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The convergence of nanoparticles and stem cell therapy holds great promise for the study, diagnosis, and
treatment of neurodegenerative disorders. Researchers aim to harness the power of nanoparticles to regulate cel-
lularmicroenvironment, improve the efficiency of cell and drug delivery to the brain, and enhance the survival of
stem cell transplants. Understanding the various properties of different nanoparticles is key to applying them to
clinical therapies; themany distinct types of nanoparticles offer unique capacities formedical imaging, diagnosis,
and treatment of neurodegeneration disorders. In this review we introduce the biology of Alzheimer's,
Parkinson's Disease, and amyotrophic lateral sclerosis, and discuss the potentials and shortcomings of metal, sil-
ica, lipid-based, polymeric, and hydrogel nanoparticles for diagnosis and treatment of neurodegenerative disor-
ders. We then provide an overview of current strategies in stem cell therapies and how they can be combined
with nanotechnology to improve clinical outcomes.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Neurodegenerative diseases like Alzheimer's disease (AD),
Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are
devastating diseases that have become increasingly common as life
expectancy increases and the global population ages. In the United
States, Alzheimer's alone is the 6th leading cause of death, with an
annual economic cost over $236 billion [1]. Treatment of neurodegener-
ative disease has been slow to progress due to contradicting hypotheses
of the physiological causes of disease, alongside extreme difficulty in
shuttling drugs across the blood-brain barrier (BBB) [2,3]. Additionally,
widespread neuronal cell death is particularly difficult to target, and
lack of robust regenerative capacity in the central nervous system
(CNS) renders most treatments ineffective [4,5]. Two major avenues of
research to address these problems are stem cell transplantation,
often directly into the brain, and nanoparticles that can cross the BBB
[2,5,6]. The joining of these two fields is especially useful for the combi-
nation of diagnostics and treatment, commonly termed theranostics [7].
Here we review the current status of using nanomedicine in concert
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with stem cell therapy to diagnose, track progression, and treat neuro-
degenerative diseases.

1.1. Biology of the BBB

The brain is incredibly sensitive to toxins in the bloodstream, and re-
quires a specializedmicroenvironment for optimal function [8]. The BBB
creates a selective barrier composed of cerebral capillary endothelial
cells linked by tight junctions that prevent movement of molecules be-
tween cells. Additionally, the P-glycoprotein (P-gp) pump on endothe-
lial cells actively effluxes cytotoxic molecules unidirectionally across
the apical membrane and into the luminal space, thereby removing
foreign molecules that bypass the BBB [2,9]. The barrier is further rein-
forced by microglia, pericytes, and astrocytes that sheath the endothe-
lial tube [10,11]. Small, lipophilic molecules and gases can diffuse
across the BBB down a concentration gradient, while large and hydro-
philic molecules require the use of transporters. Three mechanisms
of transport exist in the BBB: carrier-mediated transport (CMT),
receptor-mediated transcytosis (RMT), and adsorptive-mediated
transcytosis (AMT) (Fig. 1). CMT principally transports relatively small
molecules and nutrients like glucose, amino acids, and ascorbic acid
using protein carriers. RMT and AMT, on the other hand, use vesicles
to endocytose and shuttle larger proteins and molecules across the
BBB. While RMT is highly selective due to the requirement of
chnology and stem cell therapy team up against neurodegenerative
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Fig. 1. The biology of the blood-brain barrier is crucial for understanding how drugs can reach the brain. Three major transport mechanisms exist: carrier-mediated transport (left),
receptor-mediated transcytosis (center), and adsorptive-mediated transcytosis (right). Paracellular diffusion can also occur between epithelial cells.
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receptor-ligand recognition, AMT depends on less specific interactions
between cationic compounds and the negatively charged sulfated pro-
teoglycans on the endothelial plasma membrane [12,13]. Nanoparticle
delivery has taken advantage of both the specificity of RMT and the pli-
ability of AMT, which allow for preferential drug targeting to the
brain and independence from membrane receptors, respectively [11].
Delivery of nanomedicine that can cross the BBB is considered non-
invasive, and is one of the most promising strategies of treating neuro-
degenerative disease.
Fig. 2. Surface coating of nanoparticles (NP)with polyethylene glycol (PEG) is a commonly
used technique that enhances NP stability, solubility, andmediates NP interactionwith the
physiological environment.
1.2. Drug clearance

Many drugs, including nanomedicine, are quickly degraded when
exposed to the circulatory system. The reticuloendothelial system
(RES), also known as the mononuclear phagocyte system (MPS), con-
sists of immune cells that recognize and clear drugs within a few
hours of administration. Macrophages are the primary actors of the
MPS, and clear nanoparticles in the liver or spleen as blood flows
through these organs [14,15]. Encapsulation in nanoparticles is not suf-
ficient for drugs to evade clearance, but a number of surface modifica-
tions on top of nanoparticles are highly effective in increasing stability
and circulation time. These surface modifications can be applied to al-
most every type of nanotechnology described below. The most success-
ful modification is polyethylene glycol (PEG), which improves both the
stability and biological performance of many nanoparticles [14,16]. PEG
has unlimitedwater solubility, a high degree of conformational entropy,
and a large excluded volume, which is the volume created by the phys-
ical presence of PEG alongside steric hindrance that cannot be pene-
trated by other molecules. This effectively provides a shield for the
nanoparticle core, thereby reducing breakdown and improving circula-
tion time [14,16]. These properties have led to multiple hypotheses on
how PEG helps nanoparticles evade engulfment by macrophages, in-
cluding a steric barrier, reduction of protein adsorption, and binding to
specific proteins that help mask the nanoparticle (Fig. 2) [17–19].
While PEG is incredibly useful in almost every form of nanomedicine,
some studies have shown that mice develop an immune response to
multiple doses of PEG, causing worsened circulation time of PEGylated
nanoparticles [20].
Please cite this article as: C. Vissers, G. Ming and H. Song, Nanoparticle t
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1.3. Pathobiology of neurodegenerative diseases

1.3.1. Alzheimer's disease (AD)
As themost common neurodegenerative disorder in people over 65,

Alzheimer's has garnered incredible scientific and financial investment.
Symptoms include progressive decline in memory, judgment, language
skills, and other cognitive functions [21]. The molecular causes are still
poorly understood, though two hypotheses have become central: amy-
loid beta (Aß) deposition and neurofibrillary tangle (NFT) formation
(Fig. 3a). NFTs are made of hyper-phosphorylated tau protein that
form tangles after dissociating from destabilized microtubules, while
Aß plaques form from fragments of amyloid precursor protein (APP)
that accumulate in Alzheimer's patients. Aß plaques are deposited out-
side of neurons, while NFTs occur within the cell, and both cause de-
creases in synaptic signaling and eventually promote neuronal death.
Massive neuronal death causes a significant decrease in brain volume,
echnology and stem cell therapy team up against neurodegenerative
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particularly in the telencephalon, which contributes to the severe
decline in cognitive abilities [22]. In addition to synaptic dysfunction,
mitochondrial activity becomes imbalanced, leading to oxidative stress,
accumulation of reactive oxygen species (ROS), decreased mitochon-
drial adenosine triphosphate concentration, and increased intracellular
calcium levels [23,24]. Current therapeutic strategies target Aß plaques
and NFTs for breakdown, and try to reduce ROS in the brain. Despite 6
currently FDA-approved treatments for Alzheimer's, none are curative
and efficacy varies greatly across individuals [23].

1.3.2. Parkinson's disease (PD)
Neurodegeneration in PD is a result of formation of Lewy bodies

coupled with dopaminergic neuron death in the substantia nigra.
Lewy bodies are aggregates of α-synuclein protein that occur in the
cell body and processes of neurons (Fig. 3b). PD causes progressive
onset of tremors, body rigidity, slowing of voluntary movement, insta-
ble posture, and othermotor dysfunctions. Currentmedications attempt
to treat the symptoms, but cannot reverse the significant loss of dopa-
minergic neurons. Several genes have been discovered to contribute to
PD and have led to the model that protein folding and dysfunction of
the ubiquitin-proteasomepathway could also contribute to disease pro-
gression. Additionally, mitochondrial dysfunction and oxidative stress
are commonly found in neurons of patients with PD. The heterogeneity
in pathology and underlying causes of PD makes treatment especially
difficult. Specific molecular pathologies, like α-synuclein aggregation
and mitochondrial dysfunction, are potential targets for pharmacologi-
cal intervention. Surgical treatments that have been investigated in-
clude deep brain stimulation of the subthalamic nuclei and cell
transplantation [25–27].

1.3.3. Amyotrophic lateral sclerosis (ALS)
Degeneration of motor neurons in the motor cortex, brainstem, and

spinal cord of ALS patients causes severe symptoms of paralysis, diffi-
culty swallowing, difficulty speaking, and respiratory failure. With no
cure, the average progression from onset to death is 20 to 48 months
[28]. The cause of ALS remains largely unknown, though over 40
genes have been identified as risk factors. Continued research suggests
that protein instability, aggregation, and degradation, especially of
RNA- and DNA-binding proteins, could play a role in the molecular pa-
thology of ALS. Additionally, impairment of neuronal cytoskeletal func-
tion and roles of non-neuronal cells contribute to disease pathology
(Fig. 3c). Specifically, astrocytes derived from ALS patients can be toxic
to motor neurons in co-culture, indicating that intercellular signaling
plays amajor role inmotor neuron degeneration [29]. This alsomuddies
attempts to regenerate motor neurons, as the in vivo environment is
largely toxic. Nonetheless, the lack of effective drug treatments has led
to the exploration of stem cell transplantation to replacemotor neurons
alongside pharmacological attempts to reduce the severity of themicro-
environment [30]. This dual approach is especially amenable to com-
bined nanotechnology and stem cell therapy, since it addresses both
cell replacement and modulation of the microenvironment of
transplanted cells.

2. Current nanotechnologies

A wide variety of nanoparticles exist with varying sizes, properties,
and functions (Fig. 4). Here, we describe the major categories of nano-
particles that have beenwell-studied for application to neurodegenera-
tive disease.
Fig. 3. (A) Alzheimer's Disease is thought to have two centralmolecular phenomena: (1) the for
beta plaques from amyloid precursor protein cleavage (bottom). These lead to intracellula
(B) Parkinson's disease is characterized by several molecular pathways, particularly the
mitochondrial dysfunction. This can cause reduced dopamine neurotransmission, which lead
causes of ALS are still largely unknown, though multiple cell types in the brain, like microglia
protein processing leads to aggregation or precocious degradation.
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2.1. Metal nanoparticles

Metal nanoparticles have garnered significant interest for their ca-
pacity to cross the BBB and enhance imaging of the brain. They can
also be coated with various ligands, like antibodies or proteins, for
drug delivery into the CNS. Additional properties that can bemodulated
to alter nanoparticle function are shape, size, surface coverage, and sta-
bility through synthesis method [31].

2.1.1. Gold nanoparticles (AuNPs)
Gold nanoparticles are one of the best documented tools for CNS im-

aging and treatment [11]. The gold core has several defining optical
properties, termed plasmonic properties, which make it ideal for imag-
ing applications. Specifically, gold has a surface plasmon resonance
(SPR), which is the resonation of surface conduction electrons induced
by the oscillating electromagnetic wave created by light striking the
particle. This resonance leads to the formation of an ionic core as an os-
cillatory dipole is generated along the axis of light radiation [31]. The os-
cillation of electron charge is particularly localized in nanoparticles, and
quickly decays with distance from the dielectric surface, with a spatial
resolution correlated to nanoparticle size [32]. SPR also depends on
the composition, shape, structure, and environment of the nanoparticle
[33,34]. Using SPR, nanoparticles absorb light, which is then either
scattered, emitted, used to quench nearby fluorescence, or released as
heat [31,35]. These optic properties can be utilized for in vivo imaging
through X-rays or micro-CT scanning. AuNPs absorb and reduce
X-rays better than traditional CT contrast agents like iodine, allowing
for superior contrast and increased precision in visualization of nano-
particle location [36–38]. In the context of stemcell therapy, researchers
aim to track transplanted cells loaded with AuNPs. A recent study suc-
cessfully complexed 40 nm AuNPs with two ligands, poly-L-lysine
(PLL) and rhodamine B isothiocyanate (RITC), to increase nanoparticle
uptake by human mesenchymal stem cells (hMSC). AuNP uptake did
not inhibit cell proliferation or differentiation, and labeled hMSCs
showed strong attenuation, or visibility, during in vitro micro-CT imag-
ing. This study further found that injecting a minimum of 2 × 105 gold-
labeled hMSC directly into rat brains allowed for visualization with
micro CT 30 min post-injection. In the future this could allow for CT-
guided stem cell injection into the brain or immediate confirmation of
successful injection in humans [39]. In addition to cell tracking, AuNPs
have been modified to target and degrade β-amyloid aggregates
in vitro. Specifically, a gold core was conjugated to apolipoprotein E3
(ApoE3), which promotes interaction with amyloid aggregates and in-
creases BBB crossing, and Curcumin, a fluorescent hydrophobic probe
used to track the gold particles. Once the ApoE3-conjugated gold
binds to β-amyloid aggregates, the SPR of gold is then used to treat
with light, which is absorbed and then released as heat to promote ag-
gregate dissociation [40].

2.1.2. Silver nanoparticles (AgNPs)
Silver nanoparticles have been investigated for their ability to cross

the BBB and induce an immune response in the brain.When injected in-
traperitoneally, the AgNPs can reach the hippocampus, an important re-
gion for neurodegenerative disorders [41]. AgNPs naturally have
antibacterial characteristics that make them promising in some cases,
but they induce inflammatory and neurodegenerative gene expression
responses at 5 μg/mL dose in mouse neural cells [42]. However, this im-
mune response was also recently shown to improve the ability of mi-
croglia, the immune cells of the brain, to express enzymes that
mation of neurofibrillary tangles from tau proteins (top), and (2) the formation of amyloid-
r neurofibrillary tangle formation and extracellular aß plaque formation, respectively.
formation of Lewy bodies from α-synuclein protein and oxidative stress caused by
s to the common symptoms of impaired motor movement and tremors. (C) Molecular

and astrocytes, are thought to contribute to neuronal dysfunction. Additionally, improper

echnology and stem cell therapy team up against neurodegenerative
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Fig. 4. An overview of nanoparticles commonly used to treat or study neurodegenerative disorders.
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produced an overall anti-inflammatory effect and reduced reactive
oxygen species (ROS). This was dependent on AgNPs being absorbed
specifically by microglia, in which the AgNPs are partly dissolved to
form non-reactive silver sulphide (Ag2S) on the silver core surface.
This in turn changes the expression profiles of microglia to reduce
their toxicity toward dopaminergic neurons [43]. Unfortunately,
AgNPs delivered nonspecifically to the brain often cause cytotoxicity,
especially to neurons, and the inert silver can accumulate over time
[44,45]. In order for AgNPs to be effective in treating neurodegenerative
diseases, they must be specifically targeted to individual neural cell
types, or coatedwith ligands that reduce their cytotoxicity. Nonetheless,
AgNPs should not be dismissed, as their enhanced ability to cross the
BBB could lead to exciting options for drug delivery or immunotherapy.

2.1.3. Metal-oxide nanoparticles
Iron oxide (Fe3O4), cerium oxide (CeO), and zinc oxide (ZnO) nano-

particles have all been developed as tools for imaging and as therapies
to reduce oxidative stress in the brain [11]. The magnetic properties of
these metals make them useful for magnetic resonance imaging
(MRI). Also, passage of the BBB in mice can be significantly enhanced
by applying an external magnetic field prior to systemic injection of
Fe3O4 NPs, allowing the NPs to reach the brain parenchyma [46]. To
further increase delivery specificity, magnetic fields can be used
to guide NP delivery to a particular region of the brain, thereby
reducing the dose necessary for treatment [11]. Fe3O4 NPs can be
divided into two categories based on size: 50–150 nm diameter
superparamagnetic iron oxide (SPIO) and 10–50 nm diameter
Please cite this article as: C. Vissers, G. Ming and H. Song, Nanoparticle te
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ultrasmall superparamagnetic iron oxide (USPIO) [47]. USPIOs are
used primarily as MRI contrast agents, while SPIOs can be further mod-
ified for neuroregenerative functions. SPIO gold NPs coated with nerve
growth factor (NGF) were recently shown to promote neuron growth
and differentiation using dynamic external magnetic fields in vitro
[48]. Other macromolecules, like short hairpin RNA (shRNA), have also
been immobilized onto Fe3O4 NPs to reduce neuronal apoptosis in a
model of Parkinson's Disease [49]. A variety of modified SPIOs have
been added to human neural stem cells (hNSC) without impairing cell
viability or proliferation, and allowed tracking of transplanted NSCs by
MRI for up to 3 months post-transplantation in mice [47,50].

Cerium and zinc oxide nanoparticles aremore commonly used to re-
duce reactive oxygen species (ROS) and nitrosative stress, which have
been implicated in neurodegenerative disease and neuronal death. Ce-
rium oxide nanoparticles, also called nanoceria, can reduce superoxide
anions, hydrogen peroxide, and peroxynitrite by converting between
Ce4+ and Ce3+ [51]. Similarly, zinc oxide nanoparticles can be used to
reduce ROS, and can be engineered for diagnosis and treatment of
Alzheimer's Disease [52,53]. Iron, cerium, and zinc all still pose risks
for neurotoxicmetal buildup,meaningdosage needs to be very carefully
controlled in any treatment for neurodegenerative disease [54,55].

2.2. Quantum dots (QDs)

Quantum dots are fluorescent semiconductor nanocrystals that are
chemically stable in physiological conditions, have long-term
photostability, and emit fluorescent wavelengths correlated to their
chnology and stem cell therapy team up against neurodegenerative
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size [56,57]. The metalloid crystalline core is most commonly made of
cadmium selenium (CdSe), and is surrounded by a zinc sulfide (ZnS)
shell that enhances solubility in water [58]. QDs usually range from 2
to 10 nm in diameter, and are often coated with a ligand to increase
their physiologic function [5,59]. For example, QDs have been coated
with Aβ peptide such that they will form aggregates with Aβ plaques
in vivo and allow for image quantification of Alzheimer's Disease diag-
nosis and progression [60]. Similarly, another study functionalized
QDs with dopamine, which changed the fluorescent properties of the
QDs in a manner dependent on the interaction of dopaminewith cyste-
ine, a process implicated in some neurodegenerative diseases. This dy-
namic technique provides unique insight into the molecular reactions
occurring inside cells, and allows for careful monitoring of dopaminer-
gic neurotoxicity [61]. QDs are also extremely useful for tracking
transplanted cells. QDs have been added to mesenchymal stem cells
(MSCs) prior to transplantation into the sciatic nerve, and allowed
in vivo tracking for at least 35 days [62]. Additionally, QDs coated with
a zwitterion and a lipopeptide that increased uptake by NSCs were
used to track NSC migration after injection into embryonic chick brains.
When injected into the brain of embryonic day 4 (E4) chicks, the QDs
became widely distributed through the brain and remained detectable
through embryonic day 15, by which time cells were able to clear the
QDs from the brain. Importantly, the chicks hatched and grew normally,
indicating that these QDswere fully biocompatible [63]. Another critical
finding in QD technology is that they can be aerosolized and reach the
brain through short-term inhalation, leading to rapid olfactory uptake
and axonal transport to the olfactory bulb. However, this method also
induced a pro-inflammatory response by activating microglia, indicat-
ing a potential damaging effect that needs to be carefully considered
when applying QDs to stem cell therapy [64].

2.3. Silica nanoparticles

Silica nanoparticles are transparent and inert, and can be conjugated
to a variety of fluorescent probes. They are also porous, making them
potential drug carriers, and can be surface modified for added function-
ality [65,66]. Silica NPs can penetrate neurons in vivowithout cytotoxic-
ity inDrosophila, making them an exciting target for neurodegeneration
treatment [67]. They can also cross the BBB in mice, with transport effi-
ciency being dependent on size [68]. This permeation is maintained
when drugs or contrast agents are loaded onto the NPs, which is crucial
for clinical function [69]. For example, silicaNPs loadedwith small inter-
fering RNA (siRNA) against SOX9 can mediate the fate of NSCs in vitro
[70]. In addition to shuttling drugs to the brain, silica NPs can be modi-
fied such that they release ligand over long periods of time. Silica NPs
surface-modifiedwith amino groups and containing brain-derived neu-
rotrophic factor (BDNF)were able to persist in ganglion neurons and re-
lease BDNF over a period of 80 days [71]. Overall, silica NPs are highly
pliable with good biocompatibility, thoughmore studies need to be car-
ried out in vivo prior to clinical use in humans.

2.4. Lipid-based nanoparticles

Lipids and other organic molecules that naturally occur in cells are
useful tools in nanomedicine due to their enhanced biocompatibility
relative to inorganic molecules. Lipid nanocarriers also evade efflux
once in the brain,making them ideal drug carriers both for nanoparticle
treatment and co-treatment with stem cell therapy [72].

2.4.1. Liposomes
Liposomes are made of at least one lipid bilayer surrounding an

aqueous space that can be filled with a large variety of compounds,
with diameters ranging from 20 nm to 2.5 μm [16]. Importantly, lipo-
somes can encapsulate both hydrophilic (in the aqueous core) and lipo-
philic (in the lipid layer) compounds, making them one of the most
popular nanocarriers used for drug delivery [2,5]. A large variety of
Please cite this article as: C. Vissers, G. Ming and H. Song, Nanoparticle t
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lipids can be used to make liposomes, with the most common choices
including cholesterol, sphingomyelin, phosphatidylcholine, 1,2-
Dimyristoyl-sn-glycreo-3-phosphocholine (DMPC), 1,2-Dimyristoyl-
sn-glycreo-3-phosphoglycerol (DMPG), 1,2-Distearoyl-sn-glycero-3-
phosphoethanolamine (DSPE), and other variations of phospholipids
[73,74]. Phospholipids containing choline, namely phosphatidylcholine
or lecithin, are the most popular building blocks for liposomes because
they are dipolar at physiological pH, with a positive charge on the qua-
ternary ammonium and a negative charge in the phosphate headgroup
[75,76]. The lipid shell can be stabilized for a longer half-life by adding
cholesterol, or other sterols, during synthesis. This in turn regulates
the rate of drug release [77]. Numerous liposome therapies with choles-
terol incorporated into the membrane have already been approved by
the Food and Drug Administration (FDA) [78]. Furthermore, liposomes
can be surface-coated with ligands that enhance their stability or deliv-
ery to the brain. PEGylation increases efficiency of liposomes crossing
the BBB, and targeting ligands facilitate receptor-mediateds crossing of
the BBB or cellular endocytosis. Proteins, antibodies, nucleic acids, car-
bohydrates, and more can be bound to the outer headgroup of a lipo-
some with varying degrees of surface coverage. It is vital that the
targeting ligand be bound to the liposome in a way that does not
mask the epitope necessary for biological function [79]. Hydrophobic li-
gands that cannot be directly incorporated into the lipid shell can be
conjugated with a chemical linker [80]. Ligands can even be conjugated
to the outer end of PEG, allowing for two layers of liposome coating [16].

Some liposomes have been specifically developed to treat neurode-
generative disease. One study developed liposomes conjugated with
apolipoprotein E (ApoE) to enhance delivery of siRNA or plasmid DNA
to the brain. This helped target the liposomes to neural stem and pro-
genitor cells, making it a promising candidate for coordinated treatment
with stem cell therapies [81]. Similarly, liposomes can be loaded with
peptides like H102 that break β-sheets to help treat Alzheimer's Dis-
ease. Such liposomes can be administered intranasally and successfully
penetrate the brain parenchyma. In rat models of Alzheimer's Disease,
these H102 liposomes ameliorated spatial memory impairment,
inhibited plaque formation, and increased enzymatic activity that sup-
ported cell survival [82]. A recent study also found that intranasal deliv-
ery of liposomes containing celecoxib (CB), a cyclooxygenase-2
inhibitor, cleared β-amyloid aggregates in neurons, thereby alleviating
cognitive decline in a mouse model of Alzheimer's Disease. These lipo-
somes were made using erythrocyte membranes (EM) instead of tradi-
tional phospholipids, which improved bioavailability and are promising
materials for clinical trials. The CB-EM liposomes simultaneously in-
duced neurogenesis and reduced apoptosis, addressing two of the
major clinical concerns in Alzheimer's Disease [83]. In addition to
treating symptomatic neurodegeneration, liposome research has ad-
dressed the issue thatmany clinical trials fail once patients have already
experienced neurodegeneration, but that treatment is not applicable
prior to the onset of symptoms. To this end, liposome treatment of a
pre-symptomatic stage mouse model of Alzheimer's Disease effectively
delayed deposition of Aβ plaques and prevented memory impairment
[84].

2.4.2. Micelles
While liposomes are made of lipid bilayers with an aqueous internal

compartment, micelles are lipid monolayers that self-assemble in polar
medium to form a hydrophobic fatty acid core and hydrophilic polar
surface. DSPE and phosphatidylethanolamine (PE) are commonly used
phospholipids to make micelles, though amphiphilic polymers are also
a common substrate for micelle synthesis [74]. Micelles range from 5
to 100 nm in size, making them much smaller than liposomes [85].
Their hydrophobic core can be loaded with drugs that would otherwise
be insoluble in vivo, and the small micelles can efficiently pass the BBB.
Loading curcumin into micelles significantly increases its bioavailability
and plasma concentration relative to free curcumin,which could greatly
improve curcumin as a therapy for Alzheimer's disease [85,86].
echnology and stem cell therapy team up against neurodegenerative
7

https://doi.org/10.1016/j.addr.2019.02.007


7C. Vissers et al. / Advanced Drug Delivery Reviews xxx (2019) xxx
2.4.3. Exosomes
Though not traditionally seen as a synthesized nanoparticle,

exosomes generated from in vitro cell culture can be used to treat neu-
rodegeneration. Exosomes are membranous vesicles excreted by a cell
that can contain almost any cellularmolecule, including proteins, lipids,
DNA, RNA, and siRNA [5,87]. They are generally 30 to 100 nm in diame-
ter and have a very high efficiency of crossing the BBB, though they can
also be produced by all cell types in the brain and are naturally found in
the cerebrospinal fluid (CSF) [87,88]. Interestingly, the molecular con-
tents of exosomes stray from the norm in patients with Alzheimer's,
schizophrenia, or bipolar disorder. Exosomal miRNAs in particular are
mis-regulated, and Alzheimer's patient exosomes showed high levels
of full-length and c-terminal fragments of Aβ precursor protein, which
could contribute to the spread of symptoms to other brain cells
[89,90]. The apparent power of exosomes in the pathology of neurode-
generative disorders led researchers to engineer the system for stem
cell therapies. MSC therapy promotes angiogenesis and neurogenesis
by stimulating signaling pathways that regulate brain plasticity and
repair, pointing toward a paracrine mode of action as opposed to cell
replacement [87,91]. In concordance, MSCs secrete a high number
of exosomes, which modulate the microenvironment of nearby
degenerating cells [92,93]. Injecting MSC-derived exosomes into the
bloodstream of rats exposed to focal cerebral ischemia and stroke sup-
ported neurovascular remodeling and thereby significantly improved
neurological function [94]. Exosomes can be engineered to contain spe-
cific miRNAs that help treat neurodegeneration, like miR-133b for
stroke. Specifically, when MSCs are cultured with extracts from ische-
mic brain tissue, they secrete exosomes with vast numbers of miRNAs
that upregulate both neurogenesis and angiogenesis [87,95]. Exosomes
produced by hematopoietic stemcells (HSCs) can also cross the BBB and
deliver functional cargo, like siRNA, plasmid DNA, and proteins to brain
cells [87].Morework is needed to better characterize themolecular pro-
files of exosomal cargo and to understand exactly how this cargo is in-
ducing neural recovery. Additionally, exosomes should be further
engineered to enhance stability in vivo and improve specificity in
targeting to individual cell types in the brain.

2.5. Polymeric nanoparticles

Polymeric nanoparticles have pliable physical properties, synthesis
techniques, and degradation rates in vivo that make them useful drug
carriers. They can reduce immunogenicity of the cargo and improve
pharmacokinetic properties of encapsulated proteins [96]. The most
commonly used polymeric materials include poly(lactic acid) (PLA),
poly(D,L-lactic-co-glycolic acid) (PLGA), poly(aspartic acid), poly
(glycolic acid) (PGA), and poly(butylcyanoacrylate) (PBCA). These poly-
mers have also been broadly applied to other regenerative fields, and
are therefore promising materials for treating neurodegeneration
[2,97].

The shared characteristics of polymer NPs that make them useful
drug carriers include multiple synthesis strategies, high stability and
bioavailability, long-term circulation of encapsulated drugs, low immu-
noreactivity, and pliable physical characteristics [98]. Physical proper-
ties to be considered in the selection and synthesis of polymeric
nanoparticles include particle size, shape, zeta potential, degradation
rate, and encapsulation efficiency [99]. An incredible number of studies
have been done using each of these polymers, so in this review we will
provide only a few examples that demonstrate the potential of NPs for
treating neurodegenerative disorders.

2.5.1. PLA nanoparticles
PLA is a standard biomaterial with low immunogenicity and long

drug release kinetics. Though PLA itself is hydrophobic, it is often coated
with hydrophilic PEG molecules to increase solubility and crossing of
the BBB [100]. Additional ligands can be conjugated to PLA alongside
PEG, like targeting peptides that bind specifically to Aβ plaques for
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diagnosis and treatment of Alzheimer's [100]. PLA can also be used to
coat other nanoparticles, such as silica nanoparticles. The PLA coating
not only improves biocompatibility and drug release kinetics, it can
also be used as a sensor to release the cargo drugs only in specificmicro-
environments. For example, reactive oxygen species (ROS), which are
often high in the brains of Alzheimer's patients, accelerate the degrada-
tion of PLA. This allows PLA to coat and protect encapsulated drugs until
the NP reaches a microenvironment with high ROS, at which point the
coating is degraded and the drugs are released to the site of neurode-
generation [101]. PLA NPs have successfully been loaded into MSCs for
transplantation and treatment of malignant glioma, though use in
stem cell therapies for neurodegeneration has yet to be shown [102].

2.5.2. PLGA nanoparticles
PLGA is a synthetic polymer that has been approved by the FDA for

various biomedical applications [103]. PLGA is hydrolyzed into glycolic
acid and lactic acid in vivo, making it highly biocompatible. It is particu-
larly useful for sustained drug release and brain-specific targeting
through conjugation with various surface ligands [96]. One recent
study enhanced the delivery of the hydrophilic drug, nattokinase, across
the BBB through encapsulation in PLGA followed by coating of the NP
with Tet1 peptide, which has a high affinity for neurons and promotes
retrograde transport. These PLGA NPs successfully downregulated amy-
loid aggregation and improved the stability of the nattokinase protein as
a treatment for Alzheimer's [96].

2.5.3. Polymer nanoparticles in cell therapy
Synthetic polymer NPs have recently been combined with stem cell

treatment to enhanceNSC differentiation and allow for transplanted cell
tracking [5]. PLGA NPs coated with SOX9 plasmid DNA and anti-Cbfa-1
siRNA were added to human mesenchymal stem cells (hMSC) before
transplantation into nude mice. This successfully enhanced the expres-
sion of genes that promote differentiation, and promoted chondrogene-
sis in an attempt to treat Huntington's disease [104,105]. Similarly,
another study loaded dopamine onto PLGA NPs and injected these
into a rat model of Parkinson's disease. The PLGA NPs improved drug
trafficking across theBBB and successfully led to sustained release of do-
pamine into brain lesions and improvements in neurobehavioral func-
tion [106]. In addition to modulating cell behavior, NPs can be loaded
with fluorescent dyes to allow for tracking of transplanted cells [107].

2.6. Hydrogels

Macroscopic hydrogels are polymer networks that contain a large
volume of water in their structures, and often incorporate some form
of extracellular matrix (ECM) components. ECM can be mixed with ad-
ditional neurotrophic factors, like glial cell-derived neurotrophic factor
(GDNF) and brain-derived neurotrophic factor (BDNF) to enhance the
environment for neural cell transplantation [108,109]. Hydrogels are
dynamic–the physical properties change dependent on the environ-
ment, allowing the gel to be liquid until it reaches a particular tempera-
ture or pH, such as physiological pH of the brain after injection [110].
Additionally, hydrogels can use self-assembling peptides (SAPs) that
create a nanofibrous structure that mimics ECM [111]. These SAPs
allow for additional functional motifs to be incorporated into the gel
and there by enhance therapeutic potential. More conventional
components of hydrogels used for neural cell culture include alginate
polymer, Matrigel ®, collagen, or synthetic chemicals like HyStem™
(Advanced Biomatrix) made with hyaluronic acid and PuraMatrix™
(Corning) made of repeating arginine-alanin-aspartate-alanine se-
quences. Hydrogels can also be modified from liquid to gel through
photopolymerisation or chemical polymerization usingmild conditions
that do not significantly harm encapsulated cell viability, and the me-
chanical properties, like stiffness, of the final gel form can significantly
influence cell behavior [112].
chnology and stem cell therapy team up against neurodegenerative
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Macroscopic hydrogels have been extensively investigated for their
use in neuroregeneration, since they can provide a highly tunable envi-
ronment for transplanted cells and release therapeutic molecules for
many weeks after transplantation. Moreover, hydrogels allow for cul-
ture of neural cells in 3D, which better recapitulates in vivo conditions
and has led to the creation of a strong model of Alzheimer's disease
[113]. However, bulk hydrogels are too large for efficient drug delivery
across the BBB, and are limited to applications of cell transplantation
[114–117].

A potential alterative to macroscopic hydrogels are the emerging
field of nanogels, which are smaller in size (2–250 nm) and can be
used to encapsulate drugs for delivery across the BBB [114]. Nanogels
aremostly synthesized usingphoto (UV) or chemical crosslinking, espe-
cially click chemistry, to induce formation of covalent bonds across
polymers to create a highly stable network [118,119]. Though the field
of nanogels is still relatively new, applications to the treatment of
neurodegenerative disease have already been shown. One study syn-
thesized 20–30 nm nanoparticles with a polysaccharide pullulan back-
bone and cholesterol sidechains (CHP-nanogels) and showed that
these nanogels can inhibit the formation of Aβ-fibrils by promoting a
conformation change of Aβ-molecules from random coils to β-sheets
or α-helices. Uptake of CHP-nanogels reduced cytotoxicity caused by
Aβ-fibrils in PC12 cells by 60% in vitro. Additionally, amino-group mod-
ification of CHP-nanogels further increased inhibition of Aβ-fibrils for-
mation due to enhanced electrostatic interactions between the
nanogels and Aβ molecules [120]. Another study synthesized chitosan
nanogels loaded with 25 mg/kg of the anti-cancer drug methotrexate.
The gels were then coated with polysorbate 80 for targeting to the
brain via low-density lipoprotein (LDL) receptor-mediated endocytosis
by brain endothelial cells. These gels averaged 118.54 nm in diameter,
and upon intravenous injection in rats produced significantly higher
concentrations of methotrexate in the brain parenchyma compared to
administration of free drug. However, polysorbate 80 coating did not
further enhance targeting to the brain relative to uncoated gels [121].
Nonetheless, the major benefits of nanogel drug encapsulation are con-
trolled release kinetics and enhanced passage through the BBB
[121,122].

3. Stem cell therapies for neurodegenerative disease

The use of stem cell therapy to treat neurodegeneration posits the
interesting idea that neurodegeneration and regeneration exist in
some equilibrium in adult humans [123]. Though the existence of
human adult neurogenesis has recently been called into question,
there is significant evidence that treatmentwith stem cells can enhance
neurogenesis inmodels of degenerative diseases [124–127]. Despite the
varying pathophysiology of different neurodegenerative disorders, the
loss of synaptic function is broadly related to cognitive impairment.
Therefore, regenerative or replacement therapy with stem cell trans-
plants could reduce cognitive decline in various degenerative disorders
[128]. To date, themost promising avenues for stem cell therapy include
neural stem cells, embryonic stem cells, induced pluripotent stem cells,
and mesenchymal stem cells (Fig. 5). Each is described in more detail
below.

3.1. Neural stem cells

Neural stem cells (NSCs) can be derived fromembryonic brain tissue
or induced from patient somatic cells [129,130]. They are defined by
their ability to differentiate into astrocytes, oligodendrocytes, and neu-
rons [131]. Extensive studies on the signaling pathways that mediate
NSC differentiation allow for careful control over NSC cell fate both
in vitro and in situ [130]. Current clinical trials are focused on exogenous
transplantation of NSCs, which have shown some promise in slowing
progression of ALS in Phase I trials (clinical trial NCT01640067) upon in-
jection of fetal NSCs into the spinal cord of patients [132]. Additionally,
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mouse studies with human neural stem cells have shown promise for
NSC treatment of Alzheimer's disease. The HuCNS-SC human neural
stem cell line improved cognition of AD mouse models by enhancing
endogenous synaptogenesis. Transplanted cells successfully migrated
and differentiated into immature neurons and glia, leading to significant
increases in synaptic markers, including synaptophysin, synapsin, and
growth-associated protein-43 (GAP-43). This improved cognitive func-
tion of two independent ADmousemodels, but did not reduce Aß or tau
pathology, indicating that the regenerative capacity of NSCs could help
balance the degeneration occurring in the AD brain, but does not treat
the underlying pathology [128].

Nanomedicine could shift the direction of NSC therapy from exoge-
nous cell transplantation to activation of endogenous populations
[133]. The replacement of functional neurons in neurodegeneration or
after brain injury is incredibly low, with only 0.2% of injured neurons
being functionally replaced after stroke [134]. The adult brain may
lack the necessary developmental signals for axon regeneration and
projection, and the distance NSCs must migrate to replace dying cells
is often prohibitive of proper regeneration [130,135]. To address
the shortcomings of NSC migration and integration into functional
networks, nanoparticles have been studied as a method to improve
the microenvironment of transplanted or in vivo NSCs to enhance
their therapeutic action. For example, lipid nanocapsules coated with
NFL-TBS.40–63, a synthetic peptide that mimics the tubulin-binding
site of neurofilaments, selectively target NSCs in the sub-ventricular
zone (SVZ) when injected into the adult rat brain or spinal cord [136].
By loading these nanocapsules with active biomolecules, endogenous
NSCs could be activated to increase their recruitment for regeneration.

Nanoparticles have also been investigated asmediators of the fate of
transplanted NSCs. In the context of Parkinson's disease, the replace-
ment of dopamine neurons (DAN) is limited due to difficulties in guid-
ing dopaminergic axons (DAx) or transplanted neurons to make them
functionally connected to the in vivo network. One strategy to improve
this involves using hydrogels loadedwith chemo-attractive compounds
like Sema3C protein, which successfully guided axon growth of rat and
human dopaminergic neurons in vitro [110]. The goal of this work is to
eventually use such hydrogels to guide axon growth into specific re-
gions of the brain, like the striatum in PD patients. Hydrogels can also
be used to fully encapsulate transplantedNSCs,which enhances survival
of transplanted NSCs, attracts endogenous NSCs, and reduces differenti-
ation into glial astrocytes in rats [111].

3.2. Embryonic stem cells

Embryonic stem cells (ESCs) are well known for their almost totipo-
tent differentiation capacity and potent self-renewal abilities. However,
both ethical and medical concerns have limited the use of ESCs for
treating neurodegenerative diseases. The power of ESCs to divide and
migrate rapidly creates a significant risk of tumor formation and cancer
[137,138]. Furthermore, allogenic sources of ESCs can cause severe im-
mune rejection in the host patient [23]. Nonetheless, ESCs have shown
great potential inmousemodels due to their ability to form dopaminer-
gic neurons, which has not been accomplished using adult neural stem
cells. These dopaminergic neurons are critical for treating Parkinson's
disease, though it has yet to be shown that transplanted cells can func-
tionally integrate into the neural network [127]. Additionally, ESC treat-
ment of rats with spinal cord injury showed migration into the
parenchyma and spinal cord and led to partial motor recovery, which
gives hope to the ultimate goal of reversing motor degeneration in PD
[139].

ESCs have incorporated NP technology largely for tracking the mi-
gration and differentiation of transplanted cells. Superparamagnetic
iron oxide (SPIO) nanoparticles in conjunction with MRI allows for
long-term imaging of transplanted cells [140]. Similarly, SPIO nanopar-
ticles have been used alongside fluorescent cell fate markers to monitor
both migration and differentiation in vivo [140]. Additionally, in vitro
echnology and stem cell therapy team up against neurodegenerative
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Fig. 5. Four categories of stem cells have been studied as potential therapies for neurodegenerative disorders. Neural stem cells (top left) and mesenchymal stem cells (bottom left) are
multipotent populations that can be combined with nanoparticle medicine and transplanted into the brain. Embryonic stem cells (top right) and induced pluripotent stem cells
(bottom right) are pluripotent populations that utilize nanoparticles both for reprogramming and differentiation as well as for drug delivery into the brain.
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experiments have shown the function of NPs in directing differentiation
of ESCs into motor neuron precursors; the use of mesoporous silica NPs
eliminates the need for daily supplementation of soluble factors into the
culture media, which is a significant strain on ESC culture [141].

3.3. Induced pluripotent stem cells (iPSCs)

Incredible progress has been made in the field of induced
pluripotency since the 2006 discovery that terminally differentiated so-
matic cells can be reprogrammed into embryonic-like pluripotent stem
cells [142]. This technology allows for major expansion and autologous
transplantation of a patient's own reprogrammed cells, thereby elimi-
nating immune rejection concerns. Use of iPSCs for cell therapy also by-
passes the ethical concerns of harvesting ESCs [143]. Like ESCs, human
iPSCs can be differentiated dopaminergic neurons, making them espe-
cially relevant to the treatment of PD. In contrast to ESCs, however,
iPSCs do not spontaneously form DA neurons after transplantation,
and must therefore be cultured to a sufficient progenitor stage prior to
transplantation. If transplanted in a fully undifferentiated state, iPSCs
often form teratomas (tumors), which remains a major concern in clin-
ical applications and obtaining FDA approval for iPSC therapy [143]. The
method of reprogramming is also critical for clinical safety, as traditional
retroviral or lentiviral vectors can lead to unwanted viral integration in
the iPSCs, causing chromosomal disruptions and mutations. Develop-
ments in using non-viral vectors like plasmid DNA, RNA, miRNAs, pro-
teins, or small molecules have improved reprogramming efficiency
and safety [144]. Calcium phosphate nanoparticles have been used as
vehicles for delivery of plasmids for the four core pluripotency factors,
Oct4, Sox2, c-Myc, and Klf4 to generate iPSCs with high efficiency [145].

The use of nanoparticles in iPSCs for treatment of neurodegenerative
disorders is largely unexplored. One study showed thatmesoporous sil-
ica nanoparticles can be internalized by iPSCs, indicating that they could
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be used to deliver drugs, gene therapy, or differentiation factors [146]. In
the context of iPSC therapy for non-neurologic disorders, iPSCs have
been grafted onto gelatin-PLGA NP scaffolds for assisted differentiation
to generate insulin-producing pancreatic cells [147]. Similarly, lipid
nanoparticles modified with heparin and nerve growth factor (NGF)
can direct differentiation of iPSCs into neurons, though this has not
been applied to neurodegenerative disorders [148]. Broadly, NPs have
been shown to be compatible both for uptake by iPSCs and as scaffolds
for iPSC transplantation.

3.4. Mesenchymal stem cells (MSCs)

MSCs are adult, self-renewing,multipotent stemcells that can differ-
entiate to make bone, cartilage, fat, and epithelial cells in vivo, though
they can be guided into differentiating down neuronal and glial fates
in vitro [149,150]. MSCs can be harvested from bone marrow, umbilical
cord, adipose tissue, or the spleen, making them relatively easy to col-
lect from human patients. Once isolated, MSCs are expandable in vitro
and can then be transplanted into the CNS. Their main function in
neuro-regeneration is the production of neurotrophic factors, like
BDNF and GDNF, which stimulate endogenous neurogenesis and acti-
vate microglia, which then increase clearance of Aß plaques [23].
MSCs can also secrete stromal-derived factor 1 (SDF1), angiopoietin-1,
angiogenic cytokines, and ECM components, which improve angiogen-
esis and recruit neural progenitor cells [151].

The combination ofMSC therapy and nanoparticles has been used to
treat brain tumors and to study rodent models of neurodegenerative
diseases. In targeting malignant gliomas, MSCs were loaded with poly-
lactic acid (PLA) NPs and lipid nanocapsules containing coumarin-6,
which allowed for fluorescent tracking of the NPs. The MSCs success-
fully carried the NPs toward a human glioma model with no loss in
cell viability, indicating that MSCs may be a highly efficient delivery
chnology and stem cell therapy team up against neurodegenerative
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system for NPs [102]. In addition to delivering NPs to sites of lesion,
MSCs have been loadedwith SPION NPs to track cell migration and sur-
vival post transplantation in a ratmodel of Huntington's disease. SPION-
labeled MSCs injected into the rat striatum significantly reduced the
number of degenerating neurons 7 days after lesion by increasing
FGF-2 expression in striatal cells and reducingdilation of the lateral ven-
tricles. The SPIONs within the MSCs were detectable for over 60 days
after transplantation using magnetic resonance imaging (MRI) [152].

4. Future perspectives

Nanoparticles and stem cell therapy encompass multiple prospects
for improving our understanding and treatment of neurodegenerative
disorders. One of the largest battles in treating neurodegeneration is
the minimal understanding of the molecular mechanisms behind
major disorders. The use of nanoparticles to grow stem cells in carefully
controlled micro-environments in vitro is therefore valuable for ad-
dressing the need for better model systems of human neurodegenera-
tive disorders. A strong push toward better models will reduce failure
of clinical trials and improve cost efficiency of potential therapies; nano-
particles in concert with stem cell biology hold great potential for such
models.

Beyond in vitro applications, nanoparticles should be further ex-
plored for diagnostic imaging, as this is a field that is rapidly growing
and can already apply the known optical properties of nanoparticles
to well-established imaging techniques. Metal nanoparticles in particu-
lar hold great promise, and their potential to both diagnose and treat
neurodegenerative disorders should be a focus of upcoming studies. In
particular, combining metal nanoparticles with stem cell transplanta-
tion creates exciting opportunities to track the state of the disorder
and the success of treatment.

The greatest shortcoming of both nanoparticle and stem cell therapy
studies is the lack of in vivo work. Currently, there are no clinical trials
that use both nanoparticles and stem cell therapy to treat neurodegen-
erative disease. The BBB creates a major hurdle, and the danger of un-
controlled differentiation of transplanted stem cells poses a significant
risk for human application. Pre-loading nanoparticles into stem cells
and direct injection into the brain would provide a more robust treat-
ment than either intravenous nanoparticle injection or injection of
stem cells into the brain alone. Therefore, more extensive studies are
needed to understand uptake and release dynamics of nanoparticles in
stem cells used for transplantation. Ideally, nanoparticles will allow for
careful control over stem cell transplantation, the subsequent microen-
vironment, stem cell differentiation, and treatment of damaged neigh-
boring cells. Highly personalized therapies with careful monitoring
will greatly improve the success of treatments for neurodegenerative
disorders.
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