Lung Cancer Basic Overview

Patient Forum: 2020

Corey J Langer MD, FACP
Director of Thoracic Oncology
Abramson Cancer Center
Professor of Medicine
University of Pennsylvania
Philadelphia, PA 19104
What everyone should know about Lung Cancer

- World-wide Epidemic
- It is a largely preventable illness
 - Eliminating smoking could prevent ~150,000 cases annually in the US – in 20-40 years time
- Increasing percentage of those diagnosed are non-smokers or remote former smokers (> 20%)
 - Different biology and clinical behavior; higher incidence of mutations and other molecular markers
- Cure rates remain disappointing, although we’ve seen major improvements over the past 30 yrs, especially the past 5-10 years thanks to screening, targeted therapy and immunotherapy
- Pro-active, supportive care may yield as much survival benefit as toxic, systemic therapy
- Clinical and translational research is the key to improving survival rates
- Best outcomes occur in the setting of a multi-disciplinary, collaborative partnership with good logistical access
Multidisciplinary approach: Penn

- Pulmonary
 Albelda, Haas, Thompson, Moon, Lanfranco, Vachani, Ma, Dibardino

- Pathology Lab Medicine
 Deshpande, Litzky, Zhang, Plesa, Feldman, Roth, Morrissette, Carpenter

- Radiology
 Katz, Kolansky, Hunt

- Basic/Translational Science
 Albelda, June, Hancock, Linette, Beatty, Carreno, Wherry, Huang, Eruslanov

- Medical Oncology
 Langer, Aggarwal, Cohen, Bauml, Ciunci, Singh, Kosteva, Marmarelis, Davella, Costello, Kerr, Sun, Davis, Jeffries

- Thoracic Surgery
 Singhal, Kucharczuk, Pechet, Jarrar

- Radiation Oncology
 Berman, Feigenberg, Swisher-McClure, Levin, Chen, Gabriel, Doucette

- Oncology Informatics
 Gabriel, Doucette

- Biostatistics
 Pechet, Jarrar

- Epidemiology
 Gabriel, Doucette

TCE in Thoracic Oncology: Penn
Multidisciplinary approach: Penn TCE in Thoracic Oncology:

- Pathology Lab Medicine
- Biostatistics
- Epidemiology
- Basic/Translational Science
- Radiation Oncology
- Pulmonary
- Medical Oncology
- Lung
- Oncology Informatics

Lung Cancer: Overview

- Research is underfunded (compared to other cancers, e.g. breast cancer)
- Early detection makes a difference
 - The NLST proved this
 - In at risk individuals, low dose spiral CTs detected lung cancers earlier than conventional CXRs, when they were more curable; this led to a decrease in lung cancer mortality
 - NELSON trial from Europe proved confirmatory
- Types of lung cancer have changed over past 40 years
 - Non–small cell lung cancer (NSCLC): 75% → 87%
 - Small cell lung cancer (SCLC): 25% → 13%
Lung Cancer: Other Truisms

• Surgery remains the major curative approach, especially in early stage lung cancer
 – Techniques have improved
 – Complications have diminished, and hospital stays have shortened
 – Short-course adjuvant chemotherapy provides a clear benefit in Stage II/IIIA node (+) NSCLC and in pts with tumors > 4 cm

• Locally advanced NSCLC is responsive to combined chemoradiation, with improvement in cure rates from 5-7% to ~ 30% over the past 25 years
 – Immunotherapy after definitive chemo and XRT delays recurrence and improves survival rates (NEJM 2017, 2018)
 – Can we harness new technology (protons, SBRT) to our biologic understanding of lung cancer?
Advanced NSCLC

- We have witnessed major improvements in outcome over the past 25 yrs
- Our prior monolithic, “one size fits all” approach no longer works
- Treatment is now individualized based on
 - Histology (appearance under the microscopic)
 - Molecular markers (EGFR, ALK, ROS-1, BRAF, cMET, RET, KRAS (G12C) etc)
 - Immune markers (PDL1, others??)
- Immunotherapy has made major inroads, both 2nd and 1st line,
 - Marked increase in response rates and survival rates, particularly in combination with chemo
 - \textbf{Similar benefits now seen in extensive stage SCLC}
- Treatment goals identical
 - Improve Duration of life
 - Improve Quality of life
NSCLC: STANDARD AGENTS

<table>
<thead>
<tr>
<th>OLD (pre 1990)</th>
<th>NEWER (post 1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisplatin → Carboplatin</td>
<td></td>
</tr>
<tr>
<td>• Etoposide</td>
<td></td>
</tr>
<tr>
<td>• Vinblastine</td>
<td></td>
</tr>
<tr>
<td>• Ifosfamide</td>
<td></td>
</tr>
<tr>
<td>• Mitomycin-C</td>
<td>• Paclitaxel</td>
</tr>
<tr>
<td></td>
<td>• Docetaxel</td>
</tr>
<tr>
<td></td>
<td>• Gemcitabine</td>
</tr>
<tr>
<td></td>
<td>• Vinorelbine</td>
</tr>
<tr>
<td></td>
<td>• Irinotecan</td>
</tr>
</tbody>
</table>

LATEST (post 2000)

- Pemetrexed; Nab-paclitaxel
- Erlotinib; Afatinib; Gefitinib; Dacomitinib → Osimertinib
- Crizotinib → Ceritinib, Alectinib, Brigatinib, Lorlatinib
- Dabrafenib and Tremetinib
- Entrectinib, Larotrectinib
- Salpercatinib; Prasertinib
- Capmatinib
- Bevacizumab, Ramucirumab
- Cetuximab, Necitumumab
- Nivolumab, Pembrolizumab, Atezolizumab, Durvalumab
NSCLC: STANDARD AGENTS

OLD (pre 1990)
• Cisplatin → Carboplatin
• Etoposide
• Vinblastine
• Ifosfamide
• Mitomycin-C

NEWER (post 1990)
• Paclitaxel
• Docetaxel
• Gemcitabine
• Vinorelbine
• Irinotecan

LATEST (post 2000)
• Pemetrexed; Nab-paclitaxel
• Erlotinib; Afatinib; Gefitinib; Dacomitinib → Osimertinib
• Crizotinib → Ceritinib, Alectinib, Brigatinib, Lorlatinib
• Dabrafenib and Tremetinib
• Entrectinib, Larotrectinib
• Salpercatinib; Prasetinib
• Capmatinib
• Bevacizumab, Ramucirumab
• Cetuximab, Necitumumab
• Nivolumab, Pembrolizumab, Atezolizumab, Durvalumab
Lung Cancer Mutation Consortium

Incidence of Mutations Detected

Mutation found in 54% (280/516) of tumors completely tested (CI 50-59%)

Johnson et al on behalf of LCMC investigators, WLCC July 2011 Abstract #O16.01
Kris et al. on behalf of LCMC investigators, ASCO June 2011 Abstract #CRA7506

- KRAS 22%
- EGFR 17%
- EML4-ALK 7%
- No Mutation Detected

AKT1, NRAS, MEK1, MET AMP, HER2, PIK3CA 2%, BRAF 2%, Double Mutants 3%
Response to Crizotinib

Pre-Treatment

Crizotinib x 12 weeks
Response of Metastatic NSCLC (Nivolumab)

- Initial progression in pulmonary lesions of a NSCLC patient with non-squamous histology was followed by regression
- Dx ‘04, EGFR mutation +; Rx Gem/carbo, erlotinib, erlotinib + LBH589 (trial for T790 mutation), and lastly pemetrexed
• The lung cancer field, despite recent modest gains, urgently needs scientific and conceptual breakthroughs.

• Leveraging existing and unique scientific strengths at Penn, the centerpiece of our strategy is the immunobiology and immunotherapy of lung cancer, but we are now expanding back to molecular/genetic pathways and to all stages of lung cancer.
PHASE I (EXPERIMENTAL)
- New agent(s) or new combination of established agents
- Establish top, safe dose (MTD ~ maximally tolerated dose) or OBD
- May require tumor biopsies or frequent blood draws (PKs)
- Usually reserved for tumors for which no standard treatment exists or after “standard” treatments have been exhausted

PHASE II
- Systemic agent(s) applied to multiple patients with a specific disease type
- Gauge side effects (toxicity); feasibility
- Determine activity (response rate); freedom from progression; survival

PHASE III
- Randomized comparison of standard established treatment (control arm) vs. new(er) promising regimen (investigational arm)
- Computerized coin toss (neither patient nor physician chooses)
- Placebo controls used only if observation is standard
IMPEDEMENTS TO CLINICAL TRIALS

- TIME (labor-intensive)
- FUNDING (third party payer)
- PERCEPTION: physician; patient
WHAT PATIENTS (and CLINICIANS) SHOULD KNOW ABOUT CLINICAL TRIALS

1. Carefully conducted protocols mandate IRB approval, intensive monitoring, and close follow-up.
2. Informed consent is required.
3. Alternative options must be discussed. You cannot be coerced.
4. Total accrual is limited; statisticians oversee results/analysis.
5. Serious adverse events (AEs) are reported to IRB. Excessive AEs can result in a trial’s early closure or major amendment(s).
6. All clinical trials subject to FDA audit.
7. Enrollees on clinical trials do as well, if not better, than patients treated off protocol or empirically; costs are ≤ 10% higher than standard care.
8. You are not a guinea pig; you can opt out of clinical trial at will, at any time without compromise to subsequent care.
9. Your physician may halt your participation if you are not benefiting, if superior therapies emerge, or if toxicity proves intolerable.
10 QUESTIONS to ASK YOUR HEALTH CARE TEAM

1. What are the most common side effects of my treatment?
2. What causes the side effects?
3. How can I prevent or minimize the side effects?
4. Do you have any printed material on the treatment?
5. Can I take other medicines while I am receiving treatment?
6. How will I know if my treatment is working?
7. Can I speak with someone on a one-to-one basis who has had a similar treatment experience?
8. What other options do I have regarding therapy? What are my options if treatment stops working?
9. Can I get financial assistance with medications or transportation?
10. How can I help other patients once I’ve completed my own treatment?

... Adapted from SPIRIT Project
Lung Cancer: Ongoing Dilemmas

• Improving Funding
• Research Access
• Combating Stigma
• Prognostic Uncertainty; “Scanxiety”
• Disease Complexity
 – Staging
 – Histologic
 – Molecular
• Elderly outreach
• Managing Expectations
“Well, time for our weekly brain-stem-storming session.”