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1 General Missing Pattern Setup

Consider a data set Z with p variables, zi, ...,z,. Assume the first [ (I < p) variables have some
missing values. We denote the missing components and observed components for variable 7 by
Z;mis and z; . Suppose we have r; observed values in variable z;.

2 Multiple Imputation through Indirect Use of Regularized Re-
gression (IURR)

2.1 We start the iterative procedure with some initial values. Impute all the elements in z; ;s

with z

imis = mean(zjos), (j = 1,2,...,1). Define the initial completed dataset after this
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1mputation as 79, with zZ; = (Zjﬂm-sa Zj,0bs

2.2 In the m-th iteration:
For variable 7, (j = 1,...,1), define W = {zgm), ...,Zﬁi,zﬁl—l), ...,zl(m_l),zHl, ..y Zp}. De-
note by W,,,;; the component of W corresponding to z; ,,,;s and by W, the component of

W corresponds to z; ops.

(1) If Z; follows a Gaussian distribution.
We use a regularized regression method to fit a multiple linear regression model consid-
ering z; s as the outcome variable and W, as the predictor variable, and identify the
o(m)

active set, Sj

Let W g(m) denote the subset of W that only contains the active set. Correspondingly,
J .
denote two components of W &m by W 8™ mis and W 5™ obs” Then the model is

Zjobs = 001, + ng(m)’obsej + €5, (1)

where €; ~ N(0,071,,) and 1,, is a vector of length r; with all entries one.
Approximate the distribution of (6 ;, 8;,07) by using a standard inference procedure
such as maximum likelihood.

(9073‘7 93’» UJZ') ~ N(é\MLEa glMLE)
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(ii)

(111)

Where v e 18 the MLE of parameters in model (1) and > A LE 18 the variance-covariance
matrix of the estimated parameters. L R R

Conduct one imputation for z; ,,,;s: randomly draw (6, ;, 6;, 8]2-) from N(Onre, Xvie),
(m)

and impute z; ,,,;s With z; ;.

ng(_m)7mi80j, Ejzln,rj ) Let Zg-m) = (Zy;zis, Zj,obs)~

If Z; follows a Bernoulli distribution.

We use a regularized regression method to fit a multiple logistic regression model con-
sidering z; s as the outcome variable and Wy, as the predictor variable, and identify
the active set, @(m).

Let W g(m) denote the subset of W that only contains the active set. Correspondingly,

denote tizvo components of W g by W ™) s and W S opst Then the model is
J Jj Jj
lOgit(PI‘(Zj,obs = ].|W§(m) obs)) = 9073'17«]. + W gtm) obSOj, (2)
J ’ J ’

Approximate the distribution of (6 ;, 8;) by using a standard inference procedure such
as maximum likelihood.

((90,]‘7 0]) ~ N(é\MLE> i\]MLE)

Where v e 1s the MLE of parameters in model (2) and > M LE 18 the variance-covariance
matrix of the estimated parameters.

Conduct one imputation for z; ,,,;s: randomly draw (507 i @) from NV (5 MLE, > MLE), and
impute z; ;s wWith zﬁfis by drawing randomly from the predictive distribution

exp(é\o,j 1”_7'3' +W§(m) miséj
j_

Bernoulli( ). Let zg-m) = (z§.7;2i8, Zj obs)-

)
1+6:Ep(§07j ln_,,.]. +W§<nz) misé\j)
),

If Z; follows a Poisson distribution.
We use a regularized regression method to fit a multiple Poisson regression model con-
sidering z; s as the outcome variable and Wy, as the predictor variable, and identify
the active set, @(m).

Let W g(m) denote the subset of W that only contains the active set. Correspondingly,

denote two components of W gem) by Wgemy . and W gom) , . Then the model is
J J o J o
log<E[Zj,obs| Wg(m Obs]) = eo,jlrj + W gtm) Obsej, (3)
J ’ J ’

Approximate the distribution of (, ;, 8;) by using a standard inference procedure such
as maximum likelihood.

((00,3'7 0]) ~ N(é\MLE7 iMLE)

Where 0, 5 is the MLE of parameters in model (3) and > MLE 1S the variance-covariance
matrix of the estimated parameters. R R
Conduct one imputation for z; ,,;s: randomly draw (6 ;, 0;) from N (0rr, Xr1E), and

;”:,318 by drawing randomly from the predictive distribution

Poisson(emp(aojjln_rj + W gm) mzsé\-j)) Let z§m) = (z(m) ).
j 2

impute z; ;s with z

7,mis? Zj:ObS

by drawing randomly from the predictive distribution N (@\0, ilnr,+



2.3 Denote the updated data set after the m-th interation by Z(™). Repeat the procedures itera-
tively. After the iterations converge, the last M imputed data sets after appropriate thinning
are chosen for subsequent standard complete-data analysis.

3 Multiple Imputation through Direct Use of Regularized Re-
gression (DURR)

3.1 We start the iterative procedure with some initial values. Impute all the elements in z,,;s

(0)

with z = mean(zeps,j), (j = 1,2,...,1). Define the initial completed dataset after this

imputation as Z(®.

mis,j

3.2 In the m-th iteration:
For variable 7,(j = 1, ...,1), define W = {zgm), ...,zéﬂ,zﬁl—l), zl(m Y 2001, <.y Zp}. De-
note by W,,,;; the component of W corresponding to z; ,,,;;. We generate a bootstrap data set
{W~, 23} of size n by randomly drawing n observations from {W, z(mfl)} with replacement.
Denote the observed values of z; by z7 . and the correspondmg component of W* by W}, .
Suppose we have r; and 77 observed values in variable z; and z7, respectively.

(1) If Z, follows a Gaussian distribution. The model is

Z;,obs - 00]1 + WObSO + €j7 (4)
where €; ~ N(0, 07L+).

Use a regularized regression moethod to fit model (4) and get parameter estimates as
follows:

o~

(6o, 0;) = argmin[—L(6y ;, 0;: 2" ., WE,.,) + Pr(8;)]

7 “5,0bs)
(60,5,65)

Where P, (0,) is a regularlzatlon functlon Then consider the mean of squared residuals

as an estimate of O' , denoted by & a
m)

7,mis

Impute Zj mis With zt by drawmg randomly from the predictive distribution N (@\07 il +

WWSOJ, 0]21 ) noting that imputation is conducted on the original data set W,,,;5, not

the bootstrap data set W*. Let z§-m) = (zyf,zis, Zj obs)-

(i1) If Z; follows a Bernoulli distribution. The model is

logit(z} s = 1|Wye) = 001, + W5, 0, ®)

] obs

Use a regularized regression moethod to fit model (5) and get parameter estimates as
follows:

(Bos.8,) = aremin ({81, 05:2; s Wis,) + PA(6))]
05,05
Where P, (0,) is a regularization function.

Impute z; ,,,;s with z\" by drawing randomly from the predictive distribution

7, mzs
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€$p(90 ]]-n T +Wm7,59])
1+exp(0031n rj +Wm150 )

Bernoulli( ), noting that imputation is conducted on the original

data set W,,,;,, not the bootstrap data set W*. Let zg-m) = (Z%@)Z‘w Zj obs)-

(iii) If Z; follows a Poisson distribution. The model is
lOg( [ ] obs |Wobs]) 90 J 17"] + Wobse (6)

Use a regularized regression moethod to fit model (6) and get parameter estimates as
follows:

o~

(é\O,ja 0]) - ?rgml?[_f(eojv 0]7 j,0bs) Wst) + P)\<0])]
90,]',97'

Where P, (0,) is a regularization function.
(m)

Impute z; ;s with z; . mis

by drawing randomly from the predictive distribution
Pmsson(exp(% ilnr, + Wmisé\j)), noting that imputation is conducted on the original

data set W,,,;5, not the bootstrap data set W*. Let ng) = (z%zw, Zj obs)-

3.3 Denote the updated data set after the m-th interation by Z(™. Repeat the procedures itera-
tively. After the iterations converge, the last M imputed data sets after appropriate thinning
are chosen for subsequent standard complete-data analysis.
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