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�
 ABSTRACT 

The ternary complex of progesterone receptor membrane component 1 
(PGRMC1)–sigma-2 receptor/transmembrane protein 97 (σ2R/TMEM97)– 
low-density lipoprotein receptor (LDLR) has recently been discovered 
and plays a role in cholesterol transport. This study investigated whether 
individual components of that complex are prognostic breast cancer 
biomarkers and have defined expression in established molecular sub-
types. A total of 4,463 invasive breast cancers were analyzed as a function 
of molecular and phenotypic markers, estimates of cellular proliferation, 
and recurrence-free survival. A gene expression signature–based assay 
was utilized to estimate cellular proliferation. Cox proportional hazards 
regression estimated relapse-free survival and multivariate Cox analysis 
adjusted for the association of proliferation with early relapse. PGRMC1– 
σ2R/TMEM97–LDLR expression was stratified by immunohistochemical 
(IHC) and molecular subtype, tumor grade, and size. TMEM97 exhibited 
the strongest correlation with proliferation, highest in estrogen receptor 
(ER)–positive disease (r ¼ 0.59, P ¼ 8.1�114). TMEM97 and PGRMC1 were 
associated with a risk of early recurrence, dependent upon their association 
with proliferation. The risk of early recurrence was highest with TMEM97 
and only seen in ER+/HER2� disease [HR ¼ 1.5; 95% confidence interval 

(CI) ¼ 1.35–1.67; P ¼ 5.4�14] and ER+ malignancies (HR ¼ 1.49; 95% 
CI ¼ 1.31–1.68; P ¼ 3.1�10). There was no increased risk of recurrence 
with TMEM97 expression in ER�/HER2� (HR ¼ 1.05; 95% CI ¼ 0.88– 
1.25; P ¼ 0.63) or ER� disease (HR ¼ 1.02; 95% CI ¼ 0.89–1.17; 
P ¼ 0.75). Components of a ternary complex associated with rapid 
internalization of low-density lipoprotein are biomarkers associated 
with cellular proliferation and early recurrence, which should help 
guide studies exploring them in the context of additional markers of 
aggressive disease. Elucidating the role of PGRMC1, TMEM97, and 
LDLR in breast cancer will facilitate a mechanistic understanding of 
how proliferation interplays with cholesterol metabolism in malig-
nant transformation or propagation. 

Significance: This first large-scale analysis of the putative ternary 
complex responsible for rapid low-density lipoprotein internalization 
in breast cancer reveals a link between component expression and 
recurrence, with prognostic implications for identifying patients 
needing supplemental posttreatment surveillance and/or additional 
therapeutic approaches. 

Introduction 
Cholesterol is an essential component of cell membranes, and its metabolism 
is often altered in cancer (1). Although some studies have not found a 

significant link between lipoproteins and breast cancer, others have identi-
fied a correlation between low-density lipoprotein (LDL) cholesterol levels 
and breast cancer risk (2). A recent large analysis indicates that elevated 
levels of both high-density lipoprotein (HDL) and LDL cholesterol are 
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associated with an increased risk of breast cancer (3), and additional in-
vestigations are ongoing. 

Statins, which are used to lower cholesterol levels, have been investigated for 
their potential role in cancer treatment and recurrence. However, the results 
have been inconsistent, and no definitive benefits have been established 
(4–7). The biochemical pathways of cholesterol are complicated, including 
biosynthesis and uptake through the LDL receptor (LDLR) pathway. Statins 
downregulate cholesterol production by the liver (preventing biosynthesis). 
Still, if cancer cells have other ways to get cholesterol, then the cell may be 
able to circumvent the lower production levels. 

Selective estrogen receptor modulators (SERM), such as tamoxifen, are es-
trogen receptor (ER) antagonists that have long been used for the treatment 
of patients with ER+ breast cancer. However, tamoxifen and other SERM can 
inhibit angiogenesis, independent of their inhibitory effect on ERs (8). One 
molecular mechanism that allows SERM to inhibit angiogenesis is inhibiting 
cholesterol trafficking in endothelial cells (9). In endothelial cells, 
VEGFR2 and mTOR are major signaling proteins that are regulated by 
cholesterol levels (10, 11). The inhibitory effects of SERM on VEGFR2 and 
mTOR signaling, as well as angiogenesis, were rescued by replenishing en-
dothelial cells with cholesterol, suggesting that inhibition of cholesterol 
trafficking is a primary effect of SERM for + antiangiogenic activity (12). 
Although the cholesterol trafficking inhibition is ER independent, the exact 
molecular target is still unknown. 

There are four proteins related to progesterone receptor membrane com-
ponent (PGRMC) that have a cytochrome b5–like heme/sterol-binding do-
main, but of these, only PGRMC1 is known to bind progesterone (P4) in the 
low nanomolar range (13). PGRMC1 may be related to both breast cancer 
proliferation and cholesterol transport. PGRMC1 facilitates triple-negative 
breast cancer tumor growth in vivo (14), and in an ER+ human breast cancer 
cell line that overexpresses PGRMC1, medroxyprogesterone acetate and 
norethisterone treatment significantly increased proliferation (15, 16). 
PGRMC1 may also be associated with breast cancer chemotherapeutic re-
sistance in vitro. Doxorubicin-mediated apoptosis was decreased by 50% 
when a PGRMC1 triple-negative breast cancer cell line was pretreated with 
progesterone. PGRMC1-depleted cells lost the progesterone-mediated sur-
vival advantage (14). Thus, PGRMC1 could be an important breast cancer 
biomarker. 

Sigma-2 receptor/transmembrane protein 97 (σ2R/TMEM97) is a protein 
involved in cholesterol homeostasis and regulation of cell growth found in 
cellular membranes (17), lipid rafts (18), endoplasmic reticulum, lysosomes, 
and plasma membranes (19). σ2R density is high in multiple cancers 
(20–22), and σ2R levels are elevated in aldehyde dehydrogenase (ALDH)– 
high compared with ALDH-low MDA-MB-435 cells. The ALDH phenotype 
has been reported as a surrogate marker for tumor-initiating cells (cancer 
stem cells; ref. 23). Elevated σ2R levels are found in lung tumors and plasma 
from patients with lung cancer (24), and preclinical evidence suggests that 
σ2R may be a therapeutic target as σ2R ligands potentiate the efficacy of 
chemotherapeutic agents in mouse models of pancreatic cancer and improve 
survival (25–27). Studies have shown that σ2R/TMEM97 ligands may also be 
useful in the treatment of a number of neurologic disorders, including 
Huntington disease (28), neuropathic pain (29), and Alzheimer disease (30). 
As a result, a diverse set of σ2R/TMEM97 radiotracers and ligands has been 
developed for use in strategies targeting cancer diagnosis and treatment (31). 

One such radiotracer is the σ2R-selective radioligand imaging agent N-(4-(6,7- 
dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2-(2-18F-fluoroethoxy)-5- 
methylbenzamide (18F-ISO-1; ref. 32). The ability of this imaging agent to 
measure both σ2R density and cellular proliferation has been validated in 
preclinical models (33) and in early results in a variety of solid tumors (34). In 
vitro work has demonstrated that sigma-2 agents can be used as alternative 
tracers for proliferation in breast cancer cell lines (35). 

Our lab has previously linked these two important proteins by showing that 
PGRMC1 and σ2R/TMEM97 form a complex with the LDLR, and the intact 
complex is required for efficient uptake of lipoproteins such as LDL (36). 
This complex represents a common biological mechanism for cholesterol 
uptake in a variety of cells including neurons (37) and breast cancer cells 
(manuscript in preparation). Supporting this, siRNA studies knocking down 
TMEM97 demonstrated a reduction in the rate of internalization of LDL by 
the LDLR (38). We also demonstrated in a subsequent clinical trial that in 
vivo quantification of a radioligand targeting TMEM97 correlates with 
proliferation in ER+ breast cancer (39). Although PGRMC1 is a membrane- 
associated progesterone receptor, its role in cell biology is historically poorly 
understood. It is likely a molecular chaperone that is involved in the 
translocation of lipophilic molecules such as cholesterol and other steroids 
from the plasma membrane and the endoplasmic reticulum, mitochondria, 
and other organelles. Before its identification as TMEM97, the σ2R had also 
been implicated in cholesterol biosynthesis. Although we have demonstrated 
that PGRMC1 and σ2R/TMEM97 are involved in the same biochemical 
pathways within the cell, little is known about the impact of the individual 
components on breast cancer clinical outcomes. The high association of 
PGRMC1 and σ2R/TMEM97 and the suspected role of both proteins in 
proliferation spurred this investigation. 

A possible link between cholesterol metabolism and ER+ breast cancer has 
been considered for decades, but the mechanism has been elusive, limiting 
possible therapeutic interventions for risk modification. Building on the 
studies above, our clinical question was whether components of the 
PGRMC1–TMEM97–LDLR protein complex affect clinical outcomes in 
breast cancer. To accomplish this on a large scale, we linked 17 publicly 
available databases. We also validated a new proliferation signature to allow 
adjustment for the clinically suspected link between this complex and pro-
liferation in breast cancer because standard measures of proliferation like 
Ki-67 expression were not available in these datasets. Although the 
PGRMC1–TMEM97–LDLR protein complex could be a potential diagnostic 
or therapeutic target, little is known about the in vivo expression of these 
proteins in subtypes of human breast cancer or their association with clinical 
outcomes. We tested the hypothesis that these proteins correlate with pro-
liferation in human breast cancer in order to examine the relationship be-
tween proteins affecting cholesterol transport and breast cancer subtypes, 
cellular proliferation, and markers of proliferation. We also evaluated the 
association among PGRMC1, TMEM97, LDLR, and breast cancer recurrence 
to determine whether they are prognostic biomarkers for aggressive disease. 

Materials and Methods 
Human breast cancer microarray datasets 
A multiple-platform data integration method was utilized to normalize and 
simultaneously analyze microarray data from 17 publicly available primary 
breast cancer microarray datasets (“Integrated Dataset,” Supplementary 
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Table S1). Microarray data and corresponding clinical annotations were 
downloaded from NCBI Gene Expression Omnibus (RRID: SCR_005012) or 
the original authors’ websites. Microarray data were converted to a log2 scale 
where necessary. Affymetrix microarray data were renormalized using robust 
multiarray average when .CEL files were available. Five breast cancer sub-
types were used according to the PAM50 classification (40). PAM50 is a gene 
expression assay that can be used to categorize breast tumors into intrinsic 
subtypes that indicate distinct tumor behaviors. In total, data were available 
from 4,463 invasive breast cancers: 1,164 luminal A, 921 luminal B, 
645 HER2-enriched, 860 basal, and 543 normal-like. In four datasets, pa-
tients received no systemic treatment; in two datasets, patients received 
neoadjuvant treatment; and the remaining datasets represented a mixture of 
adjuvant and no treatment (Supplementary Table S2). 

Gene expression and prognostic variables/subtypes 
The association between mRNA expression and categorical prognostic var-
iables in human breast cancers, including ER status, progesterone receptor 
(PR) status, HER2 status, lymph node involvement, tumor size, tumor grade, 
and intrinsic molecular subtype, was assessed by ANOVA in pooled 
microarray datasets. For each categorical prognostic variable, gene expres-
sion was normalized against the mean expression of the same baseline group 
in each dataset and pooled across all datasets for which the prognostic 
variable was available. Baseline normalization was performed by subtracting 
mean gene expression (log2 scale) in the baseline group from gene expression in 
each sample. 

The Cancer Genome Atlas data analysis 
The Cancer Genome Atlas (TCGA; RRID: SCR_003193) was queried for 
invasive breast cancers with available RNA sequencing data (RNA Seq 
V2 RSEM) and differentiated according to IHC subtype. In total, data were 
available from 1,019 invasive breast cancers (Supplementary Table S3): 
738 ER+, 215 ER�, 643 PR+, 307 PR�, 149 HER2+, 508 HER2�, and 
102 triple-negative breast cancer (TNBC; ER�/PR�/HER2�). PGRMC1 
expression was first compared between all groups and plotted according to 
subtype. PGRMC1 was then tested for correlation with 20,531 genes, which 
resulted in the identification of 461 genes in which expression was correlated 
with PGRMC1 expression (Pearson r > 0.25) within tumor samples. A 
heatmap of expression levels for the top positively and negatively correlated 
genes was generated. These were analyzed for enrichment of pathways, 
functions, networks, and upstream regulators using Ingenuity Pathway 
Analysis (RRID: SCR_008653; QIAGEN Redwood City, www.qiagen.com/ 
ingenuity; Supplementary Table S4). The analysis was done using functions 
from MATLAB R2012b (RRID: SCR_001622). 

Proliferation gene expression signature 
Measures of proliferation, such as Ki-67 expression or mitotic index, were 
not available for the majority of breast cancer samples. Therefore, to estimate 
relative proliferation levels in human breast cancer samples, we generated a 
gene expression signature containing 224 genes (Prolif224) from the overlap 
of two gene sets: (i) 651 cell cycle–regulated genes identified in HeLa cells 
(41) and (ii) 1,882 serum-responsive genes identified in human fibroblasts 
(42). Serum-responsive genes were identified by differential expression 
analysis between the 0.1% and 10% serum groups using Cyber-T (43) at an 
FDR of 10%. In each human breast cancer dataset, levels of proliferation 

were estimated using these 224 genes and a previously described scoring 
method (44), in which each gene was weighted using its log fold change 
between the 0.1% and 10% serum groups (42). 

Correlation between the expression of individual genes and estimated relative 
proliferation level was assessed in human breast cancer datasets using the Pearson 
correlation coefficient and summarized across datasets by meta-analysis. Addi-
tional meta-analyses of Pearson correlation were performed in subsets of samples 
stratified by ER status, HER2 status, lymph node status, or molecular subtype. 
Correlation between two different genes was assessed in a similar fashion. 

Gene expression and relapse-free survival 
Within each dataset, the effect size of the association between mRNA ex-
pression and 5-year relapse-free survival was estimated using the HR from 
Cox proportional hazards regression in which gene expression was modeled as 
a continuous variable. Effect size estimates were combined across datasets by 
meta-analysis using the inverse variance weighting method (45). Between- 
study homogeneity of survival association was tested using the χ2 test on 
Cochran’s Q statistic (46), for which a P value of less than 0.05 was interpreted 
as evidence of significant heterogeneity. In the presence of significant het-
erogeneity, the random-effects model (47) was used for meta-analysis. In the 
absence of significant heterogeneity, the fixed-effects model (48) was used. Cox 
proportional hazards regression and meta-analysis were performed using the 
“coxph” function in the “survival” package and the “metagen” function in the 
“meta” packages in R 2.15.0. For datasets in which relapse-free survival in-
formation was not available, distant metastasis-free survival or disease-specific 
survival information, when available, was used for survival analysis. 

Additional meta-analyses were performed in subsets of samples stratified by 
ER status, HER2 status, lymph node status, or intrinsic molecular subtype, as 
well as in the subset of patients who, according to available treatment in-
formation, did not receive any adjuvant systemic treatment. As HER2 IHC 
status was not available for several datasets, HER2 status was approximated 
by ERBB2 mRNA expression as measured by microarray in a similar fashion 
as the Cancer Outlier Profile Analysis (49). In each dataset, HER2+ and 
HER2� samples were defined as being above and below a cutoff of 1.5 ab-
solute deviations above the median, respectively, which resulted in an av-
erage specificity of 98% and sensitivity of 78% in five validation datasets 
(50–54). Due to the nonrandom association between ER and HER2 status, an 
approximation of HER2 status was not attempted in datasets consisting 
entirely of hormone receptor–positive or hormone receptor–negative can-
cers. Assignments of intrinsic subtype were done using the PAM50 classifier 
(40) after expression data were median-centered for each gene. 

Data availability 
The data generated in this study are available upon request from the cor-
responding authors. 

Results 
PGRMC1, TMEM97, and LDLR are overexpressed in ER− 
breast cancer 
Publicly available microarray data for 4,463 patients contained within 
17 human primary breast cancer datasets (50–52, 55–67), along with the 
corresponding clinical annotations, were downloaded and converted to a 
log2 scale where necessary. Affymetrix microarray data for which .CEL files 
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were available were renormalized using robust multiarray average (68). 
PGRMC1 is overexpressed in human breast cancers of the basal subtype 
using PAM50 (P ¼ 4 � 10�30). TMEM97 has the highest expression in 

luminal B tumors (Fig. 1A). In an analogous manner, PGRMC1 was 
expressed at higher levels in ER� tumors, PR� tumors, and ER�/HER2�
tumors (Fig. 1B). PGRMC1 was also expressed at higher levels in tumors 
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FIGURE 1 A, PGRMC1 is 
overexpressed in human breast 
cancers of the basal subtype using 
PAM50. TMEM97 has the highest 
expression in luminal B tumors. B, 
PGRMC1 is overexpressed in 
hormone receptor–negative 
cancers. LDLR expression is highest 
in ER�/HER2+. TMEM97 has the 
highest expression in ER+/HER2+ 
tumors. C, PGRMC1 is overexpressed 
in smaller higher-grade tumors. 
LDLR and TMEM97 expression is 
highest in higher-grade tumors. 
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of higher grade (P ¼ 2.5 � 10�14) and smaller size (P ¼ 4.7 � 10�7; 
Fig. 1C). In the integrated dataset, LDLR and TMEM97 also had the 
highest expression in ER� disease (P ¼ 4.7e�14 and P ¼ 0.041, respec-
tively; Fig. 1B); LDLR and TMEM97 were also each expressed at higher 
levels in tumors of higher grade (P ¼ 1.1 � 10�08 and 6.1 � 10�64, re-
spectively; Fig. 1C). 

To examine PGRMC1 expression in cancers compared with normal breast 
tissue, TCGA data were analyzed based on tumor IHC classification for 
738 ER+, 215 ER�, 643 PR+, 307 PR�, 149 HER2+, 508 HER2�, and 
102 TNBC tumors and 108 normal controls. Normal tissues in TCGA da-
tabase are matched samples (normal tissue from patients who also have a 
primary tumor). Consistent with its elevated expression in the basal subtype, 
PGRMC1 was overexpressed in ER�, PR�, and TNBC compared with 
normal breast tissue (1.33-fold, P ¼ 2 � 10�06; 1.23-fold, P ¼ 3 � 10�04; and 
1.30-fold, P ¼ 6 � 10�6, respectively; Supplementary Fig. S1). 

PGRMC1 and TMEM97 expression are associated with 
cellular proliferation in breast cancer 
The association between components of the ternary complex and cellular 
proliferation in human breast cancer was assessed, in comparison with TK1 as 
a validated marker for cellular proliferation (69). Because the vast majority of 
clinical samples for which PGRMC1 expression was available did not have 
documented measures of cellular proliferation, such as Ki-67 or mitotic index, 
we pursued a computational approach utilizing a gene expression signature for 
proliferation to estimate cellular proliferation rates. First, we generated a gene 
expression signature containing 224 genes from the overlap of gene sets rep-
resenting 651 cell cycle–regulated genes in HeLa cells (41) and 1,882 serum- 
responsive genes in human fibroblasts (see “Materials and Methods”; ref. 42). 
Next, in each human breast cancer dataset, levels of proliferation were esti-
mated for each sample using this 224-gene set in combination with a previ-
ously described scoring method (44) in which each gene was weighted using its 
log fold change between the 0.1% and 10% serum groups (42). 

PGRMC1 exhibited a robust positive association with signature-derived 
proliferation scores across all breast cancers (r ¼ 0.268; P ¼ 6.5 � 10�17; 
Table 1). When PAM50 molecular subtypes were considered, PGRMC1 dis-
played a significant correlation with proliferation scores within each of the five 
subtypes, with the strongest association observed for the basal subtype 
(r ¼ 0.415; P ¼ 2.4 � 10�37). PGRMC1 expression was also correlated with 
proliferation within each receptor subtype, except for ER+/HER2+ tumors 
(Table 1). As such, PGRMC1 was a consistent marker for proliferation across 
subtypes, significantly correlating with proliferation in HER2+, ER�/HER2+, 
ERBB2-enriched, and luminal B tumors. PGRMC1 expression was significantly 
associated with proliferation scores within lymph node–positive and lymph 
node–negative tumors (Table 1). In the PGRMC1–σ2R/TMEM97–LDLR com-
plex, TMEM97 exhibited the strongest correlation with proliferation and the 
highest in ER+ disease (all: r ¼ 0.509; P ¼ 6.1e�67 and ER+: r ¼ 0.588; 
P ¼ 8.1�114), and LDLR only had a weak correlation with proliferation, re-
gardless of subtype or IHC status (all: r ¼ 0.16; P ¼ 6.6�11; Table 1). 

The association of proliferation scores with TK1 expression was also ana-
lyzed, given its known positive correlation with proliferation. TK1 is a cell 
cycle–regulated target of E2F in which expression and function are associ-
ated with cell-cycle status. TK1 expression also correlates with the uptake of 
30-deoxy-30-[18F]fluorothymidine (18F-FLT; refs. 70, 71). 18F-FLT is trapped 

in cells after undergoing phosphorylation by TK1, which is catalytically ac-
tive during S-phase and represents the first metabolic step in the salvage 
pathway for incorporating exogenous thymidine into DNA (72–74). 18F-FLT 
is currently the most widely used radiotracer for imaging tumor prolifera-
tion rates (75–77) with uptake reflecting ex vivo S-phase–specific bromo-
deoxyuridine incorporation and TK expression. 18F-FLT was demonstrated to be 
a useful biomarker for breast cancer treatment response in a large multicenter 
trial (78). In our study, TK1 exhibited a strong positive association with prolif-
eration scores (r ¼ 0.688; P ¼ 2.5 � 10�145), particularly within ER+/HER2�
tumors (r ¼ 0.727; P ¼ 1.4 � 10�202; Table 1). 

PGRMC1 and TMEM97 expression are associated with 
early breast cancer relapse 
To address whether components of the ternary complex were associated with 
the risk of breast cancer relapse, effect size estimates from Cox proportional 
hazards regression using gene expression as a continuous variable were ag-
gregated across datasets by meta-analysis. The results demonstrated that 
PGRMC1 expression is associated with a higher risk of early relapse (within 
5 years) across all patients with breast cancer [HR ¼ 1.25; 95% confidence 
interval (CI) ¼ 1.12–1.39; P ¼ 6.4 � 10�5; Fig. 2A]. Within the basal subtype, 
PGRMC1 expression was also associated with relapse (HR ¼ 1.29; 95% 
CI ¼ 1.04–1.60; P ¼ 0.018; Fig. 2B). The risk of early recurrence with 
TMEM97 was present only in ER+/HER2� disease (HR ¼ 1.5; 95% CI ¼ 1.35– 
1.67; P ¼ 5.4�14) and ER+ malignancies (HR ¼ 1.49; 95% CI ¼ 1.31–1.68; 
P ¼ 3.1�10) and was not present in ER�/HER2� (HR ¼ 1.05; 95% CI ¼ 0.88– 
1.25; P ¼ 0.63) or ER� disease (HR ¼ 1.02; 95% CI ¼ 0.89–1.17; P ¼ 0.75; 
Fig. 3A and B). LDLR was not associated with a risk of early recurrence in ER+ 
disease (HR ¼ 0.99; 95% CI ¼ 0.87–1.13; P ¼ 0.93) or ER+/HER2� tumors 
(HR ¼ 1.01; 95% CI ¼ 0.87; 1.17; P ¼ 0.9). 

The association of TK1 expression with recurrence-free survival was tested to 
evaluate whether the association of PGRMC1 and TMEM97 expression with 
recurrence-free survival might be linked to their association with proliferation. 
Expression of TK1 was associated with decreased relapse-free survival overall 
(HR ¼ 1.45; 95% CI ¼ 1.32–1.60; P ¼ 3.4 � 10�14), particularly within the 
luminal A subtype (HR ¼ 1.81; 95% CI ¼ 1.29–2.54; P ¼ 5.4 � 10�4) but not in 
the basal subtype (HR ¼ 1.14; 95% CI ¼ 0.97–1.34; P ¼ 0.13; Supplementary Fig. 
S2). In contrast, PGRMC1 was associated with decreased relapse-free survival 
overall (Fig. 2A), with no effect in the luminal A subtype (HR ¼ 1.03; 95% 
CI ¼ 0.72–1.49; P ¼ 0.86). TK1 expression was also associated with an increased 
risk of recurrence in combined ER+/HER2� tumors (HR ¼ 1.67; 95% 
CI ¼ 1.49–1.88; P ¼ 5.1 � 10�18) as well as in ER+ and HER2� tumors 
(Supplementary Fig. S3). 

After adjusting for estimated tumor proliferation rates, PGRMC1, 
TMEM97, and TK1 were not associated with relapse-free survival 
(HR ¼ 1.02; 95% CI ¼ 0.91–1.14; HR ¼ 1.04; 95% CI ¼ 0.92–1.18; and 
HR ¼ 1.05; 95% CI ¼ 0.95–1.15, respectively; Figs. 2C and 3C; Supple-
mentary Fig. S4]. This suggests that the associations of PGRMC1, 
TMEM97, and TK1 with relapse-free survival are each mediated by their 
respective associations with cellular proliferation. 

PGRMC1 expression is weakly associated with 
TK1 expression 
As the expression of PGRMC1 and TK1 are associated with prolifera-
tion in human breast cancers, we next asked whether PGRMC1 
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expression was associated with the expression of TK1. PGRMC1 
exhibited a significant correlation with TK1 when all cancers were 
combined, although the magnitude of these associations was weak 
(r ¼ 0.154; P ¼ 9 � 10�08; Table 2). Somewhat stronger associations were 
observed between PGRMC1 and TK1 expression within the basal subtype 
(r ¼ 0.241; P ¼ 1.2 � 10�12) and within ER�/HER2� breast cancers 
(r ¼ 0.256; P ¼ 9.2 � 10�13); however, the magnitude of these associa-
tions was smaller than the correlation between PGRMC1 and prolifera-
tion scores within these same subsets of patients. This suggests that the 
association between PGRMC1 and cellular proliferation is largely 

independent of the association between PGRMC1 expression and ex-
pression of TK1. 

PGRMC1 expression is associated with the activation of 
cell-cycle pathways 
TCGA data containing 1,019 breast cancers were analyzed in an exploratory 
fashion to evaluate expression patterns associated with PGRMC1. A total of 
20,531 available genes were tested for correlation with PGRMC1. Within this 
dataset, 461 genes were significantly associated with PGRMC1 with a coef-
ficient of at least 0.25 (Supplementary Fig. S5A). These genes were analyzed for 

TABLE 1 Association of PGRMC1, TK1, LDLR, and TMEM97 with proliferation. Meta-analysis was performed to examine the association among 
a) PGRMC1, b) TMEM97, c) TK1, and d) LDLR and estimated proliferation rates of tumors 

Strata 
Correlation 
coefficient P value Strata 

Correlation 
coefficient P value 

a) PGRMC1 vs. proliferation signature b) TMEM97 vs. proliferation signature 
All 0.268 6.50e−17 All 0.509 6.1e−67 
ER+ 0.15 0.00017 ER+ 0.588 8.1e−114 
ER� 0.289 1.00e−10 ER� 0.38 8.2e−38 
HER2+ 0.204 0.0021 HER2+ 0.392 1.5e−22 
HER2� 0.271 1.40e−14 HER2� 0.524 1.6e−101 
ER+/HER2+ 0.098 0.11 ER+/HER2+ 0.422 5.6e−13 
ER+/HER2� 0.115 0.0019 ER+/HER2� 0.587 1.1e−110 
ER�/HER2+ 0.279 0.0086 ER�/HER2+ 0.399 1.4e−10 
ER�/HER2� 0.279 5.50e−15 ER�/HER2� 0.493 3.1e−47 
Node+ 0.302 1.10e−09 Node+ 0.486 6.7e−30 
Node� 0.221 7.20e−13 Node� 0.472 1.5e−38 
Basal 0.415 2.40e−37 Basal 0.43 1.2e−16 
ERBB2- 

enriched 
0.254 1.70e−05 ERBB2- 

enriched 
0.385 1.7e−10 

Luminal A 0.07 0.018 Luminal A 0.394 2.7e−44 
Luminal B 0.102 0.0021 Luminal B 0.486 2.8e−56 
Normal-like 0.091 0.038 Normal-like 0.501 1.9e−35 

c) TK1 vs. proliferation signature d) LDLR vs. proliferation signature 
All 0.688 2.50e−145 All 0.16 6.6e−11 
ER+ 0.712 6.50e−200 ER+ 0.176 2.4e−10 
ER� 0.531 4.00e−27 ER� 0.043 0.16 
HER2+ 0.445 4.80e−31 HER2+ 0.137 0.00082 
HER2� 0.725 6.60e−177 HER2� 0.154 2.3e−07 
ER+/HER2+ 0.528 2.10e−21 ER+/HER2+ 0.159 0.0098 
ER+/HER2� 0.727 1.40e−202 ER+/HER2� 0.155 6.7e−06 
ER�/HER2+ 0.338 4.20e−08 ER�/HER2+ 0.143 0.025 
ER�/HER2� 0.616 2.00e−27 ER�/HER2� 0.086 0.019 
Node+ 0.688 1.30e−44 Node+ 0.137 2.9e−08 
Node� 0.692 1.00e−150 Node� 0.176 5.8e−19 
Basal 0.574 4.70e−30 Basal 0.1 0.0039 
ERBB2- 

enriched 
0.365 1.80e−21 ERBB2- 

enriched 
0.136 0.00069 

Luminal A 0.551 5.00e−32 Luminal A 0.143 0.0017 
Luminal B 0.524 3.00e−68 Luminal B 0.115 0.00051 
Normal-like 0.636 2.00e−65 Normal-like 0.137 0.0017 

P value < 0.05. 
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enrichment of pathways and targets for upstream regulators using Ingenuity 
Pathway Analysis. PGRMC1 was associated with CCND1 (cyclin D1) and MYC 
target pathway activities (z ¼ 2.45; P ¼ 8 � 10�5 and z ¼ 1.95; P ¼ 10�6, 
respectively) and RICTOR target pathway inhibition (z ¼ �4; P ¼ 3 � 10�5; 
Supplementary Table S4). Exploratory pathway enrichment analysis revealed 
an overrepresentation of genes significantly correlated with PGRMC1 that were 
related to mitochondrial dysfunction, ubiquitination, DNA damage, and oxi-
dative phosphorylation pathways (Supplementary Fig. S5B). 

Prolif224 is strongly related to PAM50, and the 
prognostic value is similar to the current clinical 
standard-of-care recurrence risk scores 
We tested whether our proliferation score, Prolif224, was related to Onco-
type DX and/or PAM50. We hypothesized that there would be some 

correlation because each recurrence score has proliferation as a strong 
component. Prolif224 was strongly related to PAM50 ROR (0.82, 
P ¼ 5.7 � 10�36) and greatest in ER+/HER2� (r ¼ 0.85; P ¼ 1.5 � 10�157) 
and HER2� disease (r ¼ 0.86; P ¼ 0; Supplementary Table S5). The cor-
relation with Oncotype DX was somewhat weaker at 0.7 overall 
(P ¼ 1.4 � 10�30; Supplementary Table S5). We tested a derived PAM50, 
Oncotype DX score, and our proliferation signature as predictive bio-
markers. This established the predictive value of our signature as compared 
with standard clinical risk scores. The concordance index (C-Index) is a 
commonly used metric for assessing the association between a continuous 
variable (e.g., signature scores) and time-to-recurrence data. It is not affected 
by the scale of continuous variables and deals with censored observations. It 
was used in the Sage Bionetworks–DREAM Breast Cancer Prognosis Chal-
lenge (79), in which the best model among 300 international teams achieved 
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FIGURE 2 PGRMC1 is associated with early breast cancer relapse in a proliferation-dependent manner. Effect size estimates were aggregated 
across datasets by meta-analysis to determine the risk of relapse within 5 years from all cancers. A, Association of PGRMC1 with early breast cancer 
relapse. B, Association of PGRMC1 with early breast cancer relapse within the basal subtype. C, Association of PGRMC1 with early relapse adjusted 
for estimated proliferation. JRH, John Radcliffe Hospital. 
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FIGURE 3 TMEM97 is associated with early breast cancer relapse in a proliferation-dependent manner. Effect size estimates were aggregated 
across datasets by meta-analysis to determine the risk of relapse within 5 years. A, TMEM97 is associated with early breast cancer relapse only in ER+ 
tumors. B, TMEM97 is associated with early breast cancer relapse only in ER+/HER2� tumors. C, Association of TMEM97 with early breast cancer 
relapse in ER+/HER2� tumors adjusted for proliferation. JRH, John Radcliffe Hospital; RFS, recurrence-free survival. 
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a C-Index of ∼0.75. In that context, the research version of the 70-gene 
MammaPrint signature was reported to have a C-Index of ∼0.6. The CIs for 
PAM50, Oncotype DX, and our new proliferation signature were from 
0.63 to 0.66, which is moderate and reasonable, consistent with these prior 
reported data (Fig. 4). LDLR and PGRMC1 did not demonstrate a moderate 
or strong correlation with PAM50 ROR. TK1 and TMEM97 were moderately 
to strongly correlated. In both cases when comparing ER+, ER�, ER+/ 
HER2�, and ER�/HER2�, the correlation was strongest in ER+/HER2�
disease (TK1: r ¼ 0.70; P ¼ 6.4 � 10�105 and TMEM97: r ¼ 0.46; 
P ¼ 2.1 � 10�137; Supplementary Table S6). 

Discussion 
We report for the first time an analysis of the individual components of 
the putative PGRMC1–σ2R/TMEM97–LDLR complex in human breast 
cancer as a function of receptor subtype, molecular subtype, and prolif-
eration. Our studies reveal that each component is differentially expressed 
across breast cancer molecular subtypes, with the highest levels of ex-
pression observed within ER� disease. In addition, each protein in the 
complex has higher expression in high-grade tumors, and all three are 
positively associated with tumor cell proliferation rates, with the strongest 
association seen with TMEM97. Furthermore, we demonstrate that 
PGRMC1 and TMEM97 expression are associated with an increased risk 
of tumor recurrence within the first 5 years following breast cancer di-
agnosis, in a manner that seems to be mediated by their association with 
cellular proliferation. In the case of TMEM97, this is only applicable in 
ER+ disease. Our prognostic findings are supported by prior work noting 
that PGRMC1 is associated with tumor aggressiveness (14, 80, 81) and an 
analysis of a small patient subset (69 tumors) demonstrating that 
PGRMC1 overexpression is associated with breast cancer recurrence and 

decreased survival when untreated tumor expression is dichotomized into 
positive and negative PGRMC1 IHC staining (82). There is also prior 
work demonstrating that patients with increased PGRMC1 have de-
creased overall survival (HR ¼ 1.7; P ¼ 0.029; ref. 83), but the latter 
publication did not account for the association of PGRMC1 with prolif-
eration, which is known to correlate with worse survival outcomes in 
patients with breast cancer. 

The most important finding in our study is that the impact of TMEM97 on 
recurrence-free survival seems to be mediated by its association with 
proliferation. This suggests a mechanism to explain a decade of data 
demonstrating that σ2R/TMEM97 correlates with worse outcomes in a 
variety of solid tumors, including gastric (84), non–small cell lung (85, 86), 
squamous cell lung (87), and ovarian cancers (88). The association of 
TMEM97 with proliferation in breast cancer is consistent with in vitro cell 
culture studies (33, 89, 90) as well as studies in mice utilizing a highly 
selective, optically labeled (fluorescent) σ2R ligand probe, SW120, wherein 
SW120 binding was positively correlated with the cell proliferation marker 
Ki-67 (91). Additionally, the association of σ2R/TMEM97 with prolifera-
tion indicates that the σ2R-selective in vivo radioligand imaging agent 
18F-ISO-1 may be a useful marker for breast cancer imaging that could 
have utility in targeted cell-cycle therapy selection and evaluating response 
to therapy. Supporting this, a clinical trial correlated 18F-ISO-1 uptake in 
vivo with Ki-67 in ER+ breast cancer (39), notably the same IHC subset in 
which the correlation between σ2R/TMEM97 and proliferation is the 
strongest and the same subset in which the association with early relapse is 
the highest. In particular, 18F-ISO-1 may provide information distinct 
from, and possibly complementary to another novel radiotracer, 18F-FLT. 
Unlike Ki-67 and 18F-ISO-1, 18F-FLT is trapped exclusively during the 
S-phase and not during G1, M, or G2. Furthermore, 18F-FLT has high 
background uptake in bone marrow, making it impossible to monitor bone 
metastasis, which is especially important in patients with breast cancer 
with receptor-positive disease. In an early human study for 18F-ISO-1, 
bone marrow uptake was noted to be low, making this a possible imaging 
agent for bone metastasis (34). 

Table 1 shows an association between PGRMC1, TMEM97 and proliferation. 
This is consistent with previous literature showing high expression of these 
two proteins in rapidly proliferating cells. However, Table 1 also reveals only 
a weak correlation between LDLR and proliferation. As these proteins form a 
ternary complex, it is important to explain why all three proteins are not 
strongly correlated with proliferation. We propose the following explanation: 
The Nobel Prize in Physiology or Medicine in 1985 was awarded jointly to 
Michael S. Brown and Joseph L. Goldstein for their discoveries about the 
regulation of cholesterol metabolism, which includes LDLR-mediated in-
ternalization. In normal tissues and quiescent tumor cells, this mechanism 
explains how cells take up LDL. However, in proliferating tumor cells, the 
demand for cholesterol surpasses the capacity of the Brown and Goldstein 
mechanism. 

As a result, tumor cells have developed an alternative mechanism that 
increases the internalization rate of LDL. This is when the sigma-2– 
PGRMC1–LDL complex becomes crucial, as it can enhance the rate of 
internalization by up to tenfold (Fig. 5). Thus, we propose a revision to the 
Brown and Goldstein mechanism to include a secondary pathway for 
cholesterol internalization utilized by rapidly proliferating cells. We refer 

TABLE 2 PGRMC1 is weakly associated with TK1. PGRMC1 exhibits a 
significant correlation with TK1 when all cancers are combined, although 
the magnitude of these associations is weak. PGRMC1 vs. TK1 

Strata Correlation coefficient P value 

All 0.154 9.00E�08 
ER+ 0.016 0.66 
ER� 0.214 7.90E�13 
HER2+ 0.102 0.013 
HER2� 0.141 8.50E�07 
ER+/HER2+ 0.009 0.88 
ER+/HER2� �0.037 0.059 
ER�/HER2+ 0.147 0.021 
ER�/HER2� 0.256 9.20E�13 
Node+ 0.158 0.00017 
Node� 0.105 1.50E�07 
Basal 0.241 1.20E�12 
ERBB2+ 0.212 8.50E�08 
Luminal A �0.063 0.15 
Luminal B 0.009 0.79 
Normal-like �0.015 0.73 

P value < 0.05. 
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to this as the “skip-the-line” mechanism because the ternary complex 
offers cholesterol a modified pathway of receptor mediated endocytosis to 
provide the heightened demand for cholesterol to support cell prolifera-
tion. TMEM97 and PGRMC1 are upregulated whereas the LDLR is not 
since the balance between the Brown and Goldstein mechanism and the 
"skip the line" mechanism is determined by the density of TMEM97 and 
PGRMC1 in the cell membrane. This observation aligns with prior studies 
showing that the activation of LDLR-mediated cholesterol influx is linked 
to cancer cell growth (92). The mechanisms underlying cholesterol bio-
synthesis and uptake in relation to cancer progression remain largely 
unclear. Therefore, further mechanistic studies, both in vivo and in vitro, 
are needed in addition to population-based epidemiologic data to better 
understand the role of cholesterol in cancer development. 

The second important finding is that PGRMC1 is associated with prolifer-
ation. The clinical significance of the association of PGRMC1 with 

proliferation includes the ongoing investigations into why one arm of the 
Women’s Health Initiative, including women treated with combination 
estrogen/progestin, had an increased risk for developing breast cancer versus 
the estrogen-only arm (93). PGRMC1 involvement in steroidogenesis, 
P4 responses in the nervous system, and cells associated with the female 
reproductive system are extensively established (94–96), and it has been 
postulated that PGRMC1 mediated the increased risk of breast cancer in the 
estrogen/progesterone arm via activation by synthetic progestin. There is 
evidence from cultured breast cancer cells and xenograft studies in mice to 
support this hypothesis (13, 16, 97–99). Interestingly, PGRMC1 shows a 
stronger correlation with proliferation in ER� cells, whereas TMEM97 is 
more closely associated with proliferation in ER+ cells. This raises questions 
about how ER status fits into the broader context of tumor proliferation and 
cholesterol transport. Notably, TMEM97 is generally more strongly corre-
lated with proliferation, and variations in proliferation rates are likely more 
significant in ER+ tumors, as these tumors exhibit a wide range of 
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proliferation rates that can influence both treatment response and sur-
vival outcomes. One potential mechanism by which the more aggressive 
ER+ subgroup may overcome barriers to proliferation could involve 
cholesterol transport, a mechanism that might be less critical in ER�
tumors. In contrast, TNBC tumors tend to have more uniform prolif-
eration rates. 

In a prior publication (36), we demonstrated in cells that there is more 
PGRMC1 not complexed with TMEM97 than TMEM97 not complexed 
with PGRMC1. This observation suggests that PGRMC1 performs mul-
tiple functions within the cell, with its complex formation with 
TMEM97 and the LDLR representing just one of its roles. In contrast, 
TMEM97 may primarily function in conjunction with PGRMC1 and 
LDLR to facilitate LDL transport, which could explain why TMEM97 has 
a stronger correlation with proliferation. This hypothesis warrants fur-
ther investigation, as the specific functions of both proteins remain 
poorly understood. The role of PGRMC1 in supporting increased cho-
lesterol demand may be more tightly tied to proliferation than the other 
functions of PGRMC1. 

The role of cholesterol trafficking in the proliferation of human breast 
cancer is poorly understood, with some evidence that SERM inhibit 
angiogenesis independent of ERs, with that mechanism being partially 
attributed to inhibiting cholesterol trafficking in endothelial cells (9). 
Our data demonstrate that differential expression of PGRMC1 in human 
breast cancer is a function of cell proliferation, as well as breast cancer 
receptor and molecular subtypes, and further reveal an association be-
tween PGRMC1 and cell-cycle markers. Although the mechanisms un-
derlying the association of PGRMC1 with proliferation are unknown, 
potential effector pathways associated with PGRMC1 expression in 
breast cancer provide a possible explanation (Supplementary Table S4). 
For example, increased cyclin D1 and MYC pathway activities were each 
correlated with PGRMC1 expression. Cyclin D1 is an oncogene that is 
frequently amplified in human breast cancer, regulates cell-cycle pro-
gression, and is associated with chemoresistance (100) and decreased 

overall survival in patients with ER+ breast cancers (101). Like cyclin D1, 
c-MYC is an oncogene that regulates cell growth and cell proliferation at 
the G1 transition (102), and its amplification is associated with aggressive 
tumor behavior and poor outcome in patients with breast cancer (103). 
PGRMC1 was also associated with fourfold lower levels of RICTOR 
pathway activity. RICTOR is a subunit of the mTOR complex 2 that 
promotes proliferation through Akt/PKB signaling (104), which in turn 
regulates mTORC1, a cell-cycle progression factor implicated in resis-
tance to endocrine therapy (105, 106). 

A strength of this study is that publicly available data were leveraged to 
analyze a large number of invasive breast cancers, with the power to detect 
correlations that can guide further studies at the protein level. Limitations of 
our study include that mRNA expression may not accurately reflect protein 
levels, which have greater biological significance, that proteins may undergo 
posttranslational modifications, such as phosphorylation, that could affect li-
gand binding, and that protein subcellular localization might differ in tumors 
compared with normal tissue. 

In summary, each component of the PGRMC1, TMEM97, and LDLR 
complex is a breast cancer biomarker associated with cellular prolifera-
tion. This should help guide in vitro and in vivo studies exploring them 
in the context of additional markers of proliferation. These data also 
inform the clinical use of 18F-ISO-1 in breast cancer, in which 18F-ISO- 
1 correlated with Ki-67, providing independent clinical trial data sup-
porting the association of a component of the trimeric complex with 
breast cancer proliferation (39). 18F-FLT and 18F-ISO-1 PET/CT have the po-
tential to serve as a clinically translatable approach for predicting and 
monitoring response to combinatorial CDK4/6 inhibitors and endocrine 
therapy in patients with ER+ breast cancer, with 18F-FLT measuring im-
mediate changes in the S-phase as a predominate effect of targeting CDK4/6, 
providing a very early prediction of tumor response, and 18F-ISO-1 assessing 
delayed changes reflecting cell-cycle arrest and transition to quiescence (35). 
This work exploring the role of PGRMC1–TMEM97–LDLR in breast cancer 
demonstrates the importance of further research evaluating how 
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proliferation interplays with cholesterol metabolism in malignant transfor-
mation or propagation. 
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