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influenza virus infection induces dramatic and permanent alveolar
remodeling mediated by p63� progenitor cell expansion in both mice
and some patients with acute respiratory distress syndrome. This
persistent lung epithelial dysplasia is accompanied by chronic inflam-
mation, but the driver(s) of this pathology are unknown. This work
identified de novo appearance of solitary chemosensory cells (SCCs),
as defined by the tuft cell marker doublecortin-like kinase 1, in
post-influenza lungs, arising in close proximity with the dysplastic
epithelium, whereas uninjured lungs are devoid of SCCs. Interest-
ingly, fate mapping demonstrated that these cells are derived from
p63-expressing lineage-negative progenitors, the same cell of origin
as the dysplastic epithelium. Direct activation of SCCs with denato-
nium � succinate increased plasma extravasation specifically in
post-influenza virus-injured lungs. Thus we demonstrate the previ-
ously unrecognized development and activity of SCCs in the lung
following influenza virus infection, implicating SCCs as a central
feature of dysplastic remodeling.
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INTRODUCTION

Infection with highly virulent strains of influenza A can
cause viral pneumonia and respiratory distress (28), with as
many as 500,000 deaths reported worldwide annually (33a).
While most patients recover, there is increasing evidence that,
despite viral clearance, chronic pathology and diminished lung
function persist in many individuals (2, 9, 18). Both mice and
humans exhibit dramatic lung regeneration upon injury in-
duced by influenza virus, involving a heterogeneous assem-
blage of epithelial progenitor cells (10, 30, 32, 34, 36). Mod-
erately injured alveolar parenchyma is reconstituted by alveo-
lar type 2 (AT2) cells (36) and Sox2� distal airway cells (32,

34), resulting in restoration of functional AT2 and alveolar
type 1 (AT1) cells. However, there is also massive expansion
of a rare subpopulation of cells, �Np63� lineage-negative
progenitors, after severe influenza virus-induced injury. These
cells, originally residing in the intrapulmonary airways, re-
spond to hypoxia in severely damaged alveolar areas and
initiate a bronchiolization/remodeling program characterized
by cytokeratin 5 (Krt5) expression (32, 34, 35). This phenom-
enon is particularly dramatic given that Krt5 expression is
normally restricted to basal cells in the trachea and mainstem
bronchi. While expansion of these cells into the alveoli likely
imparts a short-term benefit through restoration of barrier
function (36), Krt5� cells rarely resolve into AT2 or AT1 cells.
Instead, they form dysplastic “epithelial scars” that persist
through the lifespan of mice and, likely, humans (30, 32) and
seemingly do not contribute to pulmonary gas exchange func-
tions.

We and others have shown that the lung epithelial dysplasia
in mice after infection with influenza virus A/H1N1/PR/8 is
associated with chronic inflammation (7, 22). The coincidence
of Krt5� dysplastic epithelial cells and inflammatory cells
suggests cross talk between the epithelial and immune com-
partments and the possibility that inflammation drives and/or
maintains epithelial dysplasia. This inflammation was recently
described as a type 2 (Th2) immune environment, character-
ized by increased IL-13 and IL-33 production (7, 20).

Based on our recent work demonstrating that solitary che-
mosensory cells (SCCs) in human upper airway produce IL-25
and expand in response to IL-13 (8, 25) and work by others
demonstrating that related intestinal tuft cells respond to patho-
gen infection by producing type 2 cytokines (4, 33), we
hypothesized that SCCs could be involved in some aspect of
influenza virus-induced lung injury. Our data show that SCCs,
also known as tuft or brush cells, were indeed ectopically
present in the areas of remodeled alveoli induced by influenza
viral damage. This finding is particularly striking, given that
SCCs do not exist distal to the trachea in uninjured mice. SCCs
have been previously identified as epithelial chemosensors in
the sinonasal mucosa that respond to “bitter” irritants to pro-
mote local neurogenic inflammation in the mouse (26) and
drive release of antimicrobial peptides in the human (13, 14).
In the intestine, tuft cells represent a key node of the Th2
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immune circuit responsible for IL-25 production and subse-
quent epithelial remodeling and host immunity (4, 5, 27, 33).
Tuft cells have also been identified in the trachea (here called
brush cells), where they orchestrate inflammation in response
to leukotrienes (1). Here we elucidate the origin of ectopic lung
SCCs, examine their tuft cell-like character, and demonstrate
their ability to induce changes in both physiology and inflam-
mation in the lung following SCC-restricted receptor-mediated
activation. This work implicates SCCs as a central feature of
viral infection-induced lung pathology.

MATERIALS AND METHODS

Animals and treatment. All animal procedures were approved by
the Institutional Animal Care and Use Committee of the University of
Pennsylvania. p63-CreERT2 (12), Ai14-tdTomato (19), and Trpm5-
GFP (3) mice are described elsewhere. For all experiments, 6- to
8-wk-old C57BL/6 mice of both sexes were used in equal proportions.
For all animal studies, no statistical method was used to predetermine
sample size. The experiments were not randomized, and the investi-
gators were not blinded to allocation during experiments and outcome
assessment. For influenza virus infection, influenza virus A/H1N1/
PR/8 was administered intranasally to �25-g mice at 75 median tissue
culture infectious dose (TCID50) units and to �25-g mice at 100
TCID50 units. Briefly, mice were anesthetized with 3.5% isoflurane
for 5 min until agonal breathing was observed. Virus dissolved in 30
�l of PBS was pipetted onto the nostrils of anesthetized mice,
whereupon they aspirated the fluid directly into their lungs. After this
protocol, infected mice lose, on average, 22% of body weight by 7
days, and their peripheral capillary oxygen saturation drops to
72.5 � 9.0% by post-infection day 11.

Lineage tracing. Three doses (0.25 mg/g body wt) of tamoxifen
dissolved in 50 �l of corn oil were administered via intraperitoneal
injection to p63-CreERT2/tdTomato mice (a gift from Dr. Jianming
Xu, Baylor College of Medicine) for determination of the cell of
origin for post-influenza doublecortin-like kinase 1 (DCLK1)-positive
(DCLK1�) cells. After 3 wk for tamoxifen clearance, the mice were
infected as described above. Fidelity of lineage tracing in these mice
has been previously described (34, 35).

Tissue preparation and immunofluorescence. Freshly dissected
mouse lungs were inflated with 4% paraformaldehyde (PFA) for 1 h
at room temperature. Fixed lungs were washed by multiple changes of
PBS over the course of 1 h at room temperature and incubated
overnight in 30% sucrose with shaking at 4°C and for 2 h in 15%
sucrose-50% optimal cutting temperature compound (Fisher Health-
Care) at room temperature. Finally, fixed lungs were embedded in
optimal cutting temperature compound by flash freezing with dry ice
and ethanol. Cryosections (7 �m thick) were cut and fixed for an
additional 5 min in 4% PFA at room temperature, incubated three
times at 10-min intervals with 1% sodium borohydride (Sigma-
Aldrich) in PBS to reduce aldehyde-induced background fluorescence,
and subsequently blocked and stained in PBS � 1% BSA (Af-
fymetrix), 5% nonimmune horse serum, 0.1% Triton X-100, and
0.02% sodium azide.

The following antibodies were used for immunofluorescence: rab-
bit anti-DCLK1 (1:800 dilution; catalog no. ab37994, Abcam) (1, 5),
chicken anti-Krt5 (1:200 dilution; catalog no. 905901, BioLegend)
(32, 34), rabbit anti-surfactant protein C (1:2,000 dilution; catalog no.
ab3786, Millipore) (32, 34–36), rabbit anti-trefoil factor 2 (Tff2,
1:100 dilution; 13681-1-AP, Proteintech) (29), and mouse anti-mucin
5ac (Muc5ac, 1:100 dilution; catalog no. 45M1, Invitrogen) (29).

Quantification of immunofluorescence. To quantify Krt5� area,
mosaic images covering the whole lobes were generated from multi-
ple �10 fields captured on an upright fluorescence microscope (model
DMi8, Leica) and tiled in LAS X software (Leica). The Krt5� areas
and total areas were measured by manual outlining of stained areas in

ImageJ and calculation of area ratios. At least three sections, each
containing two to three individual lobes and separated by �300-�m
depth, were quantified for each mouse.

To quantify p63-CreERT2 trace of DCLK1� cells post-influenza,
images were captured as described above, and the total number of
DCLK1� cells was manually counted and assessed for lineage trace
by determination of Cre-activated tdTomato (303 DCLK1� cells; 301
DCLK1�/tdTomato) coexpression.

Hematoxylin-eosin staining. Lung tissue sections fixed with 4%
PFA were stained with hematoxylin and eosin by the Penn Vet
Comparative Pathology core.

Periodic acid-Schiff and Alcian blue staining. Alcian blue/periodic
acid-Schiff staining was performed by the Penn Vet Comparative
Pathology core as follows. Slides were stained with Alcian blue dye
for 30 min and rinsed under running water for 2 min and then with
distilled water for 30 s. Slides were then incubated for 10 min in 0.5%
periodic acid at 4°C, rinsed under running water for 5 min, and
incubated for 10 min in Schiff reagent. Finally, slides were placed in
hot water for 2 min, washed again for 2 min in distilled water,
counterstained with hematoxylin, dehydrated, and mounted. Bright-
field images were acquired on an upright fluorescence microscope
(model DMi8, Leica).

Bronchoalveolar lavage. The trachea was exposed, and a 20-gauge
catheter was inserted for lavage. Cold PBS (1 ml) was instilled into
the mouse lungs, and gentle aspiration was repeated three times. Cell
count was immediately performed using a hemocytometer.

Cytospins and Diff-Quik counts. Bronchoalveolar lavage fluid
(BALF) was centrifuged at 550 g for 5 min, and the supernatant was
transferred to separate tubes. The cells were resuspended in 4% PFA
and fixed onto slides using a Cytospin centrifuge at 750 rpm for 4 min.

Hema3 stain kit (Fisherbrand) protocol was used to determine
Diff-Quik cell counts.

RNA sequencing of Krt5� cells. Krt5-CreERT2/tdTomato-traced
cells from post-infection day 17 were isolated by fluorescence-
activated cell sorting, and RNA was extracted using a ReliaPrep
RNA Tissue Miniprep kit (Promega). cDNA synthesis/amplifica-
tion, library preparation, and sequencing were carried out as
described elsewhere (34).

Lung permeability assay. The lung permeability assay was per-
formed as described elsewhere (26) with the following modifications.
An orotracheal spray nozzle was used to administer 50 �l of PBS or
denatonium (10 mM) � succinate (10 mM) in PBS intratracheally to
mice anesthetized with vaporized isoflurane (see above). After 5 min,
100 �l of FITC-dextran (3–5 kDa; Sigma) were injected intrave-
nously. After 15 min to allow fluorescence-labeled dextran to circulate
in the blood, BALF was collected, cell count was performed, and
fluorescence intensity was determined using a spectrophotometer.

Chronic administration of denatonium � succinate. To investigate
the significance of repeated stimulation of SCCs, 50 �l of PBS or
denatonium (10 mM) � succinate (10 mM) in PBS were administered
intratracheally once every day for 7 days. Then BALF was collected
and lungs were fixed as described above. The total number of
DCLK1� cells within a Krt5� area was manually counted and
quantified.

Cell line identity. No cell lines were used in this study.
Statistical analyses. All statistical calculations were performed

using GraphPad Prism. The Mann-Whitney test was used to determine
significance. P � 0.05 was considered significant.

RESULTS

SCCs arise ectopically in post-influenza dysplastic lungs.
Extensive alveolar damage and permanent epithelial dyspla-
sia ensue after influenza A/H1N1/PR/8 infection (Fig. 1A)
(32, 34, 36), but the underlying driver(s) remains obscure.
Expansion of Krt5� dysplastic epithelial cells is accompa-
nied by increased CD45� immune cells through �49 days
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post-infection (Fig. 1B) compared with uninjured controls.
Large aggregates of immune cells, similar in gross appear-
ance to induced bronchus-associated lymphoid tissue, were
commonly observed (22). Chronic inflammation was further
supported by an increased number of immune cells in BALF
collected from mice well past the primary immune response

(Fig. 1C). Differential staining of BALF demonstrated in-
creased percentages of lymphocytes and eosinophils in in-
jured lungs (Fig. 1D). Furthermore, we observed increased
periodic acid-Schiff and Alcian blue staining in dysplastic
regions of the injured lungs, indicating mucous metaplasia
(Fig. 2A). This observation was further validated by in-
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Fig. 1. Chronic inflammation and extensive alveolar damage in post-influenza lungs. A: hematoxylin-eosin staining of lung tissue sections on post-infection days
0–51 indicates epithelial ablation and extensive alveolar damage. B: influenza virus infection results in cytokeratin 5 (Krt5)-positive (Krt5�) cell expansion
accompanied by increased CD45� immune cells up to post-infection day 49, while uninjured lungs demonstrate only normal resident immune cells and lack
Krt5� cells. Scale bars, A, 100 �m; B, 50 �m. C: bronchoalveolar lavage fluid displays a significantly higher immune cell count in post-influenza (days 25–51)
lungs. Values are means � SE; n 	 3 uninjured and 4 injured mice. D: bronchoalveolar lavage fluid cell composition post-influenza demonstrates increased
lymphocyte and eosinophil counts, indicating inflammation. *P � 0.05.
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creased immunostaining for the goblet cell markers Muc5ac
and Tff2 (21) (Fig. 2, B and C).

To address whether SCCs might also arise in this envi-
ronment, we utilized immunostaining for the conserved
SCC/tuft cell/brush cell marker gene DCLK1. Strikingly,
DCLK1� cells, with characteristic unipolar morphology,
were found in close association with the dysplastic epithe-
lium as early as post-infection day 12. SCCs increase in
number through ~25 days post-infection and persisted even

at late time points (day 49) (Fig. 3, A and B). Given that
SCCs arise near Krt5� cells at all time points, we asked
whether these cells might share a common cell of origin, as
judged by fate-mapping analysis. We infected tamoxifen-
treated p63-CreERT2/lsl-tdTomato mice in which p63� pro-
genitor cells and their descendants are indelibly labeled by
tdTomato expression. Nearly 100% of SCCs were labeled,
indicating that they share a common origin with the dys-
plastic epithelium (Fig. 3, C and D).
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Fig. 2. Goblet cell hyperplasia in post-influenza lungs. A:
periodic acid-Schiff (PAS)/Alcian blue staining indicates gob-
let cell hyperplasia in post-influenza (days 25 and 51) lungs. B
and C: increased immunostaining for the goblet cell markers
trefoil factor 2 (Tff2) and mucin 5ac (Muc5ac) in the lung at
days 25 and 51, respectively. Krt5, cytokeratin 5. Scale bars,
50 �m.
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To confirm the identity of influenza-associated SCCs, we
examined RNA-sequencing expression data of Krt5-CreERT2
lineage-labeled cells isolated on post-infection day 17 (34).
This population, which contains Krt5� cells, as well as cells

beginning to differentiate toward the various dysplasia-associ-
ated cell types, demonstrated increased expression of tuft
cell/SCC-restricted genes [the tuft cell marker DCLK1 and tuft
cell signaling genes transient receptor potential cation channel
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subfamily M member 5 (Trpm5) and G protein subunit-

transducin 3 (Gnat3)] (Fig. 3E, left), including multiple bitter
taste receptors (Tas1r3, Tas2r108, Tas2r121, and Tas2r131)
(Fig. 3E, right). In addition to corroborating the p63 lineage-
trace data, these data confirm expression of many tuft cell/
SCC-associated genes and imply a shared character with che-
mosensory cells in other tissues. To further validate the identity
of SCCs in post-influenza lungs, we utilized Trpm5-GFP
reporter mice in which green fluorescent protein (GFP) expres-
sion is restricted to SCCs and tuft cells (5, 16, 31). At
post-infection day 25, we observed numerous GFP� cells in
dysplastic regions. All DCLK1� cells observed were GFP�,
marking these cells as bona fide SCCs (Fig. 3F).

SCC activation promotes plasma extravasation in post-
influenza lungs. To establish a functional role for SCCs within
the distal lung post-influenza, we asked whether exposure to
the SCC-activating ligands denatonium (13, 14, 26, 31) and
succinate (15, 23, 27) could induce components of inflamma-
tion. We employed a lung permeability assay utilizing intra-
venous administration of FITC-dextran to determine whether
SCC stimulation can induce plasma extravasation into the air
space based on a prior model in the mouse upper airway (26).
Indeed, combinatorial intratracheal administration of denato-
nium and succinate acutely increased lung permeability, as
observed by a significant increase in FITC-dextran levels in
BALF of injured, but not naïve, animals (Fig. 4A). These data
indicate that SCC expansion enables the affected lung tissue to
respond to activating ligands such as denatonium and succi-
nate, resulting in plasma extravasation, as measured by in-
creased permeability to FITC-dextran.

Intestinal tuft cells, upon activation, promote epithelial re-
modeling, resulting in more tuft cells (27). To examine whether
a similar scenario occurs in the lungs, we administered dena-
tonium � succinate to influenza-infected mice daily for 7 days.
Long-term, repetitive activation of SCCs resulted in a signifi-
cant increase in the number of DCLK1� cells (Fig. 4B),
supporting a positive-feedback circuit that expands local SCC
numbers post-infection.

DISCUSSION

In this study we demonstrate the appearance of ectopic SCCs
in the distal lung after influenza virus-induced injury. These
cells are entirely absent in uninjured lungs but develop adjacent
to dysplastic (Krt5�) epithelium. Fate mapping validated that
SCCs arise from p63� lineage-negative progenitors, the same
cell of origin as the Krt5� cells. This common parentage hints
at a relationship between SCCs and lung epithelial dysplasia,
whereby SCCs might promote the maintenance of dysplastic
epithelium. The intestinal model in which tuft cell expansion
simultaneously promotes Th2 inflammation and epithelial
metaplasia (33) is entirely consistent with our contention.

Direct activation of SCCs by denatonium � succinate re-
sulted in increased plasma extravasation into the air space, a
hallmark of inflammation (26). It is possible that this effect on
permeability is induced by SCC-mediated activation of a neu-
rogenic inflammatory pathway, as occurs in the nasal cavity
(16, 26). On the other hand, permeability changes could also
result from SCC-derived Th2 cytokine stimulation, as observed
in the intestinal tuft cell model. Future efforts should focus on
precise definition of the molecular mechanisms by which SCC
stimulation promotes inflammatory changes. It is also impor-
tant to note that we analyzed a relatively broad time window
for post-infection mice in Fig. 4A; we reasoned that since SCC
numbers remained constant after post-infection day 25, mice
past that point represent a reasonable cohort. In future studies,
more precise time-course experiments should be performed to
examine the effects of SCC stimulation as a function of time
post-infection.

An important caveat of intratracheal administration of SCC
ligands is that faulty technique could inadvertently activate
brush cells in the upper trachea (present in naïve, uninjured
mice), possibly explaining the single uninjured mouse that
responded strongly to denatonium � succinate in Fig. 4A.
Nonetheless, the significant permeability increase observed
only in post-infection mice underscores the involvement of
SCCs in proinflammatory pathways. Whether this represents
an adaptive or a pathological consequence of lung repair
remains unclear.

Notably, activation of the tuft cell signaling circuit by
parasite infection in the gut limits subsequent infection (27). It
will be intriguing to see if SCC expansion in post-influenza
lungs renders them resistant to subsequent infection with
pathogens that are cleared by Th2 responses. Childhood respi-
ratory virus infection predisposes individuals toward asthma, a
Th2-associated disease, further suggesting possible involve-
ment of SCCs (6, 11).

To the best of our knowledge, this study represents the first
demonstration of a solitary chemosensory cell population that
arises in the distal airways and alveoli after influenza virus
infection. Our studies indicate a likely role for SCCs in medi-
ating cross talk between inflammation and dysplasia, but there
is a clear need for future studies to define more discrete
functions of SCCs and the molecular mechanisms by which
these functions are achieved.
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Fig. 3. Solitary chemosensory cells (SCCs) arise in post-influenza lungs. A: SCC-like cells expressing doublecortin-like kinase 1 (DCLK1) appear at ~12 days
after influenza virus infection, with increasing numbers seen up to day 51. B: quantification of total number of SCCs relative to percentage of cytokeratin 5
(Krt5)-positive (Krt5�) area. Values are means � SE; n 	 3 mice per group. C: schematic depicting lineage-mapping methodology; �99% of DCLK1� cells
are completely traced (tdTomatopos) in p63-CreERT2/tdTomato mice. D: quantification of lineage tracing by manual cell counts in tissue sections (n 	 3 mice).
E: RNA-sequencing analysis of post-influenza Krt5-traced cells (day 17) displayed increased expression of SCC-restricted genes, including several bitter taste
receptors (Tas1r3, Tas2r108, Tas2r121, and Tas2r131). FPKM, fragments per kilobase of transcript per million mapped reads; Trpm5, transient receptor potential
cation channel subfamily M member 5; Gnat3, G protein subunit-
 transducin 3. F: influenza virus infection of Trpm5-GFP mice (day 25) resulted in green
fluorescent protein (GFP)-positive cells in the lungs coexpressing DCLK1 (yellow/orange cells). Values are means � SE; n is shown by individual dots on the
plot, n 	 2 per group. Scale bars, 50 �m.
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