effects at the skin surface.](image)

Figure 6. Lowly abundant members of prominent taxa are the greatest contributors to treatment effects at the skin surface. (a) Box and whisker plots of lowly and highly abundant OTU counts as defined by a 0.5% relative abundance threshold following treatment at the forearm and back. (b) Heat map of differences in forearm OTU counts between baseline and 1 hour post treatment with water and antiseptics. Each column represents the difference measured for a single subject and treatment, and each row represents a bacterial family. Samples are clustered by the Unweighted Pair Group Method with Arithmetic means. Color coded bars above the graph designate treatments for each sample. (c) Comparison of lowly and highly abundant OTU counts at the forearm in major taxonomic families at baseline and 1 hour post treatment. Points represent the median of the study cohort. Error bars designate interquartile regions. *P < 0.05, **P < 0.01, ***P < 0.001 by Wilcoxon rank sum test (Mann-Whitney U test). OTU, operational taxonomic unit.
MATERIALS AND METHODS

Human subjects and sample collection

All protocols were approved by the Institutional Review Board of the University of Pennsylvania, and written informed consent was obtained for all study participants prior to sampling. Thirteen healthy subjects aged 23-30 years (median age 27 years; 6 female subjects) and without chronic skin disorders were recruited to participate in a controlled skin antiseptic study (Supplementary Table S1). Subjects were required to be older than 21 years of age, and free of oral or topical antibiotics within 6 months of their first visit. Subjects were asked to refrain from showering for 24 hours prior to the first visit and until after their 36-hour visit, and refrain from use of soaps or topical products containing antimicrobials 1 week prior to sampling and during the entire study. Demographic data were collected, as well as usage of topical products, medications, and personal care routines. Subjects were swabbed at baseline, using a Catch-All Collection swab (Epicentre, Madison, WI) moistened in water (UltraPure Distilled Water; Invitrogen) and alcohol (80% ethanol) on contralateral forearm or back body sites during their first visit series, and povidone-iodine (10%), and chlorhexidine (chlorhexidine-gluconate 4%) during their second visit series (Supplementary Figure S1a). Visit series were separated by at least 2 weeks to allow for microbial equilibration. Swabbed regions were delineated by a skin marker to ensure that the same body site was swabbed at longitudinal time points. Subjects were instructed to refrain from showering for >12 hours prior to each time point.

DNA isolation, 16S ribosomal RNA gene sequencing, and quantitative PCR

Bacterial DNA was extracted as described previously (Meisel et al., 2016) using the Invitrogen PureLink kit. PCR and sequencing of the V1V3 hypervariable region was performed using 300-bp paired end chemistry and barcoded primers (27F, 534R) on the Illumina MiSeq platform (Illumina, San Diego, CA). Accuprime High Fidelity Taq Polymerase (Thermo Fisher Scientific, Waltham, MA) was used for PCR cycling conditions: 94°C for 3 minutes, 35 cycles of 94°C for 45 seconds, 50°C for 60 seconds, 72°C for 90 seconds, and 72°C for 10 minutes. PCR products were purified using the SequalPrep kit (Invitrogen), according to manufacturer's instructions, and pooled in equal amounts for sequencing. For bacterial load comparisons, 16S ribosomal RNA genes were amplified by quantitative PCR using Fast SYBR Green Master Mix (Thermo Fisher Scientific) and the optimized primers 533F, 902R. Samples were compared to standard curves generated from known concentrations of serially diluted bacterial DNA to calculate burden.

Microbiome analysis

The data sets generated and analyzed during the current study are available from the National Center for Biotechnology Information Short Read Archive under BioProject: PRJNA395539. Quality control, processing, and analysis are detailed in the Supplementary Material.

CONFLICT OF INTEREST

The authors state no conflict of interest.

ACKNOWLEDGMENTS

We thank members of the Grice laboratory for their underlying contributions. Funding for this work was provided by the National Institutes of Health, National Institute of Arthritis, Musculoskeletal, and Skin Diseases (R01AR060873 and R01AR066663 to EAG) and the National Institute of Nursing Research (R01NR015639 to EAG). AJS is supported by a Department of Defense National Defense Science and Engineering Graduate fellowship. JSM is supported by NIH T32HG00046, Computational Genomics Training Grant.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Defense.

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2018.04.022.

REFERENCES

Hovi T, Ollgren J, Savolainen-Kopra C. Intensified hand hygiene campaign including soap-and-water wash may prevent acute infections in office workers, as shown by a recognized-exposure-adjusted analysis of a randomized trial. BMC Infect Dis 2017;17:47.

AJ SanMiguel et al., Antiseptic Agents and Skin Bacterial Communities