1 A Simplified Data Setup

We consider the same simplified data setup from the paper, where only one variable has missing val-
ues with the others fully observed. Without loss of generality, we assume that z; is continuous and
contains missing values with the first  components observed, zos1 = (211, - -, zm)T, and the re-
maining n — r components missing, Z,is1 = (2111, - --,2n1)" . Define the complement data set for
z1a8Z 1= (z1_1,Z2 1, Zn—1)" = (Zobs 1, Limis,—1)" Withz; 1 = (zi2,2i3,..-,2i,)", and
define the complement data sets for z,s 1 and z;s1 as Zops —1 = (21,1, - - ., zn_l)T and Z,,;s 1 =
(Zy41,-1,---,2n_1)7, respectively. Then the observed data are Zops = (Zops.1, Ziobs,—1, Zomis,—1) and
the missing data are Z,,;; = (Zs,1); there are r complete cases and n — r incomplete cases with z;
missing.

2 Multiple Imputation through Direct Use of Regularized Re-
gression (DURR)

2.1 Gaussian

2.1.1 Generate a bootstrap data set Z(™ of size n by randomly drawing n observations from Z with

replacement.
2.1.2
iy =l 2 ) e W
where €™ ~ N(0,02™'1,) and a™ = (a{™, ... ,ozI(,T)l)T.
@".a™) = argmin [~((ag™, &™)z, Zy) ) + Pa(a™)] @)

(@™ alm))

Where P, (™) is a regularization function.
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2.1.3 Impute z,,;;; with z by drawing randomly from the predictive distribution N (@(()m) +

Zis, a™ 5 521 ), noting that imputation is conducted on the original data set, not the
bootstrap data set.

2.2 Binary

2.2.1 Generate a bootstrap data set Z(™ of size n by randomly drawing n observations from Z with
replacement.



222

223

2.3
2.3.1

232

233

Suppose
zl(T) ~ Bernoulli(ﬂgm)) 3)
" (m) _(m)
log(— ) =g + 2™ i=(1,...,r) 4)
1—m, '
Then,
@™, @™y = argmin [~£(af™, a™;20 200 )+ Py(a™)] (5)
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Where Py (™) is a regularization function.
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We can get 7; =

For jinr +1,...,n, impute z;; with zy?f) by drawing randomly from the predictive distri-
bution Bernoulli(7,;), noting that imputation is conducted on the original data set, not the
bootstrap data set.

Poisson

Generate a bootstrap data set Z(™ of size n by randomly drawing n observations from Z with
replacement.

Suppose
ZZ(T) ~ Poz’sson(ugm)) (6)
log(i™) = g™ + 2™ i=(1...r) @)
Then,
(@, &™) = argmin [y, &™)z 250 ) + Pa@™) ®)

(ag™ ()

Where P (™) is a regularization function.

) = e:z:p(é?(()m) +z; &™) j=(r+1,...,n)

We can get ﬂgm
For jinr +1,...,n, impute z;; with zg?f) by drawing randomly from the predictive distri-

bution Poisson(ﬂE-m)), noting that imputation is conducted on the original data set, not the

bootstrap data set.



3 Multiple Imputation through Indirect Use of Regularized Re-
gression (IURR)

3.1 Gaussian
3.1.1 Suppose
Zobs,) = Q0 + Ligps, 100+ € 9
where € ~ N(0,0%I,) and a = (vy, ..., 1) R
Use a regularized regression method to fit model (9) and identify the active set, S.
3.1.2 Then the model is
Zops) =bo+ 2, 50 +¢€ (10)

Approximate the distribution of (6, 8, %) by using a standard inference procedure such as
maximum likelihood.

(90,9702) ~ N(gML&iMLE) (11D

Where 0, g is the MLE of parameters in model (10) and > MLE 1S the variance-covariance
matrix of the estimated parameters.

3.1.3 Conduct multiple imputation for z,,;s 1: in the m-th imputation, randomly draw (5(()”1), om), 82<m>)
(m)

from N (O 1k, > mLE), and subsequently impute z,,;s,1 With z,,,;, |

the predictive distribution N (6™ + Z,.. 00 52L).

by drawing randomly from

3.2 Binary
3.2.1 Suppose

zi(fln) ~ Bernoulli(m\™) (12)
(m)
T m m m .
log(1 L (m)) :oe(() )+z§7_)1a( ) i=(1,...,r) (13)
-7

Use a regularized regression method to fit model (13) and identify the active set, S.

3.2.2 Then the model is
(m)
log( 1 . (m)) = 9((Jm) + Zig)e(m) i=(1,...,r) (14)

(2

Approximate the distribution of (6y, @) by using a standard inference procedure such as max-
imum likelihood.

(00,8) ~ N(Orrrr. Sarrr) (15)

Where 6. mre 1s the MLE of parameters in model (14) and > M LE 18 the variance-covariance
matrix of the estimated parameters using the generalized linear model.
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Conduct multiple imputation for z;: in the m-th imputation, randomly draw (gém), §<m>)
from N(@y1E, XyrE), and subsequently impute z;; with ZET) by drawing randomly from

~(m) __eap(85" 4z, $80)

P () .
the predictive distribution Bernoulli(7;"), where 7; Leap(By™ +z; s00m) j=(+
1,...,n)
Poisson
Suppose
2™~ Poisson (™
il i) (16)

log(u{™) = af™ + 2" o™ i=(1,...,7) (17)
Use a regularized regression method to fit model (17) and identify the active set, S.
Then the model is

log(ui™) =05 +2"26™  i=(1,...r) (18)

Approximate the distribution of (6y, @) by using a standard inference procedure such as max-
imum likelihood.

(00, 0) ~ N(éMLE, iMLE) (19)

Where 6, mre 1s the MLE of parameters in model (18) and > MLE 18 the variance-covariance
matrix of the estimated parameters using the generalized linear model.

Conduct multiple imputation for z;;: in the m-th imputation, randomly draw (5((;”), §(m))

from N (§M LB DML r), and subsequently impute z;; with zgnf
the predictive distribution Poisson(ﬂ§m)), where ﬂgm) = emp(a(()m) +z; §§(m)). j=(r+

L,...,n)

) by drawing randomly from
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