ADCC and HVEM: Lessons from an HSV-2 ΔgD vaccine

Clare Burn
Laboratory of Betsy Herold and Laboratory of William R. Jacobs, Jr.
Herpes Simplex Viruses

• Predominantly infect epithelial cells; establish latency in peripheral nerves
• HSV-1 and HSV-2 cause painful recurrent oral or genital mucosal lesions
 • Both transmitted perinatally
 • HSV-2 associated with increased risk of HIV acquisition/transmission
• HSV-2: 400+ million people worldwide
• HSV-1: 3.7 billion people worldwide
 • Major cause of genital herpes in the developed world
 • Leading cause of fatal infectious encephalitis
 • Corneal blindness

Looker et al, 2012
HSV vaccine trials

- Dominated by subunit vaccines targeting gB and gD that generate primarily a neutralizing antibody (nAb) response
- Clinical trial results:
 - gB/gD/MF59 (Chiron) elicited high titer nAbs, but did not protect
 - Overall vaccine efficacy 9% (95% CI, -29% to 36%) (JAMA, 1999)
 - rgD2/AS04 vaccine elicited high titer gD nAbs and CD4 T cell responses but failed to protect
 - In discordant partners, protective in ♀ who were seronegative for HSV-1 and 2, but not HSV-1+ (NEJM, 2002)
 - No efficacy against HSV-2 disease or infection in field study seronegative ♀ (-38% [95% CI, -167 to 29]
- DI5-29
 - Replication defective, deleted in 2 genes involved in viral replication (expresses gD)
 - Phase 1 completed, results pending
What if we try something different?

- HSV-2 single-cycle vaccine strain deleted in gD
 - Single cycle virus complemented with HSV-1 gD to allow initial round of infection but prevent recombination

HSV-1

HSV-2 ΔgD-

ΔgD-/-

Complementing HSV-1 gD cell line (VD60)

Non- complementing Vero cell line
What we know about HSV-2 ΔgD

- Protected > 100 mice from lethal challenge (100%)
 - Male and female mice
 - Challenged intravaginally (female) or by skin scarification with different clinical isolates of HSV-2 and HSV-1
 - Prevents establishment of latency
 - Rapidly clears virus
 - Lasting protection (100% out to 6 months post-boost)
- Generates high titer HSV Ab response as well as CD4 and CD8 T cells
 - Abs alone are sufficient to passively protect naïve mice from challenge
 - Abs are NOT neutralizing but activate the FcR to induce ADCC and ADCP
Why does this vaccine do something different?

Approach: Compare different vaccines

ΔgD
DI5-29
rgD-2 AS04
VD60 lysate control

HSV-2 SD90 or HSV-1 B^{3}\times 1.1 10 \times LD90
HSV-2 MS-luc 10 \times LD90

Day 1: Prime
Day 21: Boost
Day 28: Serum
Day 41: Depilate
Day 42: Challenge
Day 56: Harvest

DI5-29: replication defective; deleted in 2 genes involved in viral replication
Gift from David Knipe (Harvard)
HSV-2 ΔgD rapidly clears virus & protects against 10xLD90 HSV-1 & HSV-2: dose dependence

HSV-1 survival

HSV-2 survival

HSV-2 MS-luc

Control

DI5-29

ΔgD

n = 5 - 10/group

Images representative of 2 independent experiments
Dose dependent differences in protection from latency and Ab responses

HSV-1 B^3x1.1
DNA in DRG

HSV-2 SD90
DNA in DRG

Copies of HSV-1 DNA (per mg tissue)

Copies of HSV-2 DNA (per mg tissue)

Total HSV-1 binding IgG

Total HSV-2 binding IgG

\(n = 10/\text{group} \)
Mouse Fc receptors

IgG2a, IgG 2a, 2b

IgG1, IgG 2a, 2b

IgG2a,b

IgG1, IgG 2a, 2b

Lünemann et al, 2015
Antibody functionality differs by vaccination

HSV-1 B³x1.1
Neutralizing titer

HSV-2 SD90
Neutralizing titer

FcγRIV activation

n = 10/group
FcγRIV is necessary for passive protection

Survival

Neurological Disease

n= 5/group
Why does ΔgD evoke FcR response?

• Unmasking other antigens?
• Loss of immunomodulatory effect?
 • gD binds HVEM?

Skews the immune response leading to neutralizing Ab response?
 • Bidirectional
 costimulatory/coinhibitory signalling molecule
 • Activating and inhibitory ligands
 • Depends on cis/trans
 • Broadly expressed on immune cells

Adapted from Murphy and Murphy, 2010

gD is known to block some of the natural ligands of HVEM
Do gD-HVEM interactions play a role in generating protective responses?

ΔgD (missing ligand)
DL5-29 (expresses gD)
VD60 lysate control

10 x LD90
SD90 (HSV-2)

WT or HVEM-/- (no receptor)

Monitor

Expect that dl5-29 but NOT ΔgD will behave differently in HVEM-/-
Changes to the antibody response in HVEM-/- mice

Total HSV-binding Ab

Neutralization titer

FcR activation

Survival

- Control WT
- Control HVEM-/-
- ΔgD WT
- ΔgD HVEM-/-
- dl5-29 WT
- dl5-29 HVEM-/-

n = 10/group
Passive Transfer Experiments in HVEM KO Mice to Assess Effector Cell Function

Day -1: Serum (i.p) ΔgD DI5-29 Control

Day 0: HSV-2 challenge - skin (4674)

Monitor for disease

Day 14: Harvest

WT or HVEM-/-
HVEM is involved in mounting Ab response AND effector response

Transfer immune serum from: HVEM-/- → WT

Transfer immune serum from: WT → HVEM-/-

n = 5-10/group
ΔgD Protection Summary

<table>
<thead>
<tr>
<th></th>
<th>HSV-1 Challenge (B³x1.1)</th>
<th>HSV-2 Challenge (SD90)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td>82/85*</td>
<td>146/152*</td>
<td>228/237 (96.2%)</td>
</tr>
<tr>
<td>Protection from DNA in DRG</td>
<td>56/60</td>
<td>110/117</td>
<td>166/177 (93.8%)</td>
</tr>
</tbody>
</table>

*all deaths (and all but 1 HSV+ DRG) at 8 months post-boost or 5 x10^4 vaccine dose
Conclusions

- FcR activating antibody is a correlate of protection for HSV-1 and HSV-2 clinical isolates in mice
 - High FcR titers (ΔgD) \rightarrow greater active & passive protection
 - Little FcR activity (rgD or HVEM KO) \rightarrow Little active or passive protection
- HVEM signaling modulates type of Ab response

HVEM + natural ligands (e.g. BTLA, LIGHT)

ADCC Neutralizing
Conclusions

• FcR activating antibody is a correlate of protection for HSV-1 and HSV-2 clinical isolates in mice
 • Higher FcR titers \rightarrow greater active and passive protection
 • Loss of FcR activity \rightarrow loss of active and passive protection
• HVEM signaling modulates type of Ab response

HVEM + natural ligands

+ gD
HSV, dl5-29, rgD-2

ADCC

Neutralizing
Conclusions

- FcR activating antibody is a correlate of protection for HSV-1 and HSV-2 clinical isolates in mice
 - Higher FcR titers \rightarrow greater active and passive protection
 - Loss of FcR activity \rightarrow loss of active and passive protection
- HVEM signaling modulates type of Ab response
Conclusions

• FcR activating antibody is a correlate of protection for HSV-1 and HSV-2 clinical isolates in mice
 • Higher FcR titers → greater active and passive protection
 • Loss of FcR activity → loss of active and passive protection
• HVEM signaling modulates type of Ab response
Acknowledgements

Herold Lab
• Betsy Herold
• Chris Petro
• Natalia Cheshenko
• Natalie Ramsey
• Naz Khajoueinejad

Jacobs Lab
• Bill Jacobs
• John Kim
• Pablo Gonzalez
• Brian Weinrick
• Kayla Weiss

And the rest of the Herold and Jacobs labs

David Knipe
Harvard Medical School

Garnett Kelsoe
Duke University
Masayuki Kuraoka
Akiko Watanabe

GlaxoSmithKline

Promega
Mei Cong
Vanessa Ott
Aileen Paguio

NIH
National Institutes of Health
R01 AI117321-01