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Abstract
Adult neurogenesis occurs in the dentate gyrus in the mammalian
hippocampus. These new neurons arise from neural precursor cells named
radial glia-like cells, which are situated in the subgranular zone of the dentate
gyrus. Here, we review the emerging topic of precursor heterogeneity in the
adult subgranular zone. We also discuss how this heterogeneity may be
established during development and focus on the embryonic origin of the
dentate gyrus and radial glia-like stem cells. Finally, we discuss recently
developed single-cell techniques, which we believe will be critical to
comprehensively investigate adult neural stem cell origin and heterogeneity.
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Introduction
The dentate gyrus (DG) is a V-shaped structure in the hippoc-
ampus, which is located in the medial temporal cortex of mam-
mals. The addition of newborn neurons to the DG, unlike other  
areas of the brain, such as the neocortex where neurons are 
generated only during embryonic development, continues 
throughout life through a process named adult neurogenesis1,2.  
Interestingly, adult neurogenesis in the DG has been observed 
in all studied mammals, including humans, suggesting that  
there may be some evolutionarily conserved function of adult 
hippocampal neurogenesis3–6. Indeed, animal models have  
shown that adult neurogenesis in the DG plays important  
roles in both cognitive and affective behaviors, such as spatial 
memory learning and retention, pattern separation, and memory 
clearance7–11.

Adult-born neurons in the DG are derived from a population of 
neural stem cells (NSCs) named radial glia-like cells (RGLs)1. 
RGLs express some astrocyte and stem cell markers and can 
generate both granule neurons and astrocytes but typically not  
oligodendrocytes12–15. These RGLs retain the capacity to divide 
and generate new neurons throughout life, even in the aging  
animal16,17. Recently, more and more studies have shown that 
rather than being a homogeneous population of identical cells,  
the RGL population is made up of multiple subpopulations  
of RGLs that differ in their morphology and how they react to 
external stimuli18. In this review, we discuss recent discoveries  
concerning adult neurogenesis in the DG and focus on RGL 
heterogeneity. Furthermore, we review current knowledge  
about the embryonic and early postnatal development of the 
DG and RGL origins given that NSC heterogeneity may be  
established during development. Finally, we discuss current  
single-cell analysis techniques that could be used to answer a  
multitude of remaining questions that concern RGL heterogeneity 
and its origin.

Classic homogeneous radial glia-like cell population 
model
Multiple studies have indicated that RGLs (also known as type 
1 cells) are putative NSCs, which generate dentate granule  
neurons in the adult DG14,15,19,20. RGLs are similar in appearance  
to radial glial cells of the embryonic brain and share many mark-
ers expressed by NSCs in the embryo, including Nestin, glial  
fibrillary acidic protein (GFAP), and sex-determining region 
Y-box 2 (Sox2)13. The somas of the RGLs are situated in the  
subgranular zone (SGZ) of the DG, a region between the  
granule cell layer (GCL) and the hilus (Figure 1A). RGLs have 
a bushy radial process, which extends through the GCL to the  
molecular layer and terminates with end-feet on both synapses  
and vasculature21,22.

RGLs are generally a quiescent population of precursor cells 
that only occasionally divide14,23,24. However, when RGLs 
undergo cell division, they can divide either symmetrically or  
asymmetrically multiple times, suggesting that they retain the 
capacity to self-renew13,20. During the process of neurogen-
esis, RGLs divide and give rise to intermediate progenitor cells  
(IPCs), which express the T-box brain protein 2 (Tbr2/Eomes) 

(Figure 1A, B). IPCs have short multipolar processes, are  
lineage-restricted, and undergo limited rounds of division25,26. 
IPCs then give rise to bipolar neuroblasts, which express  
doublecortin (DCX). Neuroblasts migrate tangentially along the  
SGZ before migrating short distances radially into the GCL,  
where they mature into functional Prox1-positive dentate granule 
neurons15.

Quiescent RGLs are difficult to label using developmental 
lineage-tracing methods, such as thymidine analogues—5-
bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine  
(EdU)—or retrovirus, because these techniques label divid-
ing cells only27. However, RGLs can be labeled using multiple  
tamoxifen-inducible CreERT2 mouse lines (Figure 1C). Interest-
ingly, the use of different mouse lines has started to reveal the  
complexity and heterogeneity of the progenitor cells in the 
adult DG. For example, a study using the Nestin-CreERT2 and  
glutamate aspartate transporter (Glast)-CreERT2 mouse lines has  
shown that while the cells labeled using both lines contribute  
to neurogenesis under homeostasis, only Glast-CreERT2-labeled  
RGLs contributed to increased proliferation after running and 
repopulation after injury28. Additionally, studies using the 
Hes5-CreERT2 and Sox2-CreERT2 lines have suggested the  
presence of a horizontal and non-radial NSC in the  
DG19,20. These and other studies have provided evidence that 
subpopulations of RGLs with different properties coexist in  
the adult DG, and current work has been focusing on identifying 
and distinguishing these populations.

Modern heterogeneous radial glia-like cell population 
model
Given the accumulating evidence that RGLs are not identi-
cal in the adult mouse DG28,29, a central question in the field of 
adult neurogenesis arises: how do discrete subtypes of RGLs in  
the niche differ in their capacity to self-renew and differentiate? 
For example, it is possible that a distinct population of RGLs  
is responsible for generating neurons while another is respon-
sible for generating astrocytes. These possibilities have not  
been exhaustively explored yet, but recent data clearly suggest  
that the SGZ consists of RGLs with different morphologies and 
behaviors.

The adult mouse DG can be divided along its longitudinal axis 
into the septal pole (the dorsal region) and the temporal pole 
(the ventral region)30. Interestingly, the septal and temporal DGs  
function differently, from the systems level all the way down 
to the molecular level31. For example, the septal region of the 
DG has been shown to be involved with spatial learning while  
the temporal region is involved in emotional behavior and  
motivation32,33. Similarly, many properties of neurogenesis are  
dependent on their location along the septo-temporal axis of the 
DG. For example, the density of RGLs and neuroblasts is low-
est in the temporal region of the DG34. Additionally, the tempo  
of neurogenesis is faster in the septal region of the DG35. At 
the molecular level, there is a gradient in the expression of the  
Wingless/INT (Wnt) inhibitor Frizzled-related protein 3 (sFRP3), 
and the highest expression is observed in the temporal pole36.  
Deletion of sFRP3 leads to activation of RGLs, suggesting a  
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potential niche mechanism for generating regional heteroge-
neity in the adult DG37. In vitro studies also suggest different  
neurosphere-forming capacities of the neural progenitors 
along the septo-temporal axis. Treatment of neurospheres with  
norepinephrine and KCl was shown to increase the number 
of neurospheres generated from the temporal region, while  
neurospheres from the septal region were unaffected38. These 
data indicate that there are distinct populations of RGLs in the  
adult DG, which respond differently to niche signaling.

Currently, there are no defined NSC markers to distinguish 
these different RGL populations in vivo. Instead, morphologi-
cal differences have been used as one approach to distinguish  
between different subtypes of RGLs. A recent study used  
careful analysis of confocal images to show that RGLs can be  

divided into two classes on the basis of their morphology29. 
Cells of the most common type, termed type α cells in the study,  
possess longer and less branched processes compared with the 
less prevalent type β cells. Lineage tracing showed that the 
type α cells could give rise to neurons, astrocytes, and type β  
cells but that type β cells did not proliferate. This suggests  
that type α cells are hierarchically above type β cells, but it 
is not known whether all type α cells have the potential to give  
rise to the type β cell over time. Future studies should investigate 
whether the population of type α cells is homogeneous or consists 
of multiple cell types.

Return to quiescence after cell division is considered a hallmark 
of slowly cycling, self-renewing adult stem cells and can be  
assessed using thymidine analogues, such as BrdU and EdU. 

Figure 1. Lineage progression of adult neurogenesis. (A) Radial glia-like cells (RGLs), situated in the subgranular zone (SGZ) of the 
dentate gyrus (DG), have the potential to both self-renew and give rise to astrocytes and neurons. Each RGL has a bushy process that 
extends through the granule cell layer (GCL) and ends in the molecular layer (ML). In the process of generating neurons, RGLs divide to 
generate intermediate progenitor cells (IPCs), which are highly proliferative and lineage-restricted to the neuronal fate. IPCs progress through 
a series of steps and eventually differentiate into mature neurons which integrate into the existing neuronal networks. (B) Immunohistochemical 
(IHC) markers that can be used to distinguish different stages of the lineage progression in adult neurogenesis in the DG. (C) Many Cre-ER 
transgenic mouse lines have been used to label different cell types throughout the process of neurogenesis. Most of the Cre-ER lines that 
induce recombination in RGLs also label astrocytes but to varying degrees. Tbr2-CreER and doublecortin (DCX)-CreER lines label neural 
precursors with no contamination of astrocytes or neural stem cells, while the Ascl1-CreER line labels both RGLs and IPCs.
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These labels get incorporated into the DNA of cells during  
the S phase of the cell cycle. If the cell continues to undergo 
multiple divisions, the label gets diluted to an undetectable level.  
In contrast, the presence of label-retaining RGLs after long chase 
periods indicates that these cells have returned to quiescence 
after dividing when the EdU or BrdU was administered. For  
example, one study administered a single injection of BrdU to 
Nestin-GFP mice and showed that the RGLs that incorporated 
BrdU quickly diluted the label, and no label-retaining RGLs were  
found after a 15-day chase16. This can be put in contrast  
to other studies, which used longer BrdU pulses and found 
label-retaining RGLs after longer chases12,19,39. Thus, the ability  
to label RGLs that return to quiescence depends on the experi-
mental paradigm used. Another reason for the conflicting  
conclusions concerning the existence of label-retaining RGLs 
is because most studies have been performed at the population 
level, where rare populations may get overlooked. For example,  
it is possible that not all RGLs are able to return to quiescence 
and that those that can return to quiescence represent a small  
subpopulation of RGLs in the adult DG. Therefore, a high-
resolution understanding of the heterogeneity in the SGZ will  
require a combination of techniques, including single-cell  
lineage tracing of specific subpopulations.

Clonal analysis using the Nestin-CreERT2 mouse line has 
revealed that at least some Nestin+ RGLs can self-renew multiple  
times and are multipotent (generating both neurons and  
astrocytes) under physiological conditions in the adult DG.  
Importantly, the Nestin-CreERT2-labeled RGLs are able to 
return to quiescence after activation13. Nestin protein is present 
in most, if not all, RGLs in the adult DG, but it is not known  
whether the cells labeled under clonal analysis conditions  
represent the majority of the RGL pool or compose a small  
subpopulation. It should also be noted that different Nestin- 
CreERT2 lines have varying specificity and could potentially  
label different subtypes40.

Stem cell heterogeneity has been more rigorously studied in the 
adult SVZ. The putative NSCs in the adult SVZ are the type B1 
cells. These cells express GFAP and have a radial morphology. 
The type B1 cells can be divided into two groups—the quies-
cent neural stem cells (qNSCs) and activated neural stem cells  
(aNSCs)—which can be distinguished by their transcriptional 
profiles41,42. Quiescence was associated with a lack of Nestin 
expression and high glycolytic and lipid metabolism, whereas  
activation was associated with upregulation of Nestin expres-
sion and high protein synthesis and differentiation priming. The 
qNSCs give rise to the aNSCs, which in turn generate progeny 
that migrate to the olfactory bulb and become different types of  
granular cells and periglomerular interneurons43,44. Different 
types of interneurons are derived from specific subpopulations 
of type B1 cells located in distinct areas of the ventricular wall.  
Type B1 cells from different regions of the ventricular wall 
remain restricted to their lineages even when transplanted into  
other areas of the ventricular wall, suggesting that they  
are intrinsically different from each other44,45. Furthermore, 
SVZ progenitors that generate astrocytes are found in distinct  
domains of the SVZ46. Clonal lineage tracing from development  

into adulthood has revealed that regionally specified embry-
onic NSCs give rise to distinct subpopulations of type B1 cells, 
suggesting that heterogeneity in the adult SVZ is established  
embryonically (Figure 2C)47. Embryonic DG development has 
not been studied as extensively as cortical development, and 
it will be necessary to examine the ontogenesis of the DG to  

Figure 2. Developmental origin of adult neural stem cell 
heterogeneity. There are three potential models for the 
developmental origin of adult neural stem cells. (A) Homogeneous 
single origin: all radial glia-like cells (RGLs) in the adult dentate 
gyrus (DG) belong to a single population of stem cells that have 
similar potentials and make similar fate choices. These cells have a 
common developmental progenitor. (B) Heterogeneous single origin: 
there are multiple populations of RGLs in the adult DG that have 
distinct potentials and may make different fate choices, but these 
cells have a common developmental precursor. (C) Heterogeneous 
multiple origin: there are distinct populations of RGLs in the adult DG, 
and they are generated by different lineage-restricted precursors.
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get a complete understanding of when and how adult RGL  
heterogeneity is established.

Origin of adult neural stem cells in the dentate gyrus
The origin of the adult RGLs in the DG remains largely unknown. 
Population studies using thymidine analogues, reporter mice, 
and immunohistological methods suggest that DG precursors  
originate from a region called the primary dentate neuroepi-
thelia or primary dentate matrix. Identified by Altman and  
Bayer48, this putative origin of the DG is situated around the 
dentate notch, a small indentation in the ventricular wall of the 
medial pallium, which is visible at embryonic day 11 (E11) in 
mice (Figure 3A)49,50. At around E15, a stream of cells, seemingly  
originating from this area, start to migrate toward the pial sur-
face into the dentate primordium. This stream, called the  
dentate migratory stream (DMS), contains both GFAP+Sox2+ 
NSCs and Tbr2+ IPCs (Figure 3B)50,51. The proliferating 
cells in the DMS are termed the secondary dentate matrix48  
(Figure 3A, B). At around E18, Prox1+ granule neurons appear 
in what will become the suprapyramidal blade (SpB) of  
the DG (Figure 3C)49,52. At this stage, the secondary dentate 
matrix is found on the outside of the granule cell layer, while  
the proliferating NSCs in the hilar region are termed the  
tertiary dentate matrix. It has been hypothesized that the  

primary and secondary dentate matrices contribute to embryonic  
neurogenesis while the tertiary matrix generates the adult 
RGLs52–54. It is possible that the secondary matrix generates  
granule cells in the outer layer of the DG, since work  
using mouse chimeras has shown that granule cells in this part 
of the DG are derived from a different pool of progenitors  
compared with the neurons in the inner layers55.

Although no lineage-tracing studies have examined the early 
embryonic origin of adult DG RGLs, fate mapping stud-
ies using the Gli1-CreER mouse line have shown that a subset  
of developmental precursors to adult RGLs become sonic 
hedgehog-responsive around E17.556. In this study, Li et al.  
observed that the sonic hedgehog-responsive cells were located 
in the ventral hippocampus and that these cells migrated  
into the dorsal hippocampus and generated neurogenic  
RGLs in the adult animal, suggesting a ventral-to-dorsal NSC 
migration pattern56.

At postnatal day 14 (P14), the infrapyramidal blade (IpB) has 
formed, giving the DG its characteristic V-shape (Figure 3D). 
By this time, the secondary matrix has disappeared with most 
of the proliferating NSCs found in the SGZ, where they remain  
into adulthood50,52. Immunohistochemical analysis of known 

Figure 3. Development of the dentate gyrus. (A) Around embryonic day 10–11 (E10–11), the putative dentate neuroepithelium is situated 
adjacent to the dentate notch (DN), a small indentation of the ventromedial ventricular wall, which in turn is placed caudal to the cortical 
hem (CH), neighboring the fimbria (F). These neural stem cells (NSCs) are sometimes referred to as the primary dentate matrix. (B) During 
embryonic neurogenesis (E15–16), a stream of neural progenitors appears medial to the DN forming the dentate migratory stream (DMS). The 
DMS consists of both lineage-restricted neural progenitor cells (Tbr2+) and NSCs (expressing Sox2, Nestin, and GFAP). The DMS leads to the 
dentate primordium. (C) At about E18, the upper blade of the dentate gyrus (also called the suprapyramidal blade, or SpB) starts to form and 
contains post-mitotic Prox1+ neurons, as well as a layer of NSCs that are located subpially, on the upper part of the SpB blade. These NSCs 
are defined as the secondary dentate matrix, and the NSCs ventral to the SpB are termed the tertiary dentate matrix. (D) At about postnatal 
day 14 (P14), both the SpB and the infrapyramidal blade (IpB) have formed. At this stage, the secondary and tertiary matrices are gone, and 
the remaining NSCs—now referred to as radial glia-like cells (RGLs)—are located in the subgranular zone (SGZ), on the border between the 
granule cell layer and the hilus. This structure and morphology are maintained throughout the rest of the animal’s life.
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markers for adult neurogenesis has suggested that the SGZ is  
morphologically adult-like by P14, but comprehensive analysis  
of the potential of individual NSCs during different stages of  
development is still lacking52.

In the adult SVZ, type B1 cells are derived from develop-
mental radial glia cells57. In the original model, NSCs that  
generated neurons throughout development became type B1 cells 
in the adult and retained their NSC properties (Figure 4A)58,59. 
However, two recent studies have shown that NSCs that ulti-
mately give rise to adult type B1 cells may contribute to devel-
opmental neurogenesis to a limited degree but are largely set 
aside to become quiescent at E13.5–E15.5 until they become  
active again postnatally (Figure 4B)47,60. To examine the early 
contribution (before E15.5) of the developmental precursors  
of the adult type B1 cells, Fuentealba et al. made use of a  
retroviral-mediated lineage-tracing method, in which the NSCs 
were labeled with a genetic barcode47. Sequencing of cells from  
different areas of the brain revealed that some type B1 cells 
shared a common progenitor with neurons in other brain  
areas, including the cortex and striatum. However, as of yet, 
the identity and location of the developmental type B1 cell 
precursor are not known, and there is no way to distinguish  
between these cells and the other more transient developmen-
tal NSCs. RNA sequencing of the type B1 cell precursors  
could reveal novel prospective markers, which then could  
be used to target these cells for lineage tracing in vivo.

Some key aspects of DG development are strikingly different  
from embryonic cortical development61. First, most neurogenesis  
in the developing cortex takes place during the embryonic  

stage, whereas neurogenesis in the DG occurs mostly post-
natally, and peak neurogenesis takes place during the  
first two weeks after birth52. Secondly, the NSCs in the devel-
oping cortex and the adult SVZ are continuously in contact 
with the cerebrospinal fluid (CSF) in the ventricular system,  
whereas NSCs in the developing and adult DG migrate away 
from the ventricular niche and must maintain their stem  
cell properties without contact with the CSF. These traits make 
the development of the DG exceptional because a neurogenic 
niche that can support NSCs must be maintained in the postnatal  
brain, which is less conducive to precursor maintenance,  
and away from the ventricular system. Understanding how 
a neurogenic environment is established away from the  
ventricles in the adult brain is of great interest to the field  
of regenerative medicine, which aims to develop therapies  
that use NSCs to replace lost neurons in the diseased or injured 
brain62.

So far, the embryonic origin of adult RGLs in the DG has not 
been identified. It remains unknown whether adult RGL precur-
sors contribute to neurogenesis during the development of the  
DG and then continue to be active into adulthood or whether 
a subset of NSCs are set aside during development, as they  
are in the SVZ, to then become reactivated during adulthood  
(Figure 4A, B). To determine which model is correct, the  
fate choices of individual NSCs should be determined at different  
stages of development. It will also be important to examine  
whether the NSCs that give rise to the DG also generate  
neurons in other areas of the hippocampus or cortex or  
whether they become lineage-restricted at an early stage of  
development.

Figure 4. Developmental origin of adult neural stem cells (NSCs). There are two models that explain how adult NSCs are generated during 
development. It should be noted that these models are not mutually exclusive but can coexist. (A) Maintained stem cell model: NSCs that 
produce mature cell types to populate the dentate gyrus (DG) during development remain in the adult DG and transition into more quiescent 
activated NSCs (aNSCs) which generate neurons in the adult DG. (B) Set aside stem cell model: a subset of NSCs are set aside in a quiescent 
state during development and do not participate in populating the DG with mature cell types. Once the DG is formed, these NSCs are the 
aNSCs and can reactivate to generate neurons in the adult DG.
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Using single-cell analyses to investigate adult radial 
glia-like cells
Owing to the sparsity, heterogeneity, and dynamic nature 
of adult NSCs, it is difficult to study these cells using  
conventional population-level analyses. In order to identify  
different subtypes of RGLs in the adult DG, one has to examine  
the cells in the SGZ on a single-cell level. The last decade has 
seen a vast increase in new single-cell technologies, such as  
single-cell RNA sequencing, clonal lineage tracing, and  
in vivo imaging. Here, we discuss these techniques and  
how they might be used for the study of NSCs in the  
developing and adult DG at the single-cell level.

Single-cell sequencing of transcriptomes and epigenomes
Recent technical advancements in single-cell transcriptome 
and epigenome profiling technologies have made it possible  
for researchers to commence deciphering heterogene-
ous populations of stem cells in different tissues, including  
NSCs63. In both the embryonic and the adult brain, molecu-
lar signatures identified through single-cell RNA sequencing  
have been used to detect previously unknown cell types and  
to identify novel markers for subpopulations of NSCs.

In the developing human brain, the outer radial glia represent a 
population of cells which are thought to give rise to most corti-
cal neurons. Though clearly important for the development of 
the human brain, the molecular features of these cells were not 
known. To address this question, researchers performed RNA  
sequencing, which has revealed a multitude of new markers 
for the outer radial glia64,65. The new markers have been used to 
identify outer radial glial cells in in vitro culture experiments,  
demonstrating the predictive accuracy of the data generated66.  
In the adult DG, single-cell RNA sequencing of Nestin- 
CFP-expressing cells in the DG67 revealed that, on the basis of 
their transcriptome, quiescent RGLs can be divided into different  
groups, which represent progressive stages in a developmental  
trajectory. Additionally, this study revealed the molecular  
signatures of the active RGLs and early IPCs. Markers which 
are strongly expressed in distinct groups of cells at specific  
time points, and no other cell types in the DG, will be good  
candidates for lineage-tracing experiments to determine the  
long-term behavior of these cells (see below).

The field of single-cell RNA sequencing is rapidly progress-
ing. In these first studies, the number of sequenced cells  
numbered in the hundreds. But the development of new techniques,  
such as Drop-seq, means that many more cells can be sequenced 
at a reasonable cost68,69. Some populations of stem cells might 
be quite rare such that increasing the number of sequenced  
cells will increase the resolution and potentially lead to  
the discovery of new subpopulations. This, together with  
future improvements in sequencing depth and coverage, will fur-
ther illuminate the complex heterogeneity of different stem cell  
populations.

In addition to RNA sequencing, which examines differences in 
transcriptomes, analysis of the epigenetic landscape of cells can  
further reveal differences between cell populations.  
Technologies such as bisulfite sequencing to determine DNA  

methylation70; assay for transposase-accessible chromatin  
sequencing (ATAC-seq), which reveals chromatin accessibility71; 
and analysis of chromosome structure on a single-cell level72 are  
available to examine epigenetic regulation on a single-cell level.

Single-cell sequencing techniques are still in their infancy but 
are rapidly becoming more efficient and reliable. In the coming 
years, we might even be able to perform both RNA sequencing  
and multiple epigenome profilings on the same cell. In addi-
tion, there are recent developments of technologies for profiling  
epitranscriptomes and appreciation of their critical role in  
neurogenesis73. These methodologies ultimately will reveal further 
layers of heterogeneity within NSC populations.

Single-cell lineage tracing
While single-cell RNA sequencing may reveal novel markers for 
subpopulations of RGLs in the DG, it can reveal only the molec-
ular signature of a transient state. Long-term lineage tracing is  
needed to determine the lineage potential of these subpopulations 
over time. Lineage tracing on a clonal level has been performed 
in the adult DG using the Nestin-CreERT2 mouse line and has  
revealed that these RGLs can self-renew and generate both  
neurons and astrocytes13. This technique has also been combined 
with genetic manipulations to examine the role of genes, such  
as PTEN, sFRP3, γ

2
-subunit-containing GABA

A
 receptors, and 

NF1, in regulating quiescent NSC behavior13,15,37,74.

Single-cell lineage tracing could also be used to character-
ize the behavior of different populations of stem cells in a tissue 
by using different CreER mouse lines. For example, although  
both Nestin and GLAST are expressed by most, if not all, RGLs 
at the protein level, the Nestin-CreERT2 and GLAST-CreERT2  
mouse lines label RGLs with different behaviors at the  
population level28. It would be interesting to compare these 
drivers in a clonal analysis experiment to investigate potential  
differences in fate choice or maintenance with higher resolution.

Single-cell lineage tracing is also a powerful tool for the 
study of brain development. Clonal analysis using the Mosaic  
Analysis with Double Markers (MADM) system has been used 
to examine the development of the cortex and thalamus75,76. The  
MADM system is a two-color system, in which cells in G

2
-X  

phase that express Cre recombinase undergo Cre-mediated  
inter-chromosomal recombination, which can lead to RFP  
expression in one daughter cell and GFP expression in the 
other daughter cell77. These two sister cells and their progeny  
then can be traced separately over time to assess their fate  
choices. The MADM system would be very useful to determine  
the origin and behavior of NSCs during DG development.  
Cre-driver mouse lines need to be screened for labeling the  
developmental precursors of the RGLs.

In vivo imaging
To get a complete understanding of stem cell behavior, research-
ers are now aiming to image stem cells in vivo. This would  
enable the examination of individual stem and progenitor cells 
over time in a living animal78. Many technical hurdles remain  
before this can be done, especially when it comes to the DG, which 
is situated deep in the hippocampus.
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Recent technical advancements for in vivo imaging have been 
performed in zebrafish, a teleost fish in which neurons are  
generated in many areas of the adult central nervous system79. 
The brain of the teleost fish develops through outward bending 
or eversion with the result that the adult NSCs, which have radial  
glia-like morphology, have their soma on the outside of the 
brain, close to the surface, making the NSCs easier to visualize.  
Additionally, some zebrafish lines lack pigment, making  
them more transparent and thus enabling deep tissue imaging 
with high resolution, making it possible to image single NSCs  
over time in a live animal by using confocal microscopy. This  
technique has made it possible for researchers to study the  
fate choices made by individual NSCs in different brain areas  
for up to one month80,81.

Since the DG and SVZ are situated deep inside the mammalian 
brain, this makes them difficult to access for imaging without 
injuring the brain. Nevertheless, in vivo imaging has been used 
to study the behavior of adult-born neurons in the DG82. In this 
study, investigators used the Nestin-CreERT2 line crossed with a  
tdTomato reporter line and waited 6 weeks after tamoxifen injec-
tion, meaning that the tdTomato+ cells were 6 weeks or younger. 
Calcium imaging was performed on these cells, and investigators  
found that newborn neurons actively participate in encoding  
information and are more active and less spatially tuned  
compared with the more mature granule cells. Another study used 
retrovirus to label and birth-date newborn neurons to examine  
dendritogenesis over time83. Efforts should be made to image 
the behavior of NSCs in the adult DG, but this will have many  
technical challenges which need to be overcome. Possibly, the  
biggest hurdle will be that the DG is situated deep in the brain, 
under the cortex, and using current imaging strategies will  
undoubtedly lead to significant injury that might alter the  
behavior of the NSCs. Once these issues have been overcome,  
in vivo imaging will be a powerful tool to determine the behavior 
and characteristics of individual RGLs.

Concluding remarks
Adult stem cell heterogeneity has garnered increasing atten-
tion in the last decade18,84–86. Recent studies have shown that 
the NSCs in the SGZ of the DG can be distinguished by dif-
ferences in their morphology, lineage potential, and function  
during tissue maintenance and repair. Future studies will be 
needed to determine whether these variations are due to the  
presence of multiple, restricted populations or to different  
states within the same population in vivo. Another 
important question is whether stem cell heterogene-
ity is established during development or adulthood,  
which will require a better understanding of the embryonic ori-
gin of the adult RGLs. Investigators should continue to use  
single-cell techniques as discussed in this review, such as clonal 
analysis and single-cell sequencing, to address these ques-
tions and to determine when and how stem cell heterogeneity is  
established in the adult DG.
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