Genetic Drift and Selection in a Captive HSV Population

<u>Chad Kuny</u>, Chris Bowen, Nathan Arnett, and Moriah Szpara

June 23, 2017

PennState Eberly College of Science

HSV Background

- Extremely prevalent worldwide
- Wide range of disease severity
- α-herpesvirus
- Large dsDNA genome

From Principles of Virology, by S. J. Flint, L. W. Enquist, V. R. Racaniello, A. M. Skalka and Szpara et al., PLoS Pathogens 7(10): e1002282

Genetic Diversity in HSV-1

Genetic distance dendrogram of HSV1 genomes

- HSV-1 genomes are typically similar.
 (~3-4% variation between strains)
- Similar does not mean identical. (Dozens of AA changes)
- Genomic variation affects how the virus can escape selective pressures. (immune response, antiviral drugs, etc.)

HSV Genetic Diversity Affects Observed Phenotypes

• HSV is well known to evolve in response to selective pressure.

Research Questions

- 1. How readily does HSV evolve?
 - How fast do genetic variants arise?
 - Mechanism for genetic diversity?
 - Bottlenecking effects?

2. Where/when does genetic drift occur?

Sequential Passage of HSV-1 Populations

F Mixed Syncytial Population Increases over Passage

- F Purified virus population displayed CPE plaque morphology.
- Neither virus population's titer changed substantially over passage.

Alignment of Full-Length Genomes Shows Limited Areas of Diversity

• Repeated regions are less conserved.

Minority Variants within Consensus Sequence

T T G T G T T C C G T G C G C T C C A T G G C A G	Consensus Sequence
С	
C C C C	
C	
T	
T	
C	
č	
Ť	
Ċ	
Č	Major Allele (C)
T	
Ţ	Minor Allele (T)
С	
T	
T	
C	
Č	
č	
Ť	
Ť	
Ċ	
T	
С	
т	
T	
C	

Deep sequencing can reveal sequence variation at a sub-consensus level.

Minority Variants in a Purified Population over Passage

Minority Variants in Coding Regions Vary in Frequency Over Passage

 This is a small subset of all observed minority variants in coding regions in the mixed population passages.

Minority Variants in Coding Regions Vary in Frequency Over Passage

 This is a small subset of all observed minority variants in coding regions in the mixed population passages.

- Mixed population took on a syncytial plaque phenotype over passage.
- Two minority variants in gB increased in frequency over passage.
- Arg858His and Leu817Pro are both known syncytial mutants (Gage et al., JVI 1993).

- F Mixed population took on a syncytial plaque phenotype over passage.
- Two minority variants in gB increased in frequency over passage.
- Arg858His and Leu817Pro are both known syncytial mutants (Gage et al., JVI 1993).

	A	6
		G
T	G	
Ť		
		G
		6
		G
T		T
		G
		8
17 S		
T		
Ţ		G
		G
T		
		C.
	G	
Ť		
		G
T		
т		6
-		
		c
T		
T.		
	4	6 6
	A	u.
1		1
T		
1		
		6
		6
Ť		
T	_	

- Variants located close enough to be located within the same sequencing read.
- We can then see how often each variant occurs on a given piece of DNA.

Conclusions

• Minority genetic variants can have major effects on virus biology.

Acknowledgements

CIDD CENTER FOR INFECTIOUS DISEASE DYNAMICS