Treatment of Non-Clear Cell Kidney Cancer

Past, Present, and Future

VIVEK NARAYAN, MD MSCE UNIVERSITY OF PENNSYLVANIA GU MEDICAL ONCOLOGY

Histologic Classification of Renal Cell Carcinoma

Non-clear cell Kidney Cancers:

- 15 20% of all kidney cancers
- Major types of Non-Clear Cell RCC:
 - Papillary type 1 and type 2
 - Chromophobe
 - Unclassified
- Several additional less common subtypes
- Sarcomatoid admixed with any RCC subtype

Clear Cell

Our understanding of the treatment of Non-Clear Cell RCC is *evolving*.

Single uniform entity \rightarrow spectrum of different diseases:

- distinctive molecular and genetic alterations
- differing clinical courses
- variable responses to treatment

Shuch B et al. Eur Urol. 2015;67:85-97. Linehan WM et al. J Urol. 2003;170:2163-2172.

Majority of initial studies for the treatment of RCC evaluated agents for Clear Cell Disease (80% of patients).

Little consensus regarding best practice for treatment of Non Clear Cell Disease (~20% of patients).

FIRST-LINE THERAPY FOR CLEAR CELL HISTOLOGY						
Risk	Preferred regimens	Other recommended regimens	Useful under certain circumstances			
Favorable ^a	• Axitinib + pembrolizumab • Pazopanib • Sunitinib	 Ipilimumab + nivolumab Cabozantinib (category 2B) Axitinib + avelumab 	• Active surveillance ^b • Axitinib (category 2B) • High-dose IL-2 ^c			
Poor/ intermediate ^a	 Ipilimumab + nivolumab (category 1) Axitinib + pembrolizumab (category 1) Cabozantinib 	• Pazopanib • Sunitinib • Axitinib + avelumab	• Axitinib (category 2B) • High-dose IL-2 ^c • Temsirolimus ^d			

Majority of initial studies for the treatment of RCC evaluated agents for Clear Cell Disease (80% of patients).

Little consensus regarding best practice for treatment of Non Clear Cell Disease (~20% of patients).

SYSTEMIC THERAPY FOR NON-CLEAR CELL HISTOLOGY					
Preferred regimens	Other recommended regimens	Useful under certain circumstances			
• Clinical trial • Sunitinib	• Cabozantinib • Everolimus	 Axitinib Bevacizumab or biosimilar^e Erlotinib Lenvatinib + everolimus Nivolumab Pazopanib Bevacizumab or biosimilar^e + erlotinib for selected patients with advanced papillary RCC including hereditary leiomyomatosis and renal cell cancer (HLRCC) Bevacizumab or biosimilar^e + everolimus Temsirolimus^d (category 1 for poor-prognosis risk group; category 2A for other risk groups) 			

Two trials evaluated systemic treatments specifically in Non Clear Cell Disease. Head to Head comparison: Sunitinib versus Everolimus

Conclusion: VEGF-directed therapies are the 'standard' treatment for Non Clear Cell Disease (but with very modest clinical outcomes)

Treatment of Non-Clear Cell RCC: the PRESENT

- Non-clear cell RCC is a heterogeneous disease group
 - SPLITTERS (not LUMPERS)
- Each subtype bears a distinct biology
- Improved understanding of the molecular underpinnings of each subtype
- Defining characteristics based on chromosomal alterations, tumor metabolism, etc.

Treatment of Non-Clear Cell RCC: the PRESENT

The Cancer Genome Atlas

Collaborative project to create comprehensive "maps" of the key genomic changes in various cancers

The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

Treatment of Non-Clear Cell RCC: the PRESENT

The Cancer Genome Atlas

Collaborative project to create comprehensive "maps" of the key genomic changes in various cancers

Clear Cell RCC

- Inactivation of VHL
- Mutations in chromatin remodeling pathways (PBRM1, SETD2, BAP1)
- Mutations in PI3K-Akt-mTOR pathway
- Loss of CDKN2A

Chromophobe RCC

- Alterations in TERT promoter region
- Mitochondrial function
- TP53, PTEN mutations
- Loss of CDKN2A
- Mutations in PI3K-Akt-mTOR pathway

Papillary RCC

Type 1

• Activating mutations, copy number alterations MET protooncogene

Type 2

- NRF2-ARM
- NF2, SMARCB1
- Loss of CDKN2A
- MET mutation

Immune Checkpoint Inhibitors:

KEYNOTE-427: (NCT02853344)

^aPD-L1 positive defined as combined positive score [CPS] \geq 1.

Presented By David McDermott at 2019 Genitourinary Cancers Symposium

Baseline Characteristics

Characteristic, n (%)	N = 165	
Age, median (range), years	62 (22-86)	
≥65 years	59 (36)	
Men	109 (66)	
Race		
White	145 (88)	
Asian	17 (10)	
Black or African American	1 (1)	
Other	1 (1)	
Karnofsky performance scale		
90-100	124 (75)	
70-80	41 (25)	

Characteristic, n (%)	N = 165
Confirmed RCC histology	
Papillary	118 (71)
Chromophobe	21 (13)
Unclassified	26 (16)
IMDC risk category	
Favorable	53 (32)
Intermediate/poor	112 (68)
PD-L1 status	
CPS ≥1	102 (62)
CPS <1	58 (35)
Missing	5 (3)

Database cutoff: September 7, 2018.

ORR by Confirmed RCC Histology per Blinded Independent Central Review

	Papillary n = 118	Chromophobe n = 21	Unclassified n = 26
Confirmed ORR, % (95%Cl)	25.4 (17.9-34.3)	9.5 (1.2-30.4)	34.6 (17.2-55.7)
DCR, % (95%Cl) ^a	43.2 (34.1-52.7)	33.3 (14.6-57.0)	34.6 (17.2-55.7)
Confirmed BOR, %			
CR	4.2	4.8	7.7
PR	21.2	4.8	26.9
SD	34.7	47.6	7.7
PD	33.9	42.9	46.2
No assessment ^b	5.1	0.0	7.7
Not evaluable ^c	0.8	0.0	3.8

^aDCR = CR + PR + SD ≥6 months. ^bIncludes patients who discontinued or died before first postbaseline scan. ^cIncludes patients with insufficient data for response assessment. Database cutoff: September 7, 2018.

Presented By David McDermott at 2019 Genitourinary Cancers Symposium

Maximum Change From Baseline in Target Lesions by Central Review

Includes patients who received ≥1 dose of pembrolizumab, had a baseline scan with measurable disease per RECIST v1.1, and had a postbaseline assessment (n = 155). *Patient had an increase in target lesions above 100%. Database cutoff: September 7, 2018.

Presented By David McDermott at 2019 Genitourinary Cancers Symposium

Immune Checkpoint Inhibitors: Sarcomatoid RCC

★ = responders

Immune Checkpoint Inhibitors: Sarcomatoid RCC

OS: Intermediate/Poor-Risk Sarcomatoid Patients

Treatment of Non-Clear Cell RCC: CONCLUSIONS

- Our understanding of non-clear cell RCC is evolving
- Non-clear cell RCC represents unique subtypes with distinct molecular alterations and clinical courses

- We are now understanding the areas of overlap and difference with conventional clear cell RCC

• Ongoing and Future Studies will evaluate treatment strategies targeting the unique biology of each subtype

