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Psychiatric disorders are heterogeneous disorders

characterized by complex genetics, variable symptomatology,

and anatomically distributed pathology, all of which present

challenges for effective treatment. Current treatments are often

blunt tools used to ameliorate the most severe symptoms, often

at the risk of disrupting functional neural systems, thus there is

a pressing need to develop rational therapeutics. Induced

pluripotent stem cells (iPSCs) reprogrammed from patient

somatic cells offer an unprecedented opportunity to

recapitulate both normal and pathologic human tissue and

organ development, and provides new approaches for

understanding disease mechanisms and for drug discovery

with higher predictability of their effects in humans. Here we

review recent progress and challenges in using human iPSCs

for modeling neuropsychiatric disorders and developing novel

therapeutic strategies.
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Introduction
Severe psychiatric disorders, or mental illnesses, such as

schizophrenia (SZ), autistic spectrum disorder (ASD), bi-

polar disorder (BP), and anxiety disorders, are chronic and

complex neurological diseases affecting a large portion of

the world’s population [1,2]. Currently available drugs are

primarily targeted at relieving symptoms, are often only

partially effective, and have significant side effects on well-

functioning neural systems [3,4]. Thus, development of
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rational therapeutics based on an understanding of the

disease etiology and pathogenesis is imperative.

One major challenge in the investigation of disease

mechanisms and drug development for mental disorders

is a lack of predictive preclinical models due to the

heterogenetic and multifactorial nature of these illnesses.

Translating basic findings from animal models into effec-

tive therapeutics frequently fails, largely due to develop-

mental, biochemical, metabolic and physiological

differences in humans [5]. Patient studies are limited

in that postmortem brain tissue represents the disease

endpoint and it is difficult to disentangle treatment

effects from primary pathology, whereas brain imaging

can reveal impairments at the neural system level, but

limited information on cellular and molecular pathology.

Recently, a paradigm-shift in modeling neurological dis-

orders has emerged based on cellular reprogramming of

adult somatic cells into human induced pluripotent stem

cells (hiPSCs) [6]. HiPSCs can give rise to all human

tissues and provide a renewable source of cells, which are

genetically identical to the donor. By differentiating

patient-derived hiPSCs into disease-relevant cell types,

it is now possible to conduct controlled experiments on

living neural tissue to study pathogenesis in human cells

with disease-permissive genetic contexts [7] (Figure 1).

Here, we review recent progress in hiPSC-based model-

ing of psychiatric disorders and discuss challenges in this

rapidly evolving field.

Selection of patient cohorts for disease
modeling
Generating hiPSCs for cellular phenotyping of disease-

relevant neurons is still an expensive and time-consuming

process and careful selection of patient cohorts is critical to

yield the most information from relatively small sample

sizes. One approach is to stratify patient groups based on

genetic risk, which can take the form of many DNA

variations, such as single nucleotide polymorphisms

(SNPs), copy number variations (CNVs), and small exonic

missense and nonsense mutations [1,8]. While rare variants

may confer large relative risks (e.g. CNVs), a combination

of common variants (e.g. SNPs) with modest individual

effect sizes occurs more frequently and can result in a

significant cumulative risk load [9,10]. A key question

is to what extent these different kinds of genetic risk

factors may lead to convergent phenotypes and affect

similar biological processes. With respect to patient cohort
www.sciencedirect.com
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Diagram of disease modeling and drug development with human iPSCs. Patient specific iPSCs could be derived from skin biopsies of patients

with psychiatric disorders by ectopic co-expression of four Yamanaka factors. In cases in which the genetic mutation is known, isogenic iPSC

lines, either correcting the mutation in the patient iPSCs or introducing the mutation into healthy control iPSCs, could be generated by genome

editing techniques, such as CRISPR/Cas9 or TALEN. Human iPSCs could be further differentiated into the affected neuronal subtypes (e.g.

cortical glutamatergic neurons) for disease modeling in vitro. The identified phenotypes in patient iPSC-derived neurons could be used as readouts

for high-throughput drug screening, which would facilitate the discovery of novel therapeutic compounds to treat psychiatric disorders.
selection for hiPSC studies, there are advantages and

disadvantages of studying different kinds of genetic risk

as outlined below.

Modeling cohorts with rare, highly penetrant mutations

Highly penetrant, well-established mutations offer a clear

point-of-entry to begin to investigate the effect of genetic

risk on cellular development and function. Rare, multiply

affected families in which a single genetic locus likely

confers susceptibility for several related disorders have

proven invaluable in establishing a link between genetic

risk and neuronal dysregulation. For example, Disrupted-

in-schizophrenia 1 (DISC1) was initially identified in a

large Scottish family harboring an chromosomal transloca-

tion that segregates with SZ, BP and major depression [11].

A 4 base-pair (bp) deletion in DISC1 was later discovered

to co-segregate with major psychiatric disorders in a smaller

American family [12]. By generating iPSC lines from

multiple family members of this pedigree, as well as
www.sciencedirect.com 
isogeneic lines via genome editing, and differentiating

these iPSCs into forebrain cortical neurons, Wen and

colleagues found that mutant DISC1 causes aberrant syn-

aptic formation and synaptic vesicle release deficits, as well

as transcriptional dysregulation of many genes related to

synapses and psychiatric disorders (Table 1) [13��]. This is

also a clear illustration of how a specific genetic mutation

can be causal for a particular cellular phenotype, but not

causal for the disorder in the affected family.

ASD is a complex group of disorders with a strong genetic

component, a small subset of which are caused by single

gene mutations [2]. HiPSC-derived neurons from

patients with Rett syndrome (RTT), a monogenic ASD

associated with mutations in methyl CpG binding pro-

tein-2 (MECP2), exhibited increased frequency of de
novo long interspersed nuclear element-1 (L1) retrotran-

sposition, decreased soma size, altered dendritic spine

density and reduced excitatory synapses [14–17]; some of
Current Opinion in Neurobiology 2016, 36:118–127
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Table 1

Summary of recent studies on iPSC-based modeling of psychiatric disorders

Disease Genetic

variants

Types of cells Phenotypes Rescued? Reference

Schizophrenia Sporadic Neurons Decreased neuronal connectivity;

altered gene expressions

Loxapine Brennand et al. [38]

Schizophrenia Sporadic Neurons Altered oxygen metabolism Valproic

acid

Paulsen et al. [36]

Schizophrenia Sporadic DA/glutamatergic

neurons

Abnormal neuronal differentiation and

mitochondrial dysfunction

N/A Robicsek et al. [39]

Schizophrenia DISC1D4bp Cortical

glutamatergic

neurons

Synaptic deficits in presynaptic

vesicle releasing; altered gene

expressions

N/A Wen et al. [13��]

Schizophrenia Sporadic Hippocampal DG

granule neurons

Lowered levels of NEUROD1, PROX1,

and TBR1; reduced neuronal activity;

reduced levels of spontaneous

neurotransmitter release

N/A Yu et al. [41��]

Schizophrenia 22q11 deletions Neurons High L1 copy number in SZ neurons;

increased L1 copy number after

immune activation by poly-I:C or EGF

N/A Bundo et al. [19]

Schizophrenia 15q11.2 deletion NPCs Deficits in adherent junctions and

apical polarity

N/A Yoon et al. [26��]

Schizophrenia Sporadic NPCs Abnormal responses to

environmental stresses

N/A Hashimoto-Torii

et al. [40]

Schizophrenia Sporadic NPCs Abnormal gene expression and

protein levels related to cytoskeletal

remodeling and oxidative stress

N/A Brennand

et al. [91]

Bipolar Sporadic Neurons Changes in gene expressions

involved in calcium signaling and

telencephalic neuronal fate

Lithium Chen et al. [43�]

Bipolar Sporadic NPCs Increased expression of CXCR4;

altered gene expression for neural

development and plasticity

N/A Madison et al. [42�]

Bipolar Sporadic Neurons Increased levels of miR-34a N/A Bavamian

et al. [92]

Major depression DISC1D4bp Cortical

glutamatergic

neurons

Synaptic deficits in presynaptic

vesicle releasing; altered gene

expressions

N/A Wen et al. [13��,36]

Rett syndrome MECP2 mutations Neurons Decreased soma size; altered

dendritic spine density; and reduced

excitatory synapses

N/A Marchetto et al. [15]

Rett syndrome MECP2 mutations NPCs Increased frequency of L1

retrotransposition

N/A Muotri et al. [14]

Rett syndrome MECP2 R294X Neurons Decreased soma size N/A Ananiev et al. [17]

Rett syndrome MECP2 mutation Neurons Decreased soma size N/A Cheung et al. [16]

Rett-like syndrome CDKL5 mutations Neurons Aberrant dendritic spines N/A Ricciardi et al. [18]

ASD TRPC6 mutation Neurons Altered neuronal development,

morphology and function

IGF-1 or

hyperforin

Griesi-Oliveira

et al. [20]

Timothy syndrome CACNA1C mutation Cortical NPCs

and neurons

Defects in calcium signaling and

activity-dependent gene expression;

abnormalities in differentiation

Roscovitine Pasca et al. [22]

Timothy syndrome CACNA1C mutation Cortical NPCs

and neurons

TS-associated transcriptional

changes were co-regulated by

calcium-dependent transcriptional

regulators

N/A Tian et al. [23]

Phelan-McDermid

Syndrome

22q13.3 deletions Cortical neurons Deficits in excitatory synaptic

transmission

IGF-1 Shcheglovitov

et al. [29��]

Williams-Beuren

syndrome/

7q-microduplication

syndrome

7q11.23 deletions/

duplications

NPCs Disrupted transcriptional circuits in

disease-relevant pathways

N/A Adamo et al. [27�]

ASD/Schizophrenia Isogenic NRXN1

mutations

Cortical

glutamatergic

neurons

Impaired neurotransmitter release N/A Pak et al. [33]
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these phenotypes have been also observed in hiPSC-

derived neurons of patients with Rett-like syndrome

due to mutations in cyclin-dependent kinase-like

5 [18] and SZ patients with 22q11 deletion [19]. Recently,

a de novo mutation in TRPC6, a cation channel, has been

reported in a non-syndromic autistic individual [20]. In

hiPSC-derived neurons from this patient, TRPC6 reduc-

tion or haploinsufficiency leads to altered neuronal de-

velopment and function. Interestingly, MeCP2 levels

affect TRPC6 expression, revealing potential common

biological pathways among ASDs. Timothy syndrome

(TS), one of the most penetrant forms of ASD, is caused

by a point mutation in the L-type voltage-gated Ca2+

channel encoded by the CACNA1C gene [21]. TS hiPSC-

derived cortical neural progenitor cells (NPCs) and neu-

rons show aberrant Ca2+ signaling, which could be ame-

liorated by treatment with roscovitine, a cyclin-

dependent kinase inhibitor and atypical L-type Ca2+

channel blocker [22]. TS-associated transcriptional

changes were predicted to be co-regulated by Ca2+-de-

pendent transcriptional regulators, including NFAT,

MEF2, CREB, and FOXO, thus providing a mechanism

by which altered Ca2+ signaling in TS patients leads to

transcriptional dysregulation [23].

Modeling cohorts with large CNVs

Several large, rare CNVs are strongly associated with

developmental and psychiatric disorders [24], but are

among the most difficult to model in animals since they

represent large-scale modifications of DNA that can

encompass many genes. Although systematic analysis is

still required to pinpoint the gene(s) responsible for

conferring risk for psychiatric disorders, hiPSC-based

studies are a more tractable system in which to investigate

the role of individual genes, which can then be further

tested in animal models. One such example is the 15q11.2

BP1–BP2 microdeletion, which is associated with in-

creased risk for SZ, ASD and epilepsy [25]. HiPSC-

derived NPCs from patients carrying 15q11.2 microdele-

tions were found to exhibit deficits in adherens junctions

and apical polarity [26��]. Haploinsufficiency of cyto-

plasmic FMR1-interacting protein 1 (CYFIP1), one of

the genes within 15q11.2, was determined to be respon-

sible for these defects by altering cytoskeletal dynamics.

Returning to animal models, in utero suppression of

CYFIP1 expression in the developing mouse neocortex

revealed similar defects in radial glial cell polarity and

cortical lamination defects, demonstrating how hiPSCs

and in vivo animal models can provide complementary

information and used reciprocally to generate and test

new hypotheses. In turn, the identification of signaling

pathways in hiPSC and animal models led to identifica-

tion of an epistatic interaction between CYFIP1 and

WAVE signaling mediator ACTR2 in risk for schizophre-

nia. Recently, Testa and colleagues studied 7q11.23

microdeletions, associated with Williams-Beuren syn-

drome, and 7q-microduplication syndrome, which display
www.sciencedirect.com 
a striking combination of shared and symmetrically op-

posite phenotypes [27�]. High-resolution, comprehensive

molecular analysis revealed that 7q11.23 dosage imbal-

ance disrupts transcriptional circuits in disease-relevant

pathways beginning as early as the pluripotent state,

which is further amplified upon differentiation into dis-

ease-relevant lineages. Another prominent CNV is the

22q11 deletion associated with �1–2% of SZ patients

[28]. HiPSC-derived neurons containing 22q11 deletions

showed increased L1 retrotranspositions, similar to RTT

patient neurons [19], suggesting that hyperactive retro-

transposition of L1 in neurons may contribute to suscep-

tibility for SZ and ASDs. In another example, Phelan-

McDermid Syndrome (PMDS) is a neurodevelopmental

disorder caused by deletions of 22q13.3. PMDS iPSC-

derived neurons were found to have significant deficits in

excitatory synaptic transmission that could be corrected

by IGF-1 treatment [29��]. Together, several of these

hiPSC-based studies support the ‘disease of synapses’

hypothesis for the biological basis of neuropsychiatric

disorders and points of convergence for different genetic

risk factors and potential therapeutic targets.

Modeling cohorts with SNP risks via genome editing

Highly penetrant genetic risk factors account for less than

10% of SZ and 15–30% of ASD cases, whereas multiple

common variants with small individual effect sizes account

for �30% of the variance in risk for SZ [30]. Recent GWAS

have identified many of disease-associated loci for SZ and

ASD [9,31], but it is difficult to determine the contribution

of these common variants due to modest individual effects

and potential epistatic interactions based on genetic back-

ground. One way to avoid confounds arising from variable

genetic backgrounds is to generate isogenic hiPSC-derived

neurons that differ only at the target SNP locus. Genome-

editing systems, including designer endonuclease technol-

ogies such as zinc finger nuclease (ZFN), transcription

activator-like effector nuclease (TALEN), and clustered

regulatory interspaced short palindromic repeat

(CRISPR)/Cas9 endonuclease, can be used to edit the

human genome with relatively high efficiency [32]. Südhof

and colleagues recently generated two different heterozy-

gous conditional NRXN1 mutations in human embryonic

stem cells (hESCs) [33]. NRXN1 encodes neurexin-1, a

presynaptic cell adhesion molecule and both heterozygous

NRXN1 mutations impaired neurotransmitter release, but

had no effect on synapse formation. This group also

generated isogenic hESCs conditionally expressing het-

erozygous and homozygous mutations in a gene linked to

infantile early epileptic encephalopathy, STXBP1 [34],

which encodes another presynaptic protein, MUNC18-1.

Heterozygous STXBP1 mutations decreased spontaneous

and evoked neurotransmitter release, again supporting the

role of synaptic development deficits in SZ pathology.

Using TALENs and CRISPR/Cas9, Young-Pearse and

colleagues disrupted DISC1 near the site of the chromo-

some translocation found in the Scottish pedigree and
Current Opinion in Neurobiology 2016, 36:118–127
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found increased WNT signaling in iPSC-derived NPCs

[35]. Notably, while these studies provide important in-

sight into loss-of-function phenotypes and basic biology of

these risk genes in human NPCs and neurons, patient-

specific mutations may have a different net effect on gene

expression, as in the case of the 4 bp deletion in DISC1 that

was shown to be a gain-of-function mutation [36]. Isogenic

lines are a powerful tool to demonstrate the effect of

targeted mutations identified in patient populations, such

as CACNA1C, or to selectively manipulate specific genes

to determine disease-relevant loci within larger risk-asso-

ciated CNVs [37].

Modeling idiopathic cohorts

For most patients, however, the contributing genetic

factors are unknown. Taking an unbiased approach to

cellular phenotyping in hiPSC-derived neurons from

these patients may reveal common pathways, biological

processes, disease mechanisms, and targets for drug de-

velopment. In one study, hiPSC-derived neurons from

four idiopathic SZ patients exhibited defects in connec-

tivity and altered gene expression, which were partially

reversed by the antipsychotic drug Loxapine [38]. In

other studies, hiPSC-derived neurons from idiopathic

SZ patients have shown enhanced oxidative stress [39],

abnormal responses to environmental stressors [40] and

deficits in synapse maturation [36,39,41��]. HiPSCs have

also been generated from BD patients and neurons de-

rived from these iPSCs exhibited increased levels of

CXCR4 and changes in expression of genes critical for

neuroplasticity, including WNT pathway components

and ion channel subunits [42�]. Furthermore, transcripts

involved in Ca2+ signaling and telencephalic neuronal

fate are altered in BD patient iPSC-derived neurons,

whereas lithium pretreatment of these neurons signifi-

cantly ameliorated the phenotypes [43�]. These studies

highlight that the same disease can have different genetic

origins [36,38] and that different psychiatric disorders

[13��,38,42�] can share common molecular signatures,

such as dysregulation of gene expression related to syn-

aptic transmission and WNT pathways [13��,38,42�,44].

One interesting approach is to stratify patients based on

their responsiveness to specific treatments, for example,

lithium responsiveness in BP and clozapine responsive-

ness in SZ. In a recent study, it was shown that a

hyperexcitability phenotype was selectively reversed

by lithium treatment only in hippocampal neurons de-

rived from BP patients who also responded to lithium

treatment [45��]. This represents a proof-of-principle for

patient-specific iPSC model systems for drug testing and

screening and the potential for personalized medicine.

Selection of cell types for phenotypic analysis
In addition to careful patient selection, it is critical to

identify the appropriate cell type to study. Once identi-

fied, generating region-specific and disease-relevant cell
Current Opinion in Neurobiology 2016, 36:118–127 
types remains a significant challenge, but efficient pro-

tocols exist for direct differentiation toward glutamater-

gic, GABAergic, dopaminergic, and motor neurons, as

well as astrocytes and oligodendrocytes (Figure 2).

Aberrant function of cortical glutamatergic neurons has

been implicated in many psychiatric disorders. For SZ,

the glutamate hypothesis was first proposed about 30 years

ago based on the observation that psychotomimetic

agents phencyclidine and ketamine induce ‘schizophre-

nia-like’ symptoms in healthy individuals by blocking

neurotransmission at NMDA-type glutamate receptors

[46]. Since then, postmortem neurochemistry, in vivo
human brain imaging, and clinical pharmacology have

further implicated glutamatergic dysfunction in SZ [47].

Critical glutamatergic genes such as GRM3 and GRIN2A,

and Ca2+ channel subunits (CACNA1C and CACNA1),

were found to be associated with SZ in recent GWAS [9].

Differentiation of hiPSCs into cortical glutamatergic neu-

rons has been achieved via first manipulating bone mor-

phogenetic protein (BMP), Wnt/b-catenin and TGF-b/

activin/nodal pathways, followed by sequential specifica-

tion into cortical layer identities, including early-born

deep-layer TBR1+/CTIP2+ neurons and later-born up-

per-layer BRN2+/CUX1+/SATB2+ neurons (Figure 2)

[22,36,48��,49–51].

Changes in cortical GABAergic transmission are also

associated with major psychiatric disorders [52–56] and

several groups have successfully generated GABAergic

interneurons with mature physiological properties

[57�,58,59,60��]. HiPSCs are first patterned to NKX2.1+

medial ganglionic eminence progenitors and then into

interneurons expressing both pan-GABAergic (GAD1,

SLC32A1, and SLC6A1) and specific subtype markers,

including somatostatin, parvalbumin (PV), calretinin, cal-

bindin and neuropeptide Y (Figure 2). Interestingly,

GABAergic interneurons take longer to mature than

glutamatergic neurons in culture, mimicking endogenous

human neural development.

Aberrant dopaminergic (DA) transmission has also been

linked to neuropsychiatric disorders [61,62]. Excess DA

transmission in subcortical regions may lead to hyper-

stimulation of D2 receptors and positive symptoms, while

hypoactive DA transmission at D1 receptors in the pre-

frontal cortex may contribute to cognitive impairments and

negative symptoms. This DA hypothesis is supported by

pharmacological, postmortem, and imaging data [63–65],

and by recent GWAS data showing that the DRD2 recep-

tor, a current pharmacological target, is associated with SZ

[9]. Multiple studies have developed and optimized effi-

cient protocols to differentiate hiPSCs into midbrain DA

neurons [66–69]. In particular, Kriks et al. used a floor-plate-

based strategy for the derivation of human midbrain DA

neurons by patterning hiPSCs into floor-plate precursors

with activation of SHH and Wnt/b-catenin signaling,
www.sciencedirect.com
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Figure 2
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Diagram of differentiation of neuronal subtypes and 3D organoids in vitro. Differentiation of disease-related neuronal subtypes or 3D organoids

from hiPSCs have been established. By manipulating morphogen pathways such as BMP, TGFb, WNT, SHH pathways as well as other growth

factors such as FGFs, human iPSCs could be induced into brain region-specific neural progenitor cells (NPCs), including dorsal forebrain NPCs,

ventral forebrain NPCs, midbrain floor plate NPCs, and hippocampal NPCs. These area-specific NPCs could be further differentiated into different

neuronal subtypes for disease modeling and drug screening, including cortical glutamatergic neurons or cerebral organoids (TBR1+/CTIP2+/

BRN2+/SATB2+), cortical GABAergic neurons (GABA+/GAD65/67+/VGAT+/SST+/PV+), midbrain DA neurons (TH+/NURR1+/PITX3+/DAT+), and

hippocampal granule cells (PROX1+).
which were further differentiated into functional midbrain

neurons expressing the DA neuronal markers tyrosine

hydroxylase (TH) and pituitary homeobox 3 (PITX3)

[67]. Importantly, the midbrain DA neuron identity was

further confirmed by extensive gene expression analysis,

electrophysiological characterization, biochemical assess-

ment, and in vivo transplantation.

Other disease-relevant cellular subtypes include hippo-

campal neurons [41��]. Dentate gyrus granule neurons

derived from SZ hiPSCs exhibit lower levels of NEU-

ROD1, PROX1, and TBR1, and reduced neuronal activi-

ty [41��]. Generation of astrocytes [70–73] and

oligodendrocytes [74,75] from patient-derived iPSCs

have not been studied extensively but could have a direct
www.sciencedirect.com 
impact on neural circuitry and/or exert a non-cell-auton-

omous effect of genetic risk factors on different neuronal

subtypes.

Currently, there are no established protocols to generate

entirely pure populations of a specific cell type, much less

for cortical layer-specific neurons or GABAergic subtypes.

Cortical layer-specificity is relevant because the superficial

layers (II–IV) may be particularly affected by psychiatric

conditions. Similarly, among GABAergic subtypes, PV+

interneurons have been frequently implicated in psychiat-

ric pathology but there are no published protocols that can

efficiently enrich for this subtype [58,59,60��,76,77]. To

eliminate heterogeneity during cellar phenotyping, specif-

ic cell types can be fluorescently labeled via reporter gene
Current Opinion in Neurobiology 2016, 36:118–127
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expression [41��,59,60��]. Genome editing via CRISPR/

Cas9 can also be used to add a reporter (i.e. GFP) into

endogenous cell subtype-specific gene loci. One new

approach to analyze specific cell types is by transcriptomic

analysis at the single cell level, which allows for certainty in

cell identification and avoids techniques that might com-

promise transcriptome information, such as viral-mediated

labeling, introduction of promoter-specific reporter lines,

or cell sorting [78].

In most hiPSC studies, 2D cell cultures have been used,

which do not reflect the complex 3D environment of

endogenous brain formation. Transplantation of hiPSC-

derived NPCs or neurons to the mouse brain provides an

in vivo setting for human neurons to develop and func-

tionally integrate into neuronal circuitry

[41��,48��,58,67,79]. Recently, hiPSCs have been induced

to form 3D cerebral organoid structures that recapitulate

features of developing organs and are amenable to exper-

imentation and drug testing [80–82]. Unlike rodents,

developing embryonic human brains contain specialized

outer radial glia cells that account for much of the evolu-

tionary increase in cortical size and complexity [83].

Notably, such features are present in cerebral organoids

derived from human iPSCs, but not from mouse iPSCs

[84,85��,86��,87��]. Recently, hiPSC-derived cerebral

organoids have been used to investigate mechanisms of

severe idiopathic ASD and revealed accelerated cell

cycles and overproduction of GABAergic inhibitory neu-

rons [85��].

Drug development with hiPSCs
Patient iPSC-derived neurons have been demonstrated to

exhibit disease-relevant phenotypes and respond to exist-

ing drugs in vitro, such as gentamicin-mediated effects on

RTT-patient neurons [15], loxapine-mediated effects on

SZ-patient neurons [38], roscovitine-mediated effects on

TS-patient neurons [22], and IGF1-mediated effects on

22q13-deletion syndrome neurons [29��]. Importantly, a

proof-of-principle study for familial dysautonomia dem-

onstrated the feasibility of screening for novel therapeutic

compounds with hiPSC-based cellular phenotypes [88].

Recently, large-scale high-throughput screening (HTS)

assays have been established for NPCs based on Wnt/b-

catenin signaling [89]. In addition to phenotypic assays, a

novel pathway-centric HTS screen using the latest deep-

sequencing technology may offer advantages over con-

ventional chemical screening strategies [90]. Instead of

focusing on one gene, this approach screens for patterns of

endogenous gene expression changes with multiple tar-

gets simultaneously, enabling large-scale and quantitative

analysis of gene matrices associated with specific disease

phenotypes [90].

HiPSC drug discovery platforms still face several chal-

lenges. First, cell-type heterogeneity reduces the chances

of identifying a positive hit, illustrating the need for better
Current Opinion in Neurobiology 2016, 36:118–127 
differentiation protocols. Second, overall culture condi-

tions need to be controlled and standardized. Third, phe-

notypic assays need to be robust and should be disease-

relevant. Finally, animal models are likely still required for

validation of the positive hits from hiPSC-based screening

platforms. But even with these challenges, this technology

holds great promise as a new translational platform for drug

testing using human neurons.

Summary
Patients exhibit significant inter-individual variability in

their responses to psychoactive drugs, and family mem-

bers who carry the same genetic mutation can develop

different diseases. With recently developed techniques,

including deep sequencing, efficient hiPSC generation,

neuronal subtype differentiation, genome-editing, and

HTS assays and screens, patient-specific hiPSCs have

the potential to make personalized medicine feasible for

heterogeneous and genetically complex psychiatric dis-

orders. While there are still many challenges in directly

translating cell-based findings into the clinic, the ability to

investigate specific neural subtypes at single-cell resolu-

tion, to study disease mechanisms in a 3D cellular struc-

ture recapitulating organized features of human brain,

and to establish a scalable HTS platform for drug discov-

ery, all support the idea that hiPSC research could lead to

a better understanding of disease mechanisms and more

targeted treatments in the near future.
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