
1 A Simplified Data Setup
We consider the same simplified data setup from the paper, where only one variable has missing val-
ues with the others fully observed. Without loss of generality, we assume that z1 is continuous and
contains missing values with the first r components observed, zobs,1 = (z1,1, . . . , zr,1)

T , and the re-
maining n−r components missing, zmis,1 = (zr+1,1, . . . , zn,1)

T . Define the complement data set for
z1 as Z−1 = (z1,−1, z2,−1, . . . , zn,−1)

T = (Zobs,−1,Zmis,−1)
T with zi,−1 = (zi,2, zi,3, . . . , zi,p)

T , and
define the complement data sets for zobs,1 and zmis,1 as Zobs,−1 = (z1,−1, . . . , zr,−1)

T and Zmis,−1 =
(zr+1,−1, . . . , zn,−1)

T , respectively. Then the observed data are Zobs = (zobs,1,Zobs,−1,Zmis,−1) and
the missing data are Zmis = (zmis,1); there are r complete cases and n− r incomplete cases with z1

missing.

2 Multiple Imputation through Direct Use of Regularized Re-
gression (DURR)

2.1 Gaussian
2.1.1 Generate a bootstrap data set Z(m) of size n by randomly drawing n observations from Z with

replacement.
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Where Pλ(α(m)) is a regularization function.
ẑ
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2.1.3 Impute zmis,1 with z
(m)
mis,1 by drawing randomly from the predictive distribution N(α̂

(m)
0 +

Zmis,−1α̂
(m), σ̂2(m)

Ir), noting that imputation is conducted on the original data set, not the
bootstrap data set.

2.2 Binary
2.2.1 Generate a bootstrap data set Z(m) of size n by randomly drawing n observations from Z with

replacement.
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2.2.2 Suppose

z
(m)
i,1 ∼ Bernoulli(π

(m)
i ) (3)

log(
π
(m)
i

1− π(m)
i

) = α
(m)
0 + z

(m)
i,−1α

(m) i = (1, . . . , r) (4)

Then,

(α̂
(m)
0 , α̂(m)) = argmin

(α
(m)
0 ,α(m))

[−`(α(m)
0 ,α(m); z

(m)
obs,1,Z

(m)
obs,−1) + Pλ(α

(m))] (5)

Where Pλ(α(m)) is a regularization function.
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j = (r + 1, . . . , n)

2.2.3 For j in r + 1, . . . , n, impute zj,1 with z
(m)
j,1 by drawing randomly from the predictive distri-

bution Bernoulli(π̂j), noting that imputation is conducted on the original data set, not the
bootstrap data set.

2.3 Poisson
2.3.1 Generate a bootstrap data set Z(m) of size n by randomly drawing n observations from Z with

replacement.

2.3.2 Suppose

z
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log(µ
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Where Pλ(α(m)) is a regularization function.
We can get µ̂(m)

j = exp(α̂
(m)
0 + zj,−1α̂

(m)) j = (r + 1, . . . , n)

2.3.3 For j in r + 1, . . . , n, impute zj,1 with z
(m)
j,1 by drawing randomly from the predictive distri-

bution Poisson(µ̂(m)
j ), noting that imputation is conducted on the original data set, not the

bootstrap data set.
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3 Multiple Imputation through Indirect Use of Regularized Re-
gression (IURR)

3.1 Gaussian
3.1.1 Suppose

zobs,1 = α0 + Zobs,−1α+ ε (9)

where ε ∼ N(0, σ2Ir) and α = (α1, . . . , αp−1)
T .

Use a regularized regression method to fit model (9) and identify the active set, Ŝ.

3.1.2 Then the model is

zobs,1 = θ0 + Zobs,Ŝθ + ε (10)

Approximate the distribution of (θ0,θ, σ2) by using a standard inference procedure such as
maximum likelihood.

(θ0,θ, σ
2) ∼ N(θ̂MLE, Σ̂MLE) (11)

Where θ̂MLE is the MLE of parameters in model (10) and Σ̂MLE is the variance-covariance
matrix of the estimated parameters.

3.1.3 Conduct multiple imputation for zmis,1: in them-th imputation, randomly draw (θ̂
(m)
0 , θ̂(m), σ̂2(m)

)

fromN(θ̂MLE, Σ̂MLE), and subsequently impute zmis,1 with z
(m)
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(m), σ̂2(m)
Ir).

3.2 Binary
3.2.1 Suppose
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Use a regularized regression method to fit model (13) and identify the active set, Ŝ.

3.2.2 Then the model is

log(
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) = θ
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0 + z
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i,Ŝ
θ(m) i = (1, . . . , r) (14)

Approximate the distribution of (θ0,θ) by using a standard inference procedure such as max-
imum likelihood.

(θ0,θ) ∼ N(θ̂MLE, Σ̂MLE) (15)

Where θ̂MLE is the MLE of parameters in model (14) and Σ̂MLE is the variance-covariance
matrix of the estimated parameters using the generalized linear model.
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3.2.3 Conduct multiple imputation for zj,1: in the m-th imputation, randomly draw (θ̂
(m)
0 , θ̂(m))

from N(θ̂MLE, Σ̂MLE), and subsequently impute zj,1 with z
(m)
j,1 by drawing randomly from

the predictive distribution Bernoulli(π̂(m)
j ), where π̂(m)
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3.3 Poisson
3.3.1 Suppose

z
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(m)
i ) (16)

log(µ
(m)
i ) = α

(m)
0 + z
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(m) i = (1, . . . , r) (17)

Use a regularized regression method to fit model (17) and identify the active set, Ŝ.

3.3.2 Then the model is

log(µ
(m)
i ) = θ

(m)
0 + z

(m)

i,Ŝ
θ(m) i = (1, . . . , r) (18)

Approximate the distribution of (θ0,θ) by using a standard inference procedure such as max-
imum likelihood.

(θ0,θ) ∼ N(θ̂MLE, Σ̂MLE) (19)

Where θ̂MLE is the MLE of parameters in model (18) and Σ̂MLE is the variance-covariance
matrix of the estimated parameters using the generalized linear model.

3.3.3 Conduct multiple imputation for zj,1: in the m-th imputation, randomly draw (θ̂
(m)
0 , θ̂(m))

from N(θ̂MLE, Σ̂MLE), and subsequently impute zj,1 with z
(m)
j,1 by drawing randomly from

the predictive distribution Poisson(µ̂(m)
j ), where µ̂(m)

j = exp(θ̂
(m)
0 + zj,Ŝ θ̂

(m)). j = (r +
1, . . . , n)
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