
Multiple Imputation Algorithms for General Missing
Pattern in the Presence of High-dimensional Data

Yi Deng

July 24, 2015

1 General Missing Pattern Setup
Consider a data set Z with p variables, z1, ..., zp. Assume the first l (l ≤ p) variables have some
missing values. We denote the missing components and observed components for variable j by
zj,mis and zj,obs. Suppose we have rj observed values in variable zj .

2 Multiple Imputation through Indirect Use of Regularized Re-
gression (IURR)

2.1 We start the iterative procedure with some initial values. Impute all the elements in zj,mis
with z

(0)
j,mis = mean(zj,obs), (j = 1, 2, ..., l). Define the initial completed dataset after this

imputation as Z(0), with z
(0)
j = (z

(0)
j,mis, zj,obs).

2.2 In the m-th iteration:
For variable j, (j = 1, ..., l), define W = {z(m)

1 , ..., z
(m)
j−1, z

(m−1)
j+1 , ..., z

(m−1)
l , zl+1, ..., zp}. De-

note by Wmis the component of W corresponding to zj,mis and by Wobs the component of
W corresponds to zj,obs.

(i) If Zj follows a Gaussian distribution.
We use a regularized regression method to fit a multiple linear regression model consid-
ering zj,obs as the outcome variable and Wobs as the predictor variable, and identify the
active set, Ŝ(m)

j .
Let WŜ(m)

j
denote the subset of W that only contains the active set. Correspondingly,

denote two components of WŜ(m)
j

by WŜ(m)
j ,mis

and WŜ(m)
j ,obs

. Then the model is

zj,obs = θ0,j1rj + WŜ(m)
j ,obs

θj + εj, (1)

where εj ∼ N(0, σ2
j Irj) and 1rj is a vector of length rj with all entries one.

Approximate the distribution of (θ0,j,θj, σ
2
j ) by using a standard inference procedure

such as maximum likelihood.

(θ0,j,θj, σ
2
j ) ∼ N(θ̂MLE, Σ̂MLE)
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Where θ̂MLE is the MLE of parameters in model (1) and Σ̂MLE is the variance-covariance
matrix of the estimated parameters.
Conduct one imputation for zj,mis: randomly draw (θ̂0,j, θ̂j, σ̂

2
j ) from N(θ̂MLE, Σ̂MLE),

and impute zj,mis with z
(m)
j,mis by drawing randomly from the predictive distributionN(θ̂0,j1n−rj+

WŜ(m)
j ,mis

θ̂j, σ̂
2
j In−rj). Let z

(m)
j = (z

(m)
j,mis, zj,obs).

(ii) If Zj follows a Bernoulli distribution.
We use a regularized regression method to fit a multiple logistic regression model con-
sidering zj,obs as the outcome variable and Wobs as the predictor variable, and identify
the active set, Ŝ(m)

j .
Let WŜ(m)

j
denote the subset of W that only contains the active set. Correspondingly,

denote two components of WŜ(m)
j

by WŜ(m)
j ,mis

and WŜ(m)
j ,obs

. Then the model is

logit(Pr(zj,obs = 1|WŜ(m)
j ,obs

)) = θ0,j1rj + WŜ(m)
j ,obs

θj, (2)

Approximate the distribution of (θ0,j,θj) by using a standard inference procedure such
as maximum likelihood.

((θ0,j,θj) ∼ N(θ̂MLE, Σ̂MLE)

Where θ̂MLE is the MLE of parameters in model (2) and Σ̂MLE is the variance-covariance
matrix of the estimated parameters.
Conduct one imputation for zj,mis: randomly draw (θ̂0,j, θ̂j) fromN(θ̂MLE, Σ̂MLE), and
impute zj,mis with z

(m)
j,mis by drawing randomly from the predictive distribution

Bernoulli(
exp(θ̂0,j1n−rj+W

Ŝ(m)
j

,mis
θ̂j)

1+exp(θ̂0,j1n−rj+W
Ŝ(m)
j

,mis
θ̂j)

). Let z
(m)
j = (z

(m)
j,mis, zj,obs).

(iii) If Zj follows a Poisson distribution.
We use a regularized regression method to fit a multiple Poisson regression model con-
sidering zj,obs as the outcome variable and Wobs as the predictor variable, and identify
the active set, Ŝ(m)

j .
Let WŜ(m)

j
denote the subset of W that only contains the active set. Correspondingly,

denote two components of WŜ(m)
j

by WŜ(m)
j ,mis

and WŜ(m)
j ,obs

. Then the model is

log(E[zj,obs|WŜ(m)
j ,obs

]) = θ0,j1rj + WŜ(m)
j ,obs

θj, (3)

Approximate the distribution of (θ0,j,θj) by using a standard inference procedure such
as maximum likelihood.

((θ0,j,θj) ∼ N(θ̂MLE, Σ̂MLE)

Where θ̂MLE is the MLE of parameters in model (3) and Σ̂MLE is the variance-covariance
matrix of the estimated parameters.
Conduct one imputation for zj,mis: randomly draw (θ̂0,j, θ̂j) fromN(θ̂MLE, Σ̂MLE), and
impute zj,mis with z

(m)
j,mis by drawing randomly from the predictive distribution

Poisson(exp(θ̂0,j1n−rj + WŜ(m)
j ,mis

θ̂j)). Let z
(m)
j = (z

(m)
j,mis, zj,obs).
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2.3 Denote the updated data set after the m-th interation by Z(m). Repeat the procedures itera-
tively. After the iterations converge, the last M imputed data sets after appropriate thinning
are chosen for subsequent standard complete-data analysis.

3 Multiple Imputation through Direct Use of Regularized Re-
gression (DURR)

3.1 We start the iterative procedure with some initial values. Impute all the elements in zmis,j
with z

(0)
mis,j = mean(zobs,j), (j = 1, 2, ..., l). Define the initial completed dataset after this

imputation as Z(0).

3.2 In the m-th iteration:
For variable j,(j = 1, ..., l), define W = {z(m)

1 , ..., z
(m)
j−1, z

(m−1)
j+1 , ..., z

(m−1)
l , zl+1, ..., zp}. De-

note by Wmis the component of W corresponding to zj,mis. We generate a bootstrap data set
{W∗, z∗j} of size n by randomly drawing n observations from {W, z

(m−1)
j } with replacement.

Denote the observed values of z∗j by z∗j,obs and the corresponding component of W∗ by W∗
obs.

Suppose we have rj and r∗j observed values in variable zj and z∗j , respectively.

(i) If Zj follows a Gaussian distribution. The model is

z∗j,obs = θ0,j1r∗j + W∗
obsθj + εj, (4)

where εj ∼ N(0, σ2
j Ir∗j ).

Use a regularized regression moethod to fit model (4) and get parameter estimates as
follows:

(θ̂0,j, θ̂j) = argmin
(θ0,j ,θj)

[−`(θ0,j,θj; z∗j,obs,W∗
obs) + Pλ(θj)]

Where Pλ(θj) is a regularization function. Then consider the mean of squared residuals
as an estimate of σ2

j , denoted by σ̂2
j .

Impute zj,mis with z
(m)
j,mis by drawing randomly from the predictive distributionN(θ̂0,j1n−rj+

Wmisθ̂j, σ̂
2
j In−rj), noting that imputation is conducted on the original data set Wmis, not

the bootstrap data set W∗. Let z
(m)
j = (z

(m)
j,mis, zj,obs).

(ii) If Zj follows a Bernoulli distribution. The model is

logit(z∗j,obs = 1|W∗
obs) = θ0,j1rj + W∗

obsθj, (5)

Use a regularized regression moethod to fit model (5) and get parameter estimates as
follows:

(θ̂0,j, θ̂j) = argmin
(θ0,j ,θj)

[−`(θ0,j,θj; z∗j,obs,W∗
obs) + Pλ(θj)]

Where Pλ(θj) is a regularization function.
Impute zj,mis with z

(m)
j,mis by drawing randomly from the predictive distribution
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Bernoulli(
exp(θ̂0,j1n−rj+Wmisθ̂j)

1+exp(θ̂0,j1n−rj+Wmisθ̂j)
), noting that imputation is conducted on the original

data set Wmis, not the bootstrap data set W∗. Let z
(m)
j = (z

(m)
j,mis, zj,obs).

(iii) If Zj follows a Poisson distribution. The model is

log(E[z∗j,obs|W∗
obs]) = θ0,j1rj + W∗

obsθj, (6)

Use a regularized regression moethod to fit model (6) and get parameter estimates as
follows:

(θ̂0,j, θ̂j) = argmin
(θ0,j ,θj)

[−`(θ0,j,θj; z∗j,obs,W∗
obs) + Pλ(θj)]

Where Pλ(θj) is a regularization function.
Impute zj,mis with z

(m)
j,mis by drawing randomly from the predictive distribution

Poisson(exp(θ̂0,j1n−rj +Wmisθ̂j)), noting that imputation is conducted on the original
data set Wmis, not the bootstrap data set W∗. Let z

(m)
j = (z

(m)
j,mis, zj,obs).

3.3 Denote the updated data set after the m-th interation by Z(m). Repeat the procedures itera-
tively. After the iterations converge, the last M imputed data sets after appropriate thinning
are chosen for subsequent standard complete-data analysis.
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