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Abstract

Multimodal large language models (MLLMs) can simulta-
neously process visual, textual, and auditory data, capturing
insights that complement human analysis. However, existing
video question-answering (VidQA) benchmarks and datasets
often exhibit a bias toward a single modality, despite the goal
of requiring advanced reasoning skills that integrate diverse
modalities to answer the queries.
In this work, we introduce the modality importance score
(MIS) to identify such bias. It is designed to assess which
modality embeds the necessary information to answer the
question. Additionally, we propose an innovative method us-
ing state-of-the-art MLLMs to estimate the modality impor-
tance, which can serve as a proxy for human judgments of
modality perception. With this MIS, we demonstrate the pres-
ence of unimodal bias and the scarcity of genuinely multi-
modal questions in existing datasets. We further validate the
modality importance score with multiple ablation studies to
evaluate the performance of MLLMs on permuted feature
sets. Our results indicate that current models do not effec-
tively integrate information due to modality imbalance in ex-
isting datasets. Our proposed MLLM-derived MIS can guide
the curation of modality-balanced datasets that advance mul-
timodal learning and enhance MLLMs’ capabilities to under-
stand and utilize synergistic relations across modalities.

1 Introduction
In recent years, trends in AI development have leaned to-
wards multimodal models, particularly multimodal large
language models (MLLMs), as many complex problems ne-
cessitate the integration of diverse modalities to achieve
more accurate and comprehensive reasoning.

Video question answering (VidQA) stands out as a partic-
ularly challenging task, requiring the integration of various
modalities along with complex spatial and temporal reason-
ing (Xiao et al. 2021). As such, this task serves as a vital
benchmark for assessing the vision-language understanding
capabilities of AI systems.

In recent years, several VidQA benchmarks have been de-
veloped to train and evaluate the capabilities of MLLMs in
these areas (Yu et al. 2019; Gupta et al. 2022). However, a
fundamental question remains: Are these models genuinely
integrating information from various sources, or are they
simply leveraging biases inherent in the datasets? Our ob-

servations suggest that many existing benchmarks are lim-
ited in their ability to assess this integration. The questions
often tend to be biased toward a single modality, or modal-
ity bias, lacking the complexity that would require genuine
multimodal integration. For instance, the video question Q1

depicted in Fig. 1b can be answered using only the video
alone or the subtitles alone. Although having redundant in-
formation across modalities may be beneficial for learning
cross-modal relationship, it doesn’t fully represent the com-
plexity of real-world multimodal reasoning tasks.

As illustrated in Q2 from Fig. 1b, some multimodal ques-
tions require integrating distinct pieces of information from
the text (not wanting to go to the hospital) and from the video
(material of clothing) to accurately deduce the answer. Un-
fortunately, such questions that demand genuine integration
of multiple modalities are notably scarce in current datasets.

To address these limitations, we need a method that quan-
titatively assesses modality bias in questions. To this end, we
introduce a novel modality importance score (MIS), which
evaluates the extent to which each modality contributes to
answering a given question. Using this score, we perform
a comprehensive assessment of modality bias in existing
VidQA benchmarks. Our analysis reveals significant limi-
tations in current datasets and highlights the need for more
balanced and challenging multimodal questions.

Our main contributions are as follows:

• We propose a novel modality importance score (MIS)
and a method that leverages multimodal large language
models (MLLMs) to estimate the MIS. We show that this
approach could serve as a proxy for human judgements
of modality perception.

• Using the proposed modality importance score, we
demonstrate the existence of a unimodal bias and the
scarcity of truly multimodal questions in current multi-
modal datasets.

• We evaluate several state-of-the-art multimodal models
on questions with permuted features for modalities with
low importance scores. The results reveal that current
multimodal models do not optimally combine informa-
tion from different sources due to modality imbalance in
existing multimodal datasets.

By addressing these limitations in VidQA benchmarks,
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(a) Video and subtitle (TVQA) (b) Example questions

Figure 1: Example of a video clip with multimodal questions demonstrating different modality importance. Q1 is answerable
using either subtitle or video information, while Q2 requires integrating information from both modalities. (Sec. 3.2)

our work aims to advance the field of multimodal AI, push-
ing towards models that can genuinely integrate information
across modalities to perform complex reasoning tasks more
effectively.

2 Related Work
2.1 Video Question Answering
Video question answering (VidQA) is a well-explored field
in AI, presenting the challenge of integrating multimodal
input from videos, understanding temporal and causal re-
lations, and selecting the correct answer (Lei et al. 2019).
Many recent VidQA models are pretrained on large datasets
using contrastive learning objectives (Kim et al. 2021),
masked language modeling (Fu et al. 2021), and other tech-
niques to learn joint representations and improve spatio-
temporal understanding (Zhao et al. 2017; Jiang et al. 2020).
These models are subsequently fine-tuned on downstream
tasks, such as open-ended or multiple choice video-question
answering (Wang et al. 2023), video-text retrieval (Luo et al.
2020), and video captioning (Fu et al. 2023).

In this study, we focus on four approaches that have
been developed to utilize both subtitle and video informa-
tion for video question answering. Merlot Reserve (Zellers
et al. 2022) is pretrained to predict either the correct text
or audio snippet hidden by a MASK token, given uni-
formly sampled images from a video. Its architecture in-
cludes pretrained encoders for each modality input and a
joint encoder trained with a contrastive spanning objec-
tive. FrozenBiLM (Yang et al. 2022a) employs a frozen
bidirectional language model trained on web-scale multi-
modal data. Llama-VQA (Ko et al. 2023) builds upon the
Llama model, incorporating additional learnable parameters
through the Flipped-VQA framework. This approach lever-
ages the LLM’s prior knowledge of temporal and causal
reasoning. MiniGPT4-Video (Ataallah et al. 2024) is an
open-source multimodal large language model designed for
video-language tasks. Its training process involves pretrain-
ing using either Llama2 or Mistral on video-text pairs con-

sisting of frame sequences and subtitles appended to a pre-
defined prompt. In addition, other VidQA approaches uti-
lize captions and videos, such as VindLu or MMFT-BERT,
and MSAN (Cheng et al. 2023; Khan et al. 2020; Kim et al.
2020). Additional tasks and approaches outside the scope of
this study can be found in a survey by Zhong et al. (2022).

While these models show improved performance by inte-
grating language and video inputs for video understanding, a
critical issue remains: they are trained on datasets that have
questions with modality bias. This bias raises the question
of whether these models can leverage both modalities for
each question and context and whether they are biased in
their ability to leverage either modality as appropriate. Our
research examines whether current models can effectively
identify and use the most relevant modality, even with ir-
relevant information. Our findings reveal limitations in their
ability to perform this task optimally.

2.2 VidQA Datasets and Benchmarks
Several notable datasets and benchmarks have been pro-
posed for multiple-choice VidQA approaches.

TVQA The TVQA dataset (Lei et al. 2018) comprises
over 150K question-answer pairs derived from 21,793 clips
across six TV shows. These clips average 76 seconds, with
each question providing a localized timestamp indicating
where the answer can be found within the clip.

In TVQA’s test-public set, human accuracy varied across
different modality combinations: 61.96% for video-only,
73.03% for subtitles-only, and 89.41% for both. While the
authors interpret this result as evidence for the necessity of
both visual and textual understanding, we propose an alter-
native perspective. We hypothesize that many questions in
the dataset contain redundant information across both video
and subtitle sources rather than requiring the integration of
information from distinct sources. Furthermore, we believe
this result insufficiently captures how questions depend on
different modalities or their combinations.

LifeQA The LifeQA dataset (Castro et al. 2020) com-
prises 2.3K questions derived from 275 real-life YouTube



videos. These videos were recorded by individuals in uncon-
trolled environments, capturing meaningful visual and lin-
guistic interactions. The human performance on this dataset
varied significantly: when given only video, participants
achieved 48.5% accuracy; with audio alone, accuracy rose to
63.4%; and with all modalities combined, accuracy peaked
at 90.6%. Interestingly, these results contradict the authors’
Venn diagram (Castro et al. (2020), Fig. 3) categorization
of LifeQA questions by answer type. Their categorization
suggests that over 60% of questions are visual-based, while
only 29% are speech-based, with the remaining questions
(10%) requiring both modalities. This distribution seems at
odds with the observed human performance across different
modality combinations. We argue this discrepancy suggests
that the authors’ categorization of answer types may have
been based on the perceived nature of the question rather
than actual modality dependency. This method may be less
accurate, as some questions labeled as “Visual” like “Where
are they located?” might also be answered based on dialogue
or background sounds.

AVQA The AVQA (Audio-Visual Question Answering)
dataset (Yang et al. 2022b), derived from the VGG Sound
dataset (Chen et al. 2020), contains over 57K question-
answer pairs derived from 57K real-life videos focusing on
object-generated sounds rather than human speech. It was
designed to require information from both audio and vi-
sual modalities for most questions, to ensure that relying on
just one modality would be insufficient or ambiguous for
an accurate answer. However, the annotators who designed
the questions also categorized the question types. Similar to
LifeQA, this approach could introduce bias, as annotators
might focus on the perceived modality requirements rather
than objectively assessing whether relevant information is
present in each modality.

2.3 Modality Contribution in Multimodal Tasks
The concept of quantifying modality contributions in mul-
timodal tasks was explored in perceptual score paper (Gat,
Schwartz, and Schwing 2021). They introduced a “percep-
tual score” to measure a model’s reliance on specific input
modalities or subsets. Their method involved removing the
influence of a modality M from the set of all modalities and
measuring the resulting change in accuracy.

Others, such as Yang et al. (2024), revealed that multi-
modal models often prefer certain modalities, leading to less
robust performance when a modality is missing or perturbed.
Their research showed that models tend to rely on one spe-
cific modality even when trained on multiple modalities,
demonstrating vulnerability to unimodal attacks. To address
this issue, they introduced Certifiable Robust Multi-modal
Training, a method designed to mitigate the influence of the
model’s modality preference and regulate essential compo-
nents to improve its robustness.

While such works aim to analyze models’ bias towards
specific modalities and suggest solutions for reliable and
robust performance, our work focuses on quantifying the
modality contribution in the dataset, specifically in multiple-
choice VidQA datasets. We identify modality bias in these

datasets and provide a more fine-grained categorization of
question types. This approach aims to guide the develop-
ment of more balanced datasets, a crucial first step toward
enabling multimodal models to utilize modalities effectively.

3 Method
3.1 Modality Importance Score
Intuition. Understanding the contribution of each modal-
ity is crucial in multi-modal question-answering tasks. Our
goal is to distinguish between questions answerable by a
single modality, those with redundant signals from multiple
modalities, and those requiring integration of modalities.

Consider the scenario in Figure 1, with two input modal-
ities: video and subtitles (audio in the form of text). Three
input combinations are possible: video alone, subtitle alone,
and video + subtitle. The importance of a modality, such as
video, can be quantified by estimating the increase in accu-
racy when video is present in the input combination (video,
video+subtitle) relative to when it is not (subtitle).

In Figure 1b, the question Q1 is an example where accu-
racy does not increase when the video is added. From the
phrase, “stitch me up” in the subtitle, one can reasonably in-
fer that the lady is likely bleeding. The video confirms this
fact by displaying a bleeding lady, but adds redundant sig-
nals rather than providing essential new details. In contrast,
question Q2, exemplifies a multimodal question that cannot
be answered correctly with a single modality. When con-
sidering only the video, two answer choices, (a) and (c),
become confusing as both mention the correct visual de-
tail “lady in the jean jacket”. Similarly, with only subtitles,
three plausible answer choices are given (b), (c), and (e). The
question requires integrating information from both modali-
ties for an accurate response. We formalize this intuition by
defining the modality importance score.

Definition. Given an input question qi, its corresponding
ground truth label yi, and a set of source modalities M =
{m1,m2, ...,mk}, we denote combinations of modalities in
M as the power set of M excluding the ∅, P(M) \ ∅. We
first define the performance measurement function as:

perf (qi | M ′) =

∑
S⊆M ′

1[Ai
S = yi]

|M ′|
, (1)

where M ′ is a subset of modalities defined as M ′ ⊆ P(M)\
∅, and |M ′| is the cardinality. 1[Ai

S = yi] is the response
accuracy function we use to measure the performance in
VidQA tasks defined as,

1[Ai
S = yi] =

{
1 if Ai

S = yi
0 if Ai

S ̸= yi .
(2)

This is an indicator function that returns 1 if the answer for
question qi, Ai

S , obtained using a subset of modalities S
matches the ground truth, and 0 otherwise. While our current
performance measurement function perf (qi | M ′) considers
only response accuracy, it can be generalized to incorporate
other performance metrics.



Finally, the Modality Importance Score (MIS) for a sin-
gle modality mj and question qi, is defined as:

MISimj
= perf (qi | M+

j )− perf (qi | M−
j ) , (3)

where M+
j = {S ⊆ P(M) \ {∅, {mj}} : mj ∈ S} are all

the non-empty subsets of modalities that must include mj

excluding the singleton set containing only mj and M−
j =

{S′ ⊆ P(M) \ {∅, {mj}} : mj ̸∈ S′} are all non-empty
subsets of modalities that exclude mj .

This formulation captures two key aspects of modality im-
portance. The perf (qi | M+

j ) calculates the average accu-
racy across all subsets of modalities that include mj and at
least one other element from the set of modalities in M , cap-
turing how well mj contributes in combination with other
modalities. The perf (qi | M−

j ) computes the average ac-
curacy across all subsets that exclude mj . The difference
measures the overall impact of including mj versus exclud-
ing it. Note that our intention is to compute the modality
importance score for a single modality mj and not a set of
multiple modalities; however, it is trivial to expand the defi-
nitions of M+ and M− to include or exclude combinations
of multiple modalities.

Response Accuracy
MISVid MISSubVid Sub Vid + Sub

0 0 0 0 0
0 1 0 -1 0
1 0 0 0 -1
1 1 0 -1 -1
0 0 1 1 1
0 1 1 0 1
1 0 1 1 0
1 1 1 0 0

Table 1: Modality Importance Score for Two Individual
Modalities : Video (Vid), Subtitle (Sub)

Table 1 illustrates modality importance scores for re-
sponse accuracies of three modality combinations. The
scores can be interpreted as follows: Positive MIS indicate
that the modality embeds a signal contributing to the an-
swer beyond other modalities. Negative MIS suggest that the
modality adds interference of conflicting information, po-
tentially masking another modality’s contribution. An MIS
of 0 implies that the modality doesn’t contribute additional
information beyond other modalities.

Note that the MIS reflects a modality’s relative contribu-
tion compared to others, not its absolute ability to answer
a question. For instance, if the subtitle alone can answer a
question, the video’s MIS may be 0, indicating no additional
contribution, and vice versa. In such cases, the modality sub-
set with both modalities might have MIS of 0, reflecting their
redundancy rather than their inability to answer the question.

MLLM-derived Modality Importance Score To esti-
mate the modality importance for questions in dataset D, we
can leverage the capabilities of MLLMs for scalability pur-

poses. This approach is applicable to datasets with |M | ≥ 2
modalities.

For each combination, we prompt the MLLM to select the
most plausible answer choice given the provided input com-
bination. We compare the model’s response accuracy across
different input combinations and quantify the relative impor-
tance of each modality according to (3).

This approach provides insights into the distribu-
tion of critical information across modalities in multi-
modal question-answering tasks. Previous approaches (Gat,
Schwartz, and Schwing 2021), used random permutation to
simulate the removal of a modality’s influence due to the
complexity of altering trained models. Our approach does
not require permutation as MLLMs allow for more direct
manipulation of input modalities. Although our MIS metric
can quantify each individual modality’s contribution when
more than two modalities are present, current MLLMs typi-
cally support only images and text. Hence, for this study, we
compute modality importance providing three distinct input
combinations to the MLLM: subtitle only, video only, and
both modalities together.

3.2 Categorizing Question Types with MIS
Unimodal-bias questions Using the MIS, we can iden-
tify unimodal-biased questions. If MISimk

≤ 0 ≤
MISimj

, MISimk
̸= MISimj

∀mk ∈ M where mk ̸= mj ,
we classify question qi as mj-biased. Such questions can be
answered using only mj , but cannot be answered correctly
using any other single modality mk. For instance, with video
and subtitle modalities, video-biased questions can manifest
in two ways. First, correct answers might be obtained when-
ever the video modality is included, but using only subtitles
leads to incorrect answers due to their irrelevance. Alterna-
tively, the video alone might yield correct answers, but com-
bining video and subtitles could result in incorrect answers.
In this latter case, the MIS for subtitles becomes negative,
indicating interference.

Modality-agnostic vs Complementary questions In ad-
dition to identifying unimodal-biased questions, we use MIS
to provide a more fine-grained categorization of questions.
This categorization helps our understanding of multimodal
questions and the relationships between different modalities
in answering them.

Modality-agnostic Question As shown in Table 1 rows
1 and 8, there are cases where the same MIS is obtained
regardless of which the subset of modalities, correct or in-
correct. We define these as modality-agnostic questions,
where ∀mj ∈ M,MISmj

= 0. We further divide modality-
agnostic questions into two subcategories:

• Modality-agnostic correct questions:
∀S ⊆ P(M), 1[Ai

S = yi] = 1

• Modality-agnostic incorrect questions:
∀S ⊆ P(M), 1[Ai

S = yi] = 0

Complementary Questions As illustrated in row 5 of Ta-
ble 1, there exist questions where no single modality can
strongly determine the answer and signals from multiple



modalities can be combined to determine the correct answer.
We define these questions as complementary questions,
where ∀mj ∈ M,MISmj

> 0. In this case, all modalities
contribute to answering the question correctly when com-
bined with other modalities.

Note that in the case of only two modalities, comple-
mentary questions cannot be answered correctly unless both
modalities are utilized. For scenarios with more than two
modalities, complementary questions may involve varying
contributions from each modality.

4 Evaluation
4.1 Experimental Setup and Overview
Estimating modality importance score For our experi-
ments, we utilized GPT-4 Turbo (OpenAI et al. 2024), one
of the top-performing MLLMs that supports both image and
text inputs. We prompted the model to select the correct an-
swer by providing the question, answer choices, and the cor-
responding modality combination under evaluation. Specific
constraints and image extraction were applied to account
for GPT-4 Turbo’s token limitations and allow longer video
clips. Detailed information about our prompts and process
can be found in Appendix A.

Datasets We evaluated three VidQA datasets, each con-
taining both video and subtitle/audio components. For
TVQA (Lei et al. 2018) and LifeQA (Castro et al.
2020), we use transcripts/subtitles provided by the dataset.
AVQA (Yang et al. 2022b) does not provide transcripts, but
we use the audio labels from VGG Sound dataset (Chen
et al. 2020) as the subtitle. Due to the large number of ques-
tions, we limited evaluation to the validation or test sets. For
TVQA and AVQA, we uniformly sampled 1,019 and 796
questions, respectively, representing approximately 6-10%
of the total questions. For LifeQA, we evaluated the entire
test set of 372 questions.

VidQA Models Our study evaluates four multimodal
VidQA models, listed in Table 3, capable of processing both
visual and textual (audio captions or subtitle) inputs to an-
swer multiple-choice questions. We use the MLLM-derived
MIS to identify unimodal-biased questions. Our feature per-
mutation experiments show how effectively these models in-
tegrate and utilize information across different modalities.

4.2 Human Study Validation of MLLM-derived
Modality Importance

To assess human perception of modality importance, we
employed a split-group methodology involving four partic-
ipants, each evaluating 197 TVQA questions. The detailed
methodology is in Appendix A, along with Figure 5 depict-
ing the study and Table 4 showing accuracy distributions
across confidence levels. Our study aimed to validate the
alignment between MLLM-derived MIS and human percep-
tion of modality importance. The evaluation yielded a sub-
stantial inter-annotator agreement (Fleiss’ kappa: 0.76) for
questions answered with both modalities, with an average
accuracy of 87.8%.

Figure 2: Question categorization based on human study vs
MLLM-derived MIS

For our analysis, we focused on questions that showed
unanimous agreement per modality. For these questions an-
notators were either all correct or all incorrect. As shown
in Fig. 2, this method revealed a strong alignment be-
tween human perception-based and MLLM-derived catego-
rizations for three types of questions: modality-agnostic cor-
rect, subtitle-biased, and video-biased. This suggests that
when human annotators are clearly in agreement, their judg-
ments closely match the MLLM’s assessments.

Under this categorization based on human scores, we
were unable to identify any complementary questions from
the evaluated subset of questions. This observation suggests
that questions whose answer relies on information from both
modalities might indeed be scarce in the multimodal VidQA
dataset. This finding highlights a potential limitation in cur-
rent multimodal datasets.

4.3 Evaluation of Modality Bias in VidQA
Datasets

In this section, we analyze the distribution of question types
based on MLLM-derived MIS.

TVQA The results, reported in Table 2, support our as-
sumption that many questions in TVQA would be modality-
agnostic correct. About 35% of the questions were classi-
fied as modality-agnostic correct, while only 2% were iden-
tified as complementary, requiring information from both
modalities. We had 7% of questions that were modality-
agnostic incorrect. As shown in Figure 2, GPT has limited
visual understanding compared to humans, as 8 out of 11
modality-agnostic incorrect questions were actually video-
biased. While the subtitle does not provide relevant infor-
mation for these questions, GPT fails to extract or compre-
hend details from the sequence of images. Consequently, the
model consistently incorrect regardless of input modality.
Overall, the results show a potential discrepancy between
the dataset’s intended multimodal nature and the actual dis-
tribution of question types.

LifeQA The distribution of question types based on our
MIS categorization shown in Table 2 revealed that modality-
agnostic correct questions formed the largest category, ac-



# of Q per Question Types Total # of QSB VB C MAC MAIC None

TVQA 224 (22.0%) 345 (33.9%) 21 (2.1%) 357 (35.1%) 71 (7.0%) 1 (0.1%) 1019
LifeQA 74 (19.9%) 125 (33.6%) 9 (2.4%) 135 (36.3%) 29 (7.8%) 0 (0.0%) 372
AVQA 39 (4.9%) 93 (11.7%) 5 (0.6%) 625 (78.5%) 32 (4.0%) 4 (0.5%) 796

Table 2: Distribution of Question Types based on MIS Across Different Datasets : Question (Q), Subtitle-biased (SB), Video-
biased (VB), Complementary (C), Modality-agnostic Correct (MAC), Modality-agnostic Incorrect (MAIC)

(a) LifeQA question types (b) AVQA question types

Figure 3: Proportion of MIS based Question types per An-
notated Answer Type

counting for approximately 36% of the dataset. Video-
biased questions followed closely, comprising 33% of the
dataset, and subtitle-biased questions accounted for 19.9%.
Less than 10% of questions were modality-agnostic incor-
rect for “Sound” and “View” types. For “View” types, we
found out that GPT-4’s had limitations in identifying image
details. For “Sound” types, errors were primarily due to in-
sufficient information in the provided automated captions.
The low percentage of complementary questions (2%) indi-
cates that most questions in the LifeQA dataset can be an-
swered using a single modality or are modality-agnostic.

Figure 3a compares our MI-based categorization with the
annotated answer types. - For “Sound” answer types, 46.8%
were classified as subtitle-biased, aligning with the anno-
tated type. However, a significant 41% were categorized as
modality-agnostic. This suggests that many questions anno-
tated as language-dependent can actually be answered with
all modalities. Similarly, for “View” answer type questions,
while the majority were video-biased, a significant num-
ber were modality-agnostic correct. These observations in-
dicate that our categorization generally aligns with human-
annotated answer types. Moreover, the significant propor-
tion of modality-agnostic correct questions in both “Sound”

and “View” answer types suggests that many questions may
not be single modality-dependent. See Appendix A for ex-
amples.

Figure 4: Example from AVQA where annotated answer
type is different from our categorization. For this video, the
subtitle is “civil defense siren”.

AVQA Table 2 depicts our analysis of AVQA. Our anal-
ysis found that the distribution of question types contra-
dicts the dataset’s original design intention of requiring both
modalities to answer accurately. 78.5% of 796 questions
were modality-agnostic correct questions. This implies that
many questions in this dataset are answerable using any sin-
gle modality, as shown in Figure 4. Only a small fraction of
questions, approximately 0.6%, were complementary. Addi-
tional examples can be found in Appendix A.

Figure 3b reveals interesting patterns similar to LifeQA.
Based on our categorization, questions annotated with the
“Sound” answer consisted of 37.5% subtitle-biased ques-
tions and no video-biased questions. Similarly, the ”Video”
answer type questions showed a high number of video-
biased questions (29.4%) and no subtitle-biased questions.

Summary In summary, our study demonstrates that the
MLLM-derived MIS and question categorization align well
with human perception of modality relevance. This approach
shows that many seemingly single-modality questions are
modality-agnostic correct, indicating the presence of re-
dundant signals across modalities. Although our sampling
method prevented us from definitively proving dataset-wide
unimodal bias, our approach shows significant potential in
identifying such biases and highlighting the scarcity of truly
multimodal questions requiring sophisticated information



integration from multiple modalities.

4.4 Multimodal Model Evaluation
Using the MIS, we partition the TVQA questions into those
that exhibit bias towards subtitles or video content to assess
the multimodal capability of models. We perform feature
permutation experiments to evaluate how well the models
focus on information relevant to each question type.

The results presented in Table 3 demonstrate the effec-
tiveness of MIS in capturing unimodal bias across differ-
ent models. We observe that permuting features with low
MIS leads to a significantly smaller decrease in accuracy
than permuting features with high MIS. For instance, with
the subtitle-biased question, “Why did Marshall think they
should have their marriage waiting period waived?” First,
we permute the less important video features by providing
the correct subtitle with the wrong images from a different
TV show. Then, we permuted the more important feature by
providing the wrong subtitle with the correct images. If our
MIS effectively categorizes the questions, we would expect
the model to perform well in the former case but fail in the
latter. This expectation aligned with our results, as the av-
erage decrease in accuracy between low-MIS and high-MIS
feature permutations was 33.5%, considering both subtitle
and video-biased questions.

Our evaluation reveals several key insights. First, the
significant decrease in accuracy between low and high-
importance feature permutations confirms that our modal-
ity importance score effectively identifies unimodal-biased
questions. Second, models generally show degraded perfor-
mance on video-biased questions than subtitle-biased ones.
This difference suggests a limitation in understanding visu-
ally relevant features across the evaluated models. This may
be due to the prevalence of subtitle-biased and modality-
agnostic questions in the original TVQA datasets. Although
we were unable to determine the total number of unimodal-
biased questions in the TVQA dataset, we can infer from
human performance on the TVQA test set. In the original
TVQA results, human accuracy with subtitles exceeded that
with video by 11%, encompassing both subtitle-biased and
modality-agnostic questions. Consequently, we hypothesize
that models were trained to focus more on subtitles than
video. This is also supported by our observation that per-
muting video in video-biased questions resulted in a lower
accuracy decrease than permuting subtitles in subtitle-biased
questions. Lastly, when we permuted features with low im-
portance scores, all models showed decreased accuracy ex-
cept FrozenBiLM with the subtitle modality. This observa-
tion indicates that most models struggle to optimally com-
bine information from different modalities, even when one
modality is deemed less important for a given question.

These findings highlight the challenges in multimodal
learning and the need for improved strategies in integrating
information across modalities.

5 Discussion and Limitations
In future work, we aim to experiment with creating comple-
mentary questions requiring genuine integration of multiple

modalities. This would allow comparison of model perfor-
mance across different question types, providing further in-
sights into multimodal reasoning capabilities and limitations
of current multimodal AI systems.

Our study’s main limitation is its reliance on a single
MLLM. Other models, such as Bard (Google 2023) or
Claude (Anthropic 2021), might yield different results. Our
approach’s performance depends heavily on the MLLM’s
capabilities, particularly its visual processing ability, which
we observed to be weaker than its language processing abil-
ity. This limitation most likely affected our categorization of
some video-biased questions. Future studies should explore
the use of multiple MLLMs and provide a more comprehen-
sive evaluation of modality importance and modality bias in
multimodal datasets.

6 Conclusion
Our findings reveal a significant challenge in the field of
multimodal AI: current Video Question Answering datasets
may not be optimally enabling multimodal reasoning. Our
novel method for assessing the relative importance of differ-
ent modalities, the MLLM-derived MIS, shows that across
three VidQA benchmarks, a substantial 89.8% to 94.8%
of questions can be answered using a single modality or
are modality-agnostic. Complementary questions, which re-
quire integration from multiple sources, account for only
0.6% to 2% of the evaluated samples. This question-type
imbalance may limit the full potential of multimodal AI
systems. Our analysis shows that our MLLM-derived MIS
correlates with the human perception of modality impor-
tance and can guide the scalable curation of more balanced
datasets. By increasing the proportion of questions that re-
quire genuine multimodal integration, we can more effec-
tively assess and improve a model’s abilities to reason across
diverse inputs, ultimately advancing the field of multimodal
AI.
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A Appendix
We present the following items in the appendix:

• Experimental Setup
• Evaluation Prompts
• Human Study Validation of MLLM-derived Modality Importance Regarding Confidence Score
• Example Questions from Evaluated Datasets
• Configuration for Evaluated Mutlimodal Models

A.1 Experimental Setup
We set GPT’s parameters to top-p=0 and seed=123, although the GPT API doesn’t guarantee deterministic behavior across
runs.

To accommodate GPT-4 Turbo’s token limitations, we implemented the following constraints: For subtitles, we did not
impose any limitations as all were less than the maximum tokens. For video-only inputs, we limited the number of images to
10. For combined video and subtitle inputs, we reduced the image limit to 8.

Given that many clips in our dataset exceed one minute in duration, we adopted a systematic approach to image extraction:
we sampled frames at 1 Hz, starting from the provided localized timestamp. For clips exceeding the image number limit, we
parsed them into multiple segments and prompted the model to analyze each segment separately. If the correct answer was
identified in any segment, we considered the overall response correct.

A.2 Evaluation Prompts

You are tasked with answering a question with five multiple-choice options for a clip.
For each clip, you will be given a question and five answer choices, along with the
subtitles from the video.

Select the most likely answer from the given choices based solely on the information
provided in the [Input Modality]. Do not make assumptions or rely on external knowledge
. If the [Input Modality] do not contain enough information to confidently answer the
question, choose the answer that is most plausible given the limited context.

In addition to selecting the most likely answer, specify the [Input Modality’s Content
Segment] where the relevant information for the correct answer can be found. Also,
state the reason you chose the answer. The reason should be no longer than two
sentences. If you made a random guess because you were not able to select any plausible
answer, then put ’None’ in the [Input Modality’s Content Segment] but keep the random

answer and state the reason as "Could not find answer, I selected random answer.".

For each video clip, format your output as follows:
"{ "Question ID 1": {

"Q":"How did ˜?",
"Answer Candidates" : {

"a": "", "b": "", "c": "", "d": "", "e": ""
},
"Answer": "b",
"[Input Modality’s Content Segment]": [],
"Reason": "The answer ..."

},
"Question ID 2": {}

}"

We utilize the above prompt for evaluation, adapting it to various input combinations: subtitles only, video only, or both
subtitles and video. The phrase “Input Modality’s Content Segment” in the prompt refers to different elements depending on
the given modality. For subtitles, it indicates timestamp ranges; for video, it denotes image numbers; and when both are present,
it includes both timestamp ranges and image numbers. This approach allows us to assess GPT-4’s ability to identify relevant
information from subtitles and/or video when selecting the correct answer.

For each prompt, we append the question, answer choices, and corresponding input modalities. When subtitles are involved,
we extract the relevant subtitle text that overlaps with the localized timestamp from TVQA. To optimize API request costs, we
group five questions, their answer choices, and associated subtitles into a single prompt for subtitle-only evaluations. For video-
based evaluations, whether video-only or video with subtitles, we adopt a different approach. In these cases, we include only



one question and its answer choices per prompt, accompanied by the corresponding video frames. When evaluating both video
and subtitles together, we follow the same structure as video-only prompts but additionally incorporate the relevant subtitle text.

Given this prompt, GPT-4-Turbo successfully outputted the correct JSON format. However, although we gave clear instruc-
tions in the prompt that the model should choose answer from the input choices, the model did not consistently follow these
instructions. In cases where it couldn’t find the answer, it frequently outputted “None” or “selected random answer” for the
“answer” field. We regarded these responses as “incorrect”.

A.3 Human Study Validation of MLLM-derived Modality Importance Regarding Confidence Score

Figure 5: Human modality perception study

As shown in the Figure 5, our human study involved four participants divided into two groups, assessing a total of 197 ques-
tions from TVQA. These questions were sampled from the 1,019 questions evaluated (see Section 4.3), ensuring representation
across all categories. Each group was presented with the same set of questions but different single-modality inputs initially,
followed by combined modality input. To account for the confidence level of responses, we asked participants to rate their
confidence for each answer (1-5).

While our evaluation process yielded substantial inter-annotator agreement, 0.76, and the average accuracy of 87.8% with
both modalities, we identified a significant variance between annotators’ confidence. This is observed in accuracy scores in the
low confidence group in Table 4.

Accuracy (%)
max min mean

all 92.9 79.2 87.8
high confidence 95.2 87.1 92.5
low confidence 60.0 11.1 38.6

Table 4: Human accuracy per confidence score using both modalities (high confidence : confidence > 3, low confidence :
confidence ≤ 3)

We then calculated a weighted accuracy score by multiplying each individual’s accuracy with their confidence score nor-
malized by maximum confidence score of 5. Then we sum these products, and divide by the number of people who used that
modality. This weighted accuracy was then rounded to either 0 or 1, considering a modality to contain a strong signal for
answering the question if the average accuracy exceeded 0.5.

Using these rounded response accuracies, we computed the modality importance score across all modality combinations.
Our findings indicate that human perception of unimodal bias in questions aligns similarly with MLLM-based assessments as
shown in Figure 6. The correlation between the model’s categorization and human judgment demonstrated a Cohen’s kappa
score of approximately 0.3.

While this score indicates moderate agreement, several factors contribute to the observed variance:



Figure 6: Heatmap of Question Categorization Based on Human Study vs MLLM-derived MIS Score

1. Limited Sample Size: Our study involved only four participants due to resource constraints. This small sample size may not
fully capture the diversity of human perceptions and could contribute to the variance in results.

2. Dataset Imperfections: Misaligned subtitles and incorrect speaker information in the TVQA dataset may have led to discrep-
ancies between human and MLLM interpretations.

3. Background Knowledge Disparities: Despite instructions to avoid using external knowledge, MLLMs demonstrated their
use of background information to infer scenes and characters’ behaviors. This reveals that MLLMs leveraged their extensive
knowledge about TV show characters, potentially enabling them to answer questions that some human annotators found
challenging due to limited familiarity with specific characters or plot elements.

Despite these factors, the moderate agreement between human and MLLM-based assessments is encouraging, especially
considering the study’s limitations. It suggests that our computational approach captures significant aspects of human-like
understanding of modality relevance in complex video question-answering tasks.

A.4 Example Questions from Evaluated Dataset
Our approach identified several interesting examples of modality-agnostic correct responses and complementary questions in
both the LifeQA and AVQA datasets. These examples provide valuable insights into the nature of multimodal questions and
the performance of MLLM like GPT-4 in video question answering tasks.

In LifeQA dataset, as shown in Figure 7, we observed various scenarios where GPT-4 provided modality-agnostic correct
responses. These include cases where direct answers were present in both modalities, as well as where one modality offered a
direct answer (Figure 7a ) while the other allowed for indirect inference (Figure 7b and 7c). In AVQA dataset, as illustrated
in Figure 8, exhibited a slightly different pattern in its modality-agnostic correct examples. We found that object sound labels
provided as subtitles in these videos typically aligned well with image content, thus presenting strong signals from both modal-
ities.The modality-agnostic questions in both datasets highlights the redundancy of information across modalities, suggesting
that current datasets may not be optimally designed to challenge models’ multimodal integration capabilities.

We also examine complementary examples from both datasets. While we anticipated that complementary questions would
require combining weak signals from both modalities to be answerable, our findings revealed a more complex cases. In Figure
9 from LifeQA, we discovered that the video had incorrect start and end timestamps in the annotation. Although the manual
captions provided by the dataset appear to be extracted from the correct video segment, the actual video frames showed sig-
nificant misalignment and therefore did not contain the relevant information. Interestingly, despite these misaligned modalities,
we observed that having both information sources actually aided GPT-4 in focusing on the broader context within the subtitle,
allowing it to infer details about character actions that weren’t explicitly stated. Conversely, the complementary example from
AVQA in Figure 10 was simply the result of a random selection between two correct choices.

The scarcity of complementary questions in both datasets limited our ability to analyze how models integrate information
from multiple modalities. However, the LifeQA example demonstrates that combining weak signals from misaligned modalities
can lead to correct answers, suggesting the potential of complementary questions in fostering effective multimodal integration.
This highlights the need for more complementary questions in multimodal datasets, which could push the boundaries of model
capabilities in integrating diverse information sources and drive advancements in multimodal reasoning.



(a) Annotated as “Both”. Subtitle mentions “[dad] haha pretzels I gotta put pretzels
on my pizza!”.

(b) Annotated as “Sound”. Subtitle mentions “[girl1] hahaha all right [girls1] we
finish work mom [inaudible] [woman] go put away the book”.

(c) Annotated as “View”. Subtitle mentions “[mom] yeah are you gonna put her this
side of the tree” and “[mom] haha oh oh Lia you can’t [inaudible] on the tree”.

Figure 7: LifeQA: Modality-Agnostic Correct questions that were annotated as (a) “Both”, (a) “Sound”, (a) “View”

A.5 Configuration for Evaluated Multimodal Models
Below are the specific models and configurations used in our evaluation of four models:



(a) Annotated as “Both”. Subtitle mentions “horse clip-clop”.

(b) Annotated as “Sound”. Subtitle mentions “civil defense alarm”.

(c) Annotated as “View”. Subtitle mentions “frog croaking”.

Figure 8: AVQA: Modality-Agnostic Correct questions that were annotated as (a) “Both”, (a) “Sound”, (a) “View”

Merlot Reserve Model (Zellers et al. 2022) We used the base model fine-tuned on TVQA. Our configuration followed
the original Merlot Reserve implementation: we extracted 8 frames and the corresponding subtitle from a 35-second window
centered around the middle of the timestamp.



(a) (b)

Figure 9: LifeQA: Complementary question annotated as “Both’. Video frames and GPT-4’s Answer shown in 9a (left) and
subtitles in 9b (right)

Figure 10: AVQA: Complementary question annotated as “Both”. Subtitle mentions “skiing”

FrozenBiLM (Yang et al. 2022a) We selected a model pretrained with a frozen DeBERTa-V2-XLarge language model and
fine-tuned on the TVQA dataset. Following the original experimental set up, we use 10 frames for every clip and subtitles from
localized timestamp.

Llama-VQA (Ko et al. 2023) For our evaluation, we used the Llama 7B as the base model, with a checkpoint fine-tuned on
TVQA. For each video clip, we processed 10 frames as input to the model and subtitles from localized timestamp. As other
models, we followed the original implementation.

MiniGpt4-Video (Ataallah et al. 2024) We evaluated the Llama2-7B based version of MiniGPT4-Video, which processes
45 frames per video and subtitles from localized timestamp. Note that this model was not fine-tuned on the TVQA dataset,
unlike the other models in our evaluation. For assessment, we used the evaluation script provided by MiniGPT4-Video, which
utilizes GPT-3.5 to compare the predicted answer with the ground-truth.


