As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.

As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.

As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.

As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.

As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.

As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.

As home to one of the largest and most established proton therapy centers in the world, we are a leader in the use and study of this advanced treatment. Working alongside our dosimetrists, physicists and clinicians, you will gain firsthand understanding for the latest treatment and quality assurance protocols. Our robust research enterprise also affords you the opportunity to collaborate with peers both locally and globally to advance the understanding for this and the other cutting-edge treatment technologies for conventional radiation therapy offered throughout our health system.

The singular goal of our Medical Physics Residency Program is to prepare you for a successful career within the field. For our faculty and administration, this means empowering you with a sound clinical foundation that serves as a launching point for future professional pursuits.
Network treats nearly 650 patients a day across all its locations, making it one of the busiest programs in the nation. Working with our clinical team, you will also apply your knowledge to help in the treatment of complex and emergency adult and pediatric cases. This is a level of experience that isn’t offered by many other programs.

When you join the Penn community, you become part of a vast alumni network that opens doors to opportunities with leading conventional radiation and proton therapy programs throughout the country and beyond. This network, and the collective experiences of our program, have helped our residents secure placements with some of the top academic medical centers in the U.S. Additionally, more than half of our residents have gone on to work with established or emerging proton therapy programs.

If you are a graduate-level student with an excellent academic record and a demonstrated interest in a career in medical physics, we invite you to apply to Penn’s Medical Physics Residency Program.

“Penn’s program is very well organized. The rotations are arranged strategically and made me feel well prepared.”

—HAIBO LIN, PHD (’11) DIRECTOR OF MEDICAL PHYSICS, NEW YORK PROTON CENTER

—KEVIN TEO, PHD DIRECTOR, PENN MEDICAL PHYSICS RESIDENCY PROGRAM

—SHIBU ANAMALAYIL, MS ASSOCIATE DIRECTOR, PENN MEDICAL PHYSICS RESIDENCY PROGRAM
Penn’s Medical Physics Residency Program is specially designed for graduate-level individuals who wish to pursue a career as an independent radiation oncology physicist. Our CAMPEP-accredited program is a two-year commitment that is comprised of both classroom work and clinical experience.

During their time at Penn, residents engage in didactic instruction in medical physics, anatomy and radiation biology, and complete a series of clinical rotations that expose them to a wide spectrum of clinical physics problems. Residents train at Penn Medicine’s Perelman Center for Advanced Medicine and its many radiation oncology network sites throughout Southeastern Pennsylvania and Central New Jersey. At each location, residents learn from the Department of Radiation Oncology’s nearly 100 faculty physicists and staff physicians, all of whom are dedicated to training residents in both photon and proton therapy.

A highlight of Penn’s program is the experience residents gain working with innovative treatment technologies. In addition to the Roberts Proton Therapy Center, Penn Medicine was the first in the world to use The Varian Halcyon™, a treatment platform that streamlines the way therapeutic radiation is delivered to cancer patients. Other distinguishing features include modalities such as Gamma Knife and CyberKnife, and the Department’s newly opened, state-of-the-art, 1,000 square-foot small animal radiation research core.

Clinical research projects and the opportunity to present at scientific meetings round out resident’s training experience.

Four new residents are accepted into Penn’s highly-competitive Medical Physics Residency Program annually for a total of eight residents at a time. This makes it one of the largest two-year medical physics residency program offered today. At the completion of the program, residents consistently report that the broad experience and network they gain through Penn are a tremendous asset when seeking a professional home.
A CURRICULUM for the Future

Penn’s Medical Physics Residency Program features a robust curriculum that prepares its alumni to compete for top positions in the field. The first year of the program is spent largely in didactic instruction and clinical rotations while the second year can be tailored to the individual’s personal interests or career goals. Residents work closely with their mentors throughout the duration of the program, thus ensuring they acquire fundamental knowledge and meet the practical objectives of each rotation. Regular collaboration with medical residents fosters teamwork and the ability to function within a clinical setting. In addition to quarterly oral exams, residents are encouraged to participate in clinical research and present at scientific meetings.

CURRICULUM HIGHLIGHTS
Include a didactic lecture series in the areas of:

- Radiotherapy Physics
- Medical Radiation Engineering
- Image-Based Anatomy
- Radiobiology

DIDACTIC CONFERENCES AND PRESENTATION OPPORTUNITIES
Including:

- Weekly departmental lectures and seminars that offer residents the opportunity to present to peers and faculty
- Monthly journal club and research meeting at which residents present AAPM task group reviews
- Quarterly multidisciplinary conferences where medical physics residents and medical residents jointly present a comprehensive overview of a major cancer site
- An annual, multi-day Proton Therapy course that attracts an international audience

ROTATIONS (9):

- Basic Treatment Planning
- Advanced Treatment Planning
- Imaging
- Beam Data, QA&QC and Radiation Safety
- Brachytherapy and Special Procedures
- Special Procedure
- Clinical Practicum
- Network Clinical
- Proton
Penn Medicine's Radiation Oncology MEDICAL PHYSICS PROGRAM

The University of Pennsylvania is located in the heart of Philadelphia, an exciting city that is also very livable and surprisingly affordable.

Penn offers a transforming experience with endless opportunities. It’s a great time to grow, learn, discover, contribute, make friends, and attain excellence. The sky is the limit.

— STEFAN BOTH, PHD, FAAPM
PROFESSOR AND HEAD OF MEDICAL PHYSICS
UNIVERSITY OF GRONINGEN, NETHERLANDS

FOR MORE information PLEASE CONTACT:

Cordelia M. Baffic | Associate Director, Medical Education | 215.662.3694
Cordelia.Baffic@uphs.upenn.edu

Penn Medicine’s Radiation Oncology at Penn Medicine
www.PennMedicine.org/RadiationOncology

THE DEPARTMENT OF RADIATION ONCOLOGY AT PENN MEDICINE

Penn's Medical Physics Residency Program is one of the most sought after in the nation, a fact that can be largely attributed to its outcomes. Since the program received its initial CAMPEP accreditation in 2009, its residents have achieved a 100 percent pass rate on the American Board of Radiology certification exam.

Program alumni have successfully acquired positions in academic medicine and private practice. Current placements include: Einstein Medical Center (Philadelphia area) | Georgetown University Hospital | Johns Hopkins University Hospital | Johns Hopkins University Hospital (Philadelphia area) | Mayo Clinic | Memorial Sloan Kettering | New York Proton Center | Ohio State University ProCure Proton Therapy Center (New Jersey) | University of California, San Francisco | University of Pennsylvania | Washington University School of Medicine | William Beaumont Hospital (Royal Oak, MI).