
CHAPTER 5 

Signaling of Secreted Semaphorins 
in Growth G)ne Steering 
Sangwoo Shim and Guo-li Ming* 

Introduction 

S ecreted semaphorins [class 3 semaphorins (3A-3F) in vertebrates and class 2 in inverte­
brates] play essential roles in the establishment of neuronal circuitry by mediating axon 
steering and fasciculation during development of the nervous system. ̂ "̂  Semaphorin 3A 

(Sema3A) was the first secreted form of semaphorins purified from adult chick brains and 
characterized as a chemorepellant with the ability to induce rapid collapse or repulsion of 
dorsal root ganglion (DRG) growth cones in vitro and to repel populations of neurons in 
vivo. In the grasshopper, a graded distribution of Sema-2a has been shown to be essential in 
guiding the tibial (Til) pioneer neurons in the developing limb.^ Like other families of guid­
ance cues, such as netrins and ephrins, semaphorins function not only as repellents but also as 
attractants to neuronal growth cones, depending on the composition of receptors and signaling 
cascades presented in the cells. Sema3C, for example, can act as a chemoattractant to embry­
onic cortical axons. ̂ ^ Sema3B has recendy been shown to attract and repel commissural axons 
in vitro and is critical for the positioning of anterior commissural projection. ̂ ^ In a slice over­
lay assay, Sema3A was shown to attract the dendritic growth cones of cortical neurons, ̂ ^ While 
repelling the axonal growth cones of the same neurons. ̂ ^ The molecular mechanisms in medi­
ating and modulating growth cone steering responses to class 3 semaphorins have been best 
characterized within the semaphorin family both in vitro and in vivo, and are the main focus of 
this chapter. Interested readers can consult other chapters of the book and several other com­
prehensive reviews on semaphorins and their signaling.^'^ ' 

In Vitro Neuronal Growth Cone Steering Assays 
Since in vitro assays have been indispensable in determining the function and molecular 

mechanisms of class 3 semaphorin signaling in growth cone steering, we will first briefly intro­
duce and describe some of these in vitro assays. For all growth cone steering assays, a gradient 
of the semaphorin protein is produced, either by being released from source cells (natural 
semaphorin producing cells or cell lines transfected with semaphorin expression constructs), or 
from a micropipette loaded with purified recombinant protein. 

Growth Cone Turning Assay^^*^^ 
This assay has been extensively used with Xenopus spinal neurons, retinal ganglion cells and 

mammalian neurons to determine signaling mechanisms of various diffusible guidance cues, 
including class 3 secreted semaphorins. A microscopic gradient is established by controlled 
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pulsatile ejection of solutions containing semaphorins from a micropipette and the growth 
cone responses within the gradient can be quantified by the degree of the turning angle with 
respect to the original direction of neurite extension. The in vitro gradient is very stable and 
reliable, thus allowing quantitative analysis of the steering decision of individual neuronal growth 
cones in response to a defined gradient of guidance cues. In addition, pharmacological and 
genetic manipulations as well as high resolution imaging of cellular events (e.g., Ca^^ imaging) 
are relatively easy to be achieved in this system. 

Collagen Gel Repulsion Assay^^'^^ 
In this assay, neuronal tissue explants and aggregates of COS cells expressing class 3 secreted 

semaphorins are embedded in three-dimensional collagen gels for coculture of a few days. 
Axonal outgrowth is then visualized by fixation and immunostaining with antibodies to 
neurofilament. The chemotropic activity of the protein of interest is quantified by the axon 
outgrowth ratio P/D, where P is the extent of axonal outgrowth on the side proximal to the 
COS cell aggregate, and D is the extent of axonal outgrowth distal to the cell aggregate. A P/D 
ratio below one, therefore, indicates chemorepulsion. 

Slice Overlay Assay^^*^^ 
In this assay, dissociated cells isolated from the developing nervous system are labeled and 

cultured over neural tissue slices from various developmental stages and regions. This system 
can potentially provide individual neuronal growth cones with an environment that better 
mimics the endogenous milieu. The axonal or dendritic orientation of dissociated cells in re­
sponse to guidance cues provided by the slice is then analyzed by the morphology of neurons. 

Receptor Complex in Mediating Growth Cone Turning Responses 
to Class 3 Semaphorins 

The chemotropic effects of class 3 semaphorins on growth cone steering are mediated by a 
fimctional receptor complex comprised of neuropilins (Neuropilin-I and Neuropilin-2) as the 
ligand-binding component ' and Plexin-As (A1-A4) as the signal transducing component 
(Fig. V)}^'^^ The neuropilin/plexin receptor complex appears to have different binding speci­
ficity for class 3 semaphorins and exhibits mosdy complementary and distinct temporal and 
spatial expression profiles in developing neurons of both the central (CNS) and the peripheral 
nervous systems (PNS), which may explain the neuronal subtype specificity of chemotropic 
effects of class 3 semaphorins. 

The growth cones of cultured embryonic Xenopus spinal neurons or retinal ganglion cells 
exhibit robust repulsive turning responses to a gradient of Sema3A in a chemotropic growth 
cone turning assay. ̂ '̂̂ ^ Similar repulsive responses were observed in a collagen gel repulsion 
assay using mammalian sensory neurons. Neuropilin-1 and Plexin-Al mediate 
Sema3A-induced repulsion in these neurons, since application of a function-blocking antise­
rum against the extracellular domain of Neuropilin-1 or overexpression of a truncated form of 
Plexin-Al lacking the highly conserved cytoplasmic domain completely abolished the growth 
cone repulsion. ̂ ^̂ '̂̂ ^ In addition, dendritic growth cones also require Neuropilin-1 function 
for Sema3A-induced guidance responses. Experiments using function-blocking antibody in a 
slice overlay assay showed that Neuropilin-1 serves as a Sema3A receptor in mediating both the 
chemoattractive guidance of cortical apical dendrites towards the pial surface and the 
chemorepulsive guidance of cortical axons toward the white matter in response to a Sema3A 
gradient. '̂ ^ 

Similar to Sema3A, other members of the class 3 semaphorin family (Sema3B, 3C, 3D, 3E, 
3F) also exhibit chemotropic guidance activities in vitro but differ in their binding specificities 
for neuropilins. For example, Sema3B, 3C and 3F appear to preferentially bind to the 
Neuropilin-2 homodimer or Neuropilin-1/2 heterodimer, whereas Sema3A preferentially binds 
to Neuropilin-1 homodimers. ' It has been shown that sympathetic axons coexpress 
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Neuropilin-1 and Neuropilin-2, whereas sensory axons express only Neuropilin-1, therefore, 
sensory axons are sensitive to Sema3A, whereas sympathetic axons show responsiveness to all 
three Sema3s.^ ' Interestingly, Sema3B and Sema3C were shown to block Sema3A binding 
to Neuropilin-1 and abolish the repellent actions of Sema3A on sensory neurons by competing 
the binding to Neuropilin-1. 

In addition to Plexin-Al, other Plexin-A family members are involved in transducing the 
signals of class 3 semaphorins, but with less specificity. Overexpression of a dominant negative 
form of Plexin-A2 in DRG sensory neurons renders their axons insensitive to Sema3A, sug­
gesting that Plexin-A2 also partially contributes to the receptor signaling of Sema3s. In a more 
recent study using the collagen gel repulsion assay, analysis of Plexin-A3, Plexin-A4 and 
Plexin-A3/-A4 double knockout mice showed that while Plexin-A3 and -A4 together mediate 
the responses to class 3 semaphorins in both sensory and sympathetic neurons, Sema3A repul­
sive signaling is mediated principally by Plexin-A4 via Neuropilin-1 and Sema3F repulsive 
signaling is mediated principally by Plexin-A3 via Neuropilin-2.^^'^^ 

The specificity of receptor binding and repulsive effects of different class 3 semaphorins 
seems to be conserved in both PNS and CNS. Differential expression patterns of class 3 
semaphorins^ ' and their receptors (neuropilins '̂ '̂ and plexins ' ) in the developing 
hippocampus and afferent connections have also been iniplicated in the specificity of the 
chemorepulsive actions of different class 3 semaphorins. ' Notably, hippocampal axons 
explanted from the embryonic dentate gyrus (DG), CAl and CA3 regions express both 
Neuropilin-1 and Neuropilin-2 and are repelled by both Sema3A and Sema3F in a collagen gel 
repulsion assay. Moreover, function-blocking antibodies against Neuropilin-1 block the re­
pulsive effect of Sema3A but not Sema3F, while hippocampal axons from Neuropilin-2 knock­
out mice (Nrp2-/-) lose their responsiveness to Sema3F but not Sema3A.^* Analysis of Plexin-A3 
knockout mice with collagen gel repulsion assays showed that Plexin-A3 also contributes to 
chemorepulsive effects of Sema3A and Sema3F on hippocampal axons.^^ 

Intracellular Mediators for Class 3 Semaphorin-Induced Growth 
Cone Turning 

While the intracellular pathways, from the receptor activation to changes of cytoskeleton 
proteins that result in growth cone steering in response to class 3 semaphorins, are still not fully 
understood, several molecules and mechanisms have been identified to be involved in the cyto­
plasmic signaling of this family of guidance cues over the past decade. 

Protein Kinases 
After the initial observation of tyrosine phosphorylation of plexins in vitro,^^ several cyto­

plasmic kinases have been implicated in semaphorin-plexin-mediated growth cone responses 
(Fig. 1). For example, tyrosine kinase Fes,̂ ^ threonine-serine kinase cyclin-dependent kinase 5 
(Cdk5) ^ and glycogen synthase kinase-3 (GSK-3) have been shown to mediate 
sema3A-induced growth cone collapse. However, the functional roles of these molecules in 
growth cone steering have not been fully explored. A correlative study using Sema3A and fyn 
knockout mice also suggests a role of Fyn, a Src family nonreceptor tyrosine kinase, in mediat­
ing the guidance of apical dendrites of large pyramidal neurons to sema3A. ^ In cortical slices 
prepared from null mutants, some pyramidal neurons exhibit an atypical morphology of den­
dritic orientation in both fyn-/- and Sema3A-/- cortices using Golgi impregnation analysis. 
This study, however, did not provide direct evidence for the role of Fyn in dendritic guidance 
in response to Sema3A 

MICAL 
The MICAL (molecule interacting with Gas ligand) family of cytosolic, multidomain, fla-

voprotein monooxygenases has recently been identified as a binding partner to plexins and is 
involved in semaphorin-plexin-mediated axon guidance. ^ Interestingly, the monooxygenase 
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enzyme activity seems to be required for growth cone turning responses to Sema3A and 3F. In 
a collagen gel repulsion assay, a flavoprotein monooxygenase inhibitor neutralizes Sema3A-
and Sema3F-mediated repulsion of both DRG and superior cervical ganglion (SCG) axons, 
respectively. '̂ ^ These results, together with a recent report that 12/15-lipoxygenase is re­
quired for Sema3A-mediated axonal collapse, suggest an important role of oxidation on the 
regulation of inhibitory effects of class 3 semaphorins on neuronal growth cones. 

Rho Family ofGTPases 
Direa growth cone turning is mediated by biased cytoskeletal reorganization localized within 

a growth cone. Small GTPases of the Rho family (which include Rac, Rho and Cdc42) provide 
an important link between semaphorin receptor signaling and cytoskeletal dynamics in neu-
rons.̂ ^ Although many of the Rho GTPases, such as Rnd, Rac and Rho, have been shown to 
mediate semaphorin signaling in other biological events, their roles in mediating growth cone 
turning has not been firmly established. Their regulators, including activator GEFs (guanine 
exchange factors) and inactivator GAPs (GTPase activating proteins), however, have been shown 
to be involved in Sema3A-induced growth cone turning. Recendy, a FERM domain-containing 
Rac-GEF protein, FARP2, has been identified to serve as a physical link between Sema3A 
binding and Rac activation."̂ '̂̂ ^ Sema3A-induced repulsion of axons of DRG neurons was 
completely abolished when these neurons were infected with adenovirus encoding short hair­
pin RNA (shRNA) against FARP2 or mutant forms of FARP2.̂ ^ Interestingly, the intracellular 
domain of plexins contains two highly conserved regions that share a high degree of homology 
to the GAP domain as well as containing two arginine residues that are essential for the cata­
lytic activity, thus plexin itself may function as a GAP. Indeed, several lines of evidence demon­
strated that Plexin-Al and Plexin-Bl are GAPs for the Ras-family GTPase R-Ras and the 
activation of GAP activity of plexins leads to inactivation of R-Ras, resulting in detachment of 
cells from the extracellular matrix. ®' ^ Together with the observation that stimulatory P1 int^rin 
antibodies significandy block Sema3A-mediated growth cone repulsion, ^ these studies impli­
cate the importance of membrane adhesion for Sema3A signaling and growth cone migration. 

New Protein Synthesis 
Local protein synthesis in the axon has been implicated in acute growth cone responses to 

several families of guidance cues, including Sema3A. Sema3A treatment resulted in a marked 
increase in protein synthesis in isolated growth cones oiXenopus retinal ganglion cells within 
minutes. In addition, both Sema3A-induced growth cone collapse and repulsive turning were 
blocked by protein synthesis inhibitors. p42/p44 MAP kinase (MAPK) activated by Sema3A 
may be upstream to Sema3A-induced protein synthesis and subsequent chemotropic activity 
of growth cones.̂ ^ Recendy, it was shown that Sema3A induces intra-axonal translation of 
RhoA mRNA, and this local translation of RhoA is necessary and sufficient for Sema3A-mediated 
growth cone collapse. ̂ ^ p-actin is another potential candidate protein that is translated in 
response to guidance cues, since P-actin mRNA is transported down to growth cones^^ and 
disruption of p-actin mRNA and protein localization to the growth cone leads to impaired 
growth cone motility.^ 

Microdovtain Signaling 
Lipid rafts are plasma membrane microdomains enriched with cholesterol and 

glycosphingolipids, which provide an ordered lipid environment for localized trafficking and 
signaling.^ A recent study showed that lipid rafts also mediate inhibitory effects of Sema3A on 
growth cones in both Xenopus spinal neurons.^ Disruption of lipid rafts by membrane choles­
terol depletion effectively blocks Sema3A-induced repulsion and extension of growth cones in 
Xenopus spinal neuron cultures.^ In addition, a brief exposure to Sema3A increases the associa­
tion of Neuropilin-1 with lipid rafts, implying asymmetric receptor-raft association and local­
ized signaling in the growth cone during guidance responses. Activation of MAPK following 
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Sema3A treatment appears to depend on the integrity of lipid rafts and is required for 
Sema3A-induced growth cone repidsion.^^ These results support a role for lipid rafts in medi­
ating growth cone guidance by providing a molecular platform for the localized assembly of 
ligand-receptor complex and their downstream effectors for cytoskeletal rearrangement and 
local protein synthesis, including Neuropilin-1, plexins, Src family kinases (SFKs), Rho-GTPases 
and MAPK.5 '̂5^ 

Modulation of Growth Cone Turning Responses 
to Class 3 Semaphorins 

Cyclic nucleotides are potent modulators of growth cone turning in response to a group of 
guidance factors. For class 3 secreted semaphorin-induced growth cone responses, elevation of 
cyclic GMP (cGMP) signaling pathways converts Sema3A-induced repulsion oiXenopus spi­
nal neurons into attraction in a growth cone turning assay. Although cAMP analogs had no 
direct effect on Sema3A-induced repulsion, the cAMP antagonist Rp-cAMPs blocks the con­
version of the turning response to Sema3A in the presence of 8-Br-cGMP, suggesting that there 
is some interaction between cAMP- and cGMP-dependent pathways. ̂ ^ The modulatory role 
of intracellular cyclic nucleotides in Sema3A-mediated repulsion was further supported by a 
recent report using a collagen gel assay showing that chemokine stromal cell-derived factor 1 
(SDF-1) reduces the responsiveness of growth cones to Sema3A by elevating cAMP levels.^^ 
Interestingly, the level of cytoplamic cGMP seems to act as an endogenous regulator of Sema3A 
signaling because pharmacological and histological evidence suggests that asymmetric localiza­
tion of soluble gunanylyl cyclase to the developing apical dendrites of cortical neurons allows 
Sema3A to act as a chemoattractant.^^ 

Manipulation of the extracellular Ca^^ concentration, blockade of TRPCl-mediated Ca * 
influx or inhibition of the activity of CaM kinase Il-calcineurin by specific inhibitors does not 
seem to influence Sema3A-induced growth cone repulsion o£ Xenopus spinal neurons. ̂ '̂̂ '̂̂ ^ 
Electrical activity stimulation and resultant Ca ^ influx, however, was shown to modulate 
Sema3A-induced growth cone guidance behaviors by enhancing the repulsive activity of 
Sema3A Since the enhanced repulsive effect by electrical stimulation is abolished either by 
the removal of extracellular Ca^^ or with the addition of Sp-cGMPs, a membrane-permeable 
analog of cGMP, and mimicked by Rp-cGMPs, a competitive analog of cGMP without electri­
cal stimulation, it was proposed that electric stimulation mav indirecdy influence the growth 
cone responses by mechanisms involving cGMP pathways. The molecular mechanisms of 
cross-talk among cAMP, cGMP and Ca^^ signaling are still elusive. 

The functional cross-talk between cell adhesion protein LI and Sema3A is implicated in 
repulsive responses to Sema3A. ^̂  LI, a member of the immunoglobulin superfamily of cell 
adhesion molecule (Ig CAM), direcdy associates with Neuropilin-1 and LI-deficient cortical 
and DRG axons lose their responsiveness to Sema3A, thereby acting as an integral part of the 
Sema3A-Neuropilin-l receptor complex. LI may also serve as a modulator of repulsive Sema3A 
signaling in two ways. First, LI mediates the receptor internalization and thereby changes the 
sensitivity of growth cones to semaphorins. Second, LI may regulate the growth cone re­
sponses to Sema3A by decreasing the cGMP level. Addition of soluble Ll-Fc chimera con­
verted the Sema3A-mediated repulsion of wild-type but not LI-deficient axons into attraction 
through activation of NO/cGMP pathway.^^' On the other hand, blockade of soluble guanylate 
cyclase prevented the Ll-Fc-induced switch in the Sema3A responses. 

Summary 
Despite a tremendous amount of progress in the identification and characterization of many 

new players as components of class 3 secreted semaphorin signaling in growth cone steering 
(Fig. 1), our understanding of the molecular mechanisms is far from complete. More questions 
remain to be answered: how are differential cytoskeletal changes within a growth cone achieved 
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in response to semaphorins? What are the target(s) of cydic nucleotide modulation? How does 
a growth cone make a reliable decision in response to a shallow gradient? And finally, how does 
a growth cone maintain its sensitivity to a decreasing concentration of semaphorins when it is 
growing away from the source? With a high degree of interest in the field with the development 
of novel technologies in analyzing growth cone steering, we expect to see a much more com­
plete picture of semaphoring signaling in the near future. 
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