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The 2015 to 2016 outbreak of Zika virus (ZIKV) infections in the Americas coincided with
a dramatic increase in neurodevelopmental abnormalities, including fetal microcephaly,
in newborns born to infected women. In this study, we observed mitochondrial
fragmentation and disrupted mitochondrial membrane potential after 24 h of ZIKV
infection in human neural stem cells and the SNB-19 glioblastoma cell line. The
severity of these changes correlated with the amount of ZIKV proteins expressed
in infected cells. ZIKV infection also decreased the levels of mitofusin 2, which
modulates mitochondria fusion. Mitochondrial division inhibitor 1 (Mdivi-1), a small
molecule inhibiting mitochondria fission, ameliorated mitochondria disruptions and
reduced cell death in ZIKV-infected cells. Collectively, this study suggests that
abnormal mitochondrial fragmentation contributes to ZIKV-induced neuronal cell death;
rebalancing mitochondrial dynamics of fission-fusion could be a therapeutic strategy for
drug development to treat ZIKV-mediated neuronal apoptosis.
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INTRODUCTION

Zika virus (ZIKV) belongs to the Flavivirus genus in the Flaviviridae family of RNA viruses
(Ming et al., 2016). Similar to other flaviviruses, ZIKV is most commonly transmitted through
the bites of infected Aedes mosquitoes. However, unlike other flaviviruses, ZIKV can also be
sexually and vertically transmitted (Musso et al., 2015; Venturi et al., 2016; Mesci et al., 2018). The
single-strand, positive-sense RNA genome in ZIKV encodes a large polyprotein. It is then post-
translationally cleaved by both viral and host proteases to form many proteins. The three structural
proteins are the capsid (C), the precursor membrane (prM) that is further cleaved in the maturing
virion to form the membrane (M) protein, and the envelope (ENV) (Ye et al., 2016). Further
cleavages result in seven non-structural proteins: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5
(Garcia-Blanco et al., 2016). The structural proteins, together with the single-strand RNA genome,
form the enveloped ZIKV spherical particle with a diameter of approximately 40 nm (Chambers
et al., 1990). Although 80% of ZIKV-infected individuals are asymptomatic or exhibit mild
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symptoms that include fever, malaise, rash, and conjunctivitis
(Ioos et al., 2014; Wang et al., 2016), mounting evidence has
linked the ZIKV outbreak in the Americas to a marked increase
of newborn microcephaly, a developmental abnormality resulting
in diminished head size and brain formation (De Carvalho et al.,
2016; Fauci and Morens, 2016; Hazin et al., 2016; Oliveira Melo
et al., 2016; Schuler-Faccini et al., 2016). Several case reports have
shown the presence of ZIKV particles in the microcephalic fetal
brain (Driggers et al., 2016; Mecharles et al., 2016; Mlakar et al.,
2016). ZIKV infects fetal brain tissue directly and prominently
affects neural stem and progenitor cells, leading to abnormal cell
differentiation, decreased proliferation, and cell death (Garcez
et al., 2016; Li et al., 2016; Ming et al., 2016; Qian et al.,
2016; Tang et al., 2016; Gabriel et al., 2017). However, the
specific molecular mechanism of ZIKV infection-induced fetal
microcephaly remains unclear.

Mitochondria are double-membrane-bound organelles with
a wide range of cellular functions, including ATP generation,
programmed cell death, and calcium homeostasis, as well
as the biosynthesis of amino acids, lipids, nucleotides, and
heme (West et al., 2011). Mitochondria are dynamic organelles
that constantly undergo fusion (two or more independent
mitochondria fusing into a single organelle) and fission
(the opposing reaction of fusion that splits one organelle
into two or more structures). The balance between fusion
and fission regulates mitochondrial morphology and function
(Scott and Youle, 2010; Filadi et al., 2018). The equilibrium
of fusion and fission not only determines the integrity of the
mitochondrial network and maintains mitochondrial respiration
but also influences several biological processes, including
development, neurodegeneration, and apoptosis (Chan, 2006;
Detmer and Chan, 2007). The process of mitochondrial fission
is regulated by the mitochondrial fission 1 protein (FIS1) and
the cytosolic dynamin 1 like protein (DNM1L), also known as
DRP1 (Gottlieb and Bernstein, 2016). Mitochondrial fusion
is coordinated by the outer membrane proteins mitofusin
1 (MFN1), mitofusin 2 (MFN2), and the inner membrane
protein optic atrophy 1 (OPA1) (de Brito and Scorrano,
2008). Mitochondrial dysfunction and abnormal mitochondrial
dynamics have been linked to a wide array of neurodegenerative
diseases such as Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis, and Huntington’s disease
(Su et al., 2010).

Both MFN1 and MFN2 have been reported as essential
proteins for embryonic development; deletion of either MFN1
or MFN2 is lethal during mid-gestation in mice (Chen et al.,
2003). Intriguingly, MFN2 is abundantly expressed in the brain
while MFN1 expression is low, suggesting that MFN2 plays an
essential role in brain development or function (Eura et al., 2003).
Conditional inactivation of MFN2 in newborn mice severely
impairs cerebellar development and produces early movement
defects (Chen et al., 2003). In vitro, MFN2 knockout leads to an
aberrant fragmentation of the mitochondrial network due to a
deficiency of mitochondrial fusion (Filadi et al., 2015).

Here we report disruption of mitochondrial morphology
and function after ZIKV infection in human neural stem
cells (NSCs) and a human glioblastoma cell line, SNB-19. We

found that ZIKV infection disrupted mitochondrial dynamics,
mitochondrial network structure, and function by decreasing
MFN2 protein levels. Rebalancing mitochondrial dynamics by
blocking mitochondrial fission in ZIKV-infected neuronal cells
aided cell survival and rescued the disease phenotype, unveiling
a promising therapeutic approach in controlling mitochondrial
dysregulation after ZIKV infection. Together, the results strongly
suggest that mitochondrial dysregulation contributes to ZIKV-
mediated cell death in neuronal cells.

MATERIALS AND METHODS

Compounds and Antibodies
The pan-caspase inhibitor emricasan was purchased from
Selleckchem (S7775). The details of the antibody used in this
study can be found in the section “Supplementary Material”
(Supplementary Tables S1, S2).

Cell Culture and Viruses
Glioblastoma cells, SNB-19, were maintained in RPMI-1640
medium (ATCC) supplemented with 10% fetal bovine serum
(Hyclone). Osteosarcoma cells, U2OS, were maintained in
McCoy’s 5a Medium (ATCC) supplemented with 10% fetal
bovine serum (Hyclone). The wild-type fibroblasts (Coriell Cell
Repository, GM05659) were reprogrammed and induced to
pluripotent stem cells, followed by neural induction to NSCs,
as described previously (Yu et al., 2014). Neural stem cells were
cultured in StemPro NSC SFM (Life Technologies) containing
knockout Dulbecco’s modified Eagle’s medium-F12, StemPro
neural supplement, 20 ng/ml bFGF, 20 ng/ml EGF and 1X
GlutaMAX on Matrigel (Corning)-coated flasks. The following
viruses were used: ZIKV MR766 strain (Uganda, 1947) and ZIKV
PRVABC59 strain (Puerto Rico, 2015).

Immunocytochemistry
Cells were fixed with 4% paraformaldehyde (Sigma) for 15 min
at room temperature. Samples were permeabilized with 0.25%
Triton X-100 (Sigma) for 10 min and were blocked by cell
staining buffer (BioLegend) for 1 h. Then, samples were
incubated with primary antibody at 4◦C overnight, followed by
twice PBS washes and incubation with secondary antibody for 1 h
at room temperature. Finally, nuclei were stained with 1 µg/ml
Hoechst 33342 (Invitrogen) at room temperature for 15 min.
After a final wash in PBS, 100 µl of fresh PBS was added to
the cells for imaging on the IN Cell 2500 HS (GE Healthcare).
Montages were generated using Fiji-ImageJ (NIH).

Determination of Percentage of ZIKV
Infection and Fluorescence
Quantification
To determine the ZIKV infection rate, we took images using
the IN Cell 2200 imaging system (GE Healthcare) with a
20× or 40× objective lens. Imaging detection was performed
using FITC (ENV+/NS1+) and DAPI (nucleus) filter sets. Image
analysis was conducted using the IN Cell Analyzer software
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(Version 3.7.2). With a multi-target analysis protocol, nuclei
were segmented using the top-hat segmentation method with a
minimum area set at 50 µm2 and sensitivity set to 0. ZIKV ENV
staining was identified as “cells” by the analysis software and
was segmented using the multi-scale top-hat algorithm. Settings
for ENV detection were set to 100 µm2 and a sensitivity setting
of 0. A filter for ENV+/NS1+ cells was set to 800 fluorescence
units based on visual inspection of several wells. Infected cells
were those with an average intensity greater than 800 fluorescence
units. For each field in each well, the ENV+/NS1+ cells were
divided by the total cell number as determined by the nuclear
staining and multiplied by 100% to calculate the infection
percentage per field. The final value is an average of three wells.
Montages were generated using Fiji-ImageJ (NIH). To evaluate
the NS1 protein expression level in the infected cell, we defined
the cell contained 800–2,000 fluorescence unit of NS1 staining
as a viral protein low expression cell, and the cell with NS1
intensity over 2,000 fluorescence unit as a viral protein high
expression cell.

MitoTracker Staining
On the day of the experiment, cells were live-stained with
100 µl/well of 100 nM MitoTrackerTM Deep Red FM (Invitrogen)
in the medium at 37◦C for 15 min, followed by fixation
in 100 µl/well 4% paraformaldehyde (Sigma) for another
15 min and twice washed with PBS. The nuclear staining
was performed by the addition of 100 µl/well of 1 µg/ml
Hoechst 33342 (Invitrogen) in PBS and incubation at room
temperature for 15 min. The cells were then fixed and
permeabilized for subsequent immunostaining. The images were
taken by the IN Cell 2200 automated fluorescence plate imaging
reader (GE Healthcare) with 20× or 40× objective lens, and
imaging detection was performed using DAPI (nucleus) and
Cy5 (MitoTracker) filter sets. Montages were generated using
Fiji-ImageJ (NIH).

Mitochondrial Morphology Analysis
Images from the IN Cell 2200 (GE Healthcare) were loaded
into FIJI (NIH) for image analysis. The Mitochondrial Network
Analysis (MiNA) plugin was used in a blind analysis of randomly
selected cells. Regions of interest were created manually, and
the MiNA plugin quantitated the parameters described in their
manuscript (Valente et al., 2017). Multiple cells per field per well
were analyzed in at least three independent experiments.

Electron Microscopy
Cells were fixed in 2% glutaraldehyde, 0.1 M cacodylate buffer,
pH 7.2, for 1 h at room temperature and then stored at 4◦C until
transmission electron microscopy analysis was performed. The
cells were washed with 0.1 M cacodylate buffer twice, post-fixed
with 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 h and
washed again with 0.1 M cacodylate buffer twice and once with
0.1 N sodium acetate buffer before stained en bloc with 0.5%
uranyl acetate in 0.1 N sodium acetate buffer for 1 h, pH 4.2.
Then, cells were rewashed with 0.1 N sodium acetate buffer twice
before gradual dehydration. The cells were then dehydrated in
graded ethanol solutions (twice for each step of 35, 50, 70, 95%,

and three times for 100%) and infiltrated overnight in pure epoxy
resin (Poly/Bed 812, dodecenyl succinic anhydride (DDSA) and
Nadic Methyl Anhydride (NMA) and DMP-30, Polysciences).
Cells were rinsed with pure fresh resin twice, then cured in pure
resin for 48 h at 55◦C oven. After removing the polystyrene
plates, suitable areas for thin sectioning were selected, cut out
with jewelry saw, and glued onto empty resin stubs. About 70-nm
thin sections were cut on an ultramicrotome (Leica EM UC6)
and mounted on naked 150 mesh copper grids. The thin sections
were double-stained (1:1 uranyl acetate and 70% ethanol and 1:1
lead citrate and DDH2O) and examined with Hitachi H-7600
transmission electron microscope, and images were taken using
an AMT CCD camera (Chen et al., 2010).

Western Blot
Cells were lysed in RIPA buffer (Enzo Life Sciences)
supplemented with protease inhibitors and phosphatase inhibitor
cocktail (Roche). The cell lysates were clarified by centrifugation
at 20,000 × g for 15 min and followed by protein quantification
with the BCA assay kit (Thermo Fisher Scientific). The cell
lysates with similar protein concentrations were subsequently
applied to Bis-Tris gels for protein separation, and the proteins
were transferred from gels to polyvinylidene difluoride (PVDF)
membrane by dry transfer (Thermo Fisher Scientific, iBlot 2
Gel Transfer Device). Immunoblot analysis was performed with
the indicated antibodies, and the chemiluminescence signal
was visualized with Luminata Forte Western HRP substrate
(EMD Millipore) in the BioSpectrum system (UVP, LLC). The
chemiluminescence intensities of the bands were quantified in
the VisionWorks LS software (UVP, LLC).

Establishing an Over-Expressing
Mitofusin Cell Line
An improved variant of GFP, mGFP, was used tagged to the
open reading frame of MFN1 (RC207184L4V, Origene), MFN2
(RC202218L4V, Origene) or control (PS100071V, Origene) in a
lentiviral particle plasmid. The stable over-expression cells were
generated according to the product manual. Briefly, 1 × 105

SNB-19 cells were seeded in each well of a 6-well plate and
incubated overnight at 37◦C. Then, cells were treated with
5 µg/ml polybrene (Santa Cruz Biotechnology, Inc.) and infected
with lentiviral particles at MOI = 5. After overnight incubation
with the virus, cells were incubated in fresh medium for another
24 h. The stable over-expression cells were selected by 2 µg/ml
puromycin medium treatment for 3 days and kept in the
0.5 µg/ml puromycin (Santa Cruz Biotechnology, Inc.) medium
for three passages before the test.

Cell Viability Assay
The ATP content assay kit (Promega or PerkinElmer Life
Sciences) was applied to monitor the cell viability after ZIKV
infection. Cells were seeded in white solid 96-well plates
and infected with ZIKV of various MOIs as described in
the result section. On the day of the experiment, 70 µl/well
assay mixture (prepared according to the manufacturer’s
instructions) was added to the assay plates, followed by
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incubation at room temperature for 10 min. The luminescence
signal was determined in the luminescence mode of a Tecan
multifunction plate reader.

DePsipher Mitochondrial Potential
Staining
DePsipher Mitochondrial Potential Kit (6300-100-K, R&D
system) was applied to monitor the mitochondrial potential after
ZIKV infection. Cells were plated in black 96-well plates with
clear bottom and infected with ZIKV at MOI = 0.5, 1, or 2. On the
day of the experiment, the DePsipherTM solution was prepared
according to the manufacturer’s instructions. Before DePsipher
staining, the nuclear staining was performed by the addition of
100 µl/well of 1 µg/ml Hoechst 33342 (Invitrogen) in medium
and incubation at 37◦C for 15 min. After that, the medium
was removed, and cells were covered with diluted DePsipherTM

solution, followed by incubating at 37◦C for 15 min. Then, cells
were washed with 100 µl of prewarmed 1× reaction buffer with
Stabilizer Solution. The images were taken by the IN Cell 2200
automated fluorescence plate imaging reader (GE Healthcare)
with 20× or 40× objective lens, and imaging detection was
performed using DAPI (nucleus), FITC (DePsipher monomer)
and TRITC (DePsipher aggregates) filter sets. Montages were
generated using Fiji-ImageJ (NIH).

Microarray Data Analysis
The GSE118305 and GSE101878 datasets were employed to
predict the biological pathways in ZIKV infected cells and
patients; they were downloaded from the GEO database1.
Differentially expressed genes (DEGs) were selected by a cutoff
of p-values <0.05 by the T-test. GO & KEGG pathway
analysis to identify the enriched functions by DEGs using the
DAVID system2. The p-value was calculated by hypergeometric
distribution, and pathways with p < 0.05 were considered as
significant. Rich factor refers to the percentage ratio of the
DEGs number in the pathway and the number of all genes
annotated in the pathway.

The GSE149775 dataset was download from the GEO database
(see text footnote 1). For GSEA analysis of microarray data,
the GSEA software was available on the GSEA-Broad Institute
website. The statistical significance (nominal p value) of the
enrichment score (ES) was estimated by running 1000 gene set
permutations. The ES was normalized (NES) to account for the
size of the gene set.

Data and Statistical Analysis
All data were presented as mean ± SD with at least three
independent experiments unless otherwise stated. All imaging
data are presented as mean ± SD and represent data from
cells in at least 10 fields from three or more independent
experiments. The two-tailed unpaired Student’s test of the mean
was used for single comparisons of statistical significance, and
the ANOVA test with Tukey’s multiple-comparison was used
for the multiple comparisons of statistical significance between

1www.ncbi.nlm.nih.gov/geo/
2https://david.ncifcrf.gov/

experimental groups. The linear regression fit was used to analyze
correlation, and R square was used to evaluate the goodness of fit.

RESULTS

ZIKV Infection Impacted
Mitochondria-Related Pathways
To assess the global effects of ZIKV infection on host cells,
we analyzed a publicly available genome-wide RNAseq data set
(GSE118305) that contains data from ZIKV-FSS13025 infected
human blood monocyte-derived macrophages (Carlin et al.,
2018). We chose this dataset in order to explore a time-
dependent biological reaction during ZIKV infection extensively.
Compared to ZIKV-negative data, a total of 6,364; 10,115;
and 11,676 DEGs were identified from ZIKV-positive cells
12, 18, and 24 h after infection, respectively (Figures 1A,B).
Of these, 3,774 genes began to show differential expression
at 18 h, and these changes persisted after 24 h, while 3,114
genes were differentially expressed during all time points
(Figure 1B). To further investigate the cellular pathology of
ZIKV infection, each set of DEGs was submitted to gene
ontology (GO) pathway analysis. In addition to the viral and
interferon response pathways that had been reported in the
original study (Carlin et al., 2018), our analysis revealed a
series of mitochondria-related biological pathways. At the earliest
time point, mitochondrial fusion was significantly enriched
(p < 0.05) (Figure 1C). At 18 h, more mitochondrial fission-
fusion and function-related pathways were enriched, as well
as enrichments in mitochondrial respiratory chain assembly,
regulation of mitophagy, and mitochondrial-related apoptosis
(Figure 1C). After 24 h of infection, there was more enrichment
of mitochondrial fission rather than fusion. The analysis
also revealed several mitochondria-triggered apoptotic events
such as mitochondrial outer membrane permeabilization and
cytochrome C release.

To further explore whether these cell-based enrichments
were replicated in ZIKV-infected patients, we analyzed another
RNAseq data set (GSE101878) using myeloid dendritic cells
from ZIKV-infected patients (Sun X. et al., 2017). By comparing
the cells of five healthy, non-infected patients (controls)
with ZIKV-infected patient cells, we identified a total of
4,398 DEGs that contained 2,276 increased-expression genes
and 2,122 reduced-expression genes (Figure 1D). Consistent
with the in vitro dataset, GO pathway analysis revealed
enrichment of mitochondrial morphogenesis and function
pathways (Figure 1E). Additionally, the time-course data from
cell-based ZIKV infection experiments in this patient-based data
set also showed the enrichment of mitochondrial pathways in
dendritic cells (Supplementary Figures S1B,C).

To assess whether mitochondria-related changes also
occurred in ZIKV-infected neural cells, analysis was
conducted on RNA-seq data set (GSE149775) of ZIKV-
(MR766 and PRVABC59) infected SH-SY5Y cells (Bonenfant
et al., 2020). After gene set enrichment analysis (GSEA),
a significant alteration (p < 0.05) was observed in the
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FIGURE 1 | DEGs in the mitochondria-related pathways were enriched in ZIKV-infected cells. (A) A heatmap of all DEGs between ZIKV positive and negative cells in
an RNA-seq dataset (GSE118305). (B) Venn diagram displaying the overlap of DEGs at each time-point in (A). (C) Dot plot of representative mitochondria-related
GO biological process enriched by DEGs at 12, 18, and 24 h post-infection in the GSE118305 data set. The x-axis represents the time post-ZIKV infection, and the
y-axis represents the various pathways. Dot size represents the number of different genes, and the color indicates the p-value. Red arrow highlights the
mitochondrial fusion-related pathway. (D) A heatmap of DEGs between ZIKV infected patients and uninfected control samples in an RNA-seq dataset (GSE101878).
(E) Dot plot of representative mitochondria-related GO biological process enriched by DEGs in (D). The x-axis represents the name of the pathway, and the y-axis
represents the Rich factor. Dot size represents the number of different genes, and the color indicates the p-value.

GO_MITOCHONDRIAL_PROTEIN_COMPLEX annotation
for both MR766- and PRVABC59-infected cells, suggesting
a dysregulation and dysfunction of mitochondria in neural
cells after ZIKV infection (Supplementary Figures S1H,I).
Together, these data support the possibility that mitochondrial
morphological and functional changes may play a critical role in
ZIKV-induced pathology.

ZIKV Infection Induced Mitochondrial
Fragmentation
To explore the interaction of ZIKV with mitochondria, we
infected NSCs with either ZIKV strain MR766 (Uganda, 1947
isolate, African lineage) or PRVABC59 (Puerto Rico, 2015
clinical isolate, Asian lineage) for 24 h. MitoTracker staining
of ZIKV-infected NSCs revealed abnormal mitochondrial
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morphology. Compared with the intact mitochondrial networks
in control cells, ZIKV-infected cells showed more fragmented
mitochondrial structures such as short rods and swollen puncta
(Figure 2A). The mean mitochondrial branch length, the
number of mitochondrial networks, and mitochondrial footprint
were significantly decreased, indicating a marked reduction
of mitochondrial networks and increased fragmentation
(Figures 2B,C and Supplementary Figures S1D–G). We also
observed the same morphological alterations in ZIKV-infected
SNB-19 cells (Supplementary Figures S2A–G).

Next, we employed electron microscopy to achieve
high-resolution images to assess mitochondrial network integrity.
As shown in Figure 2D and Supplementary Figure S2H, more
fragmented and swollen mitochondria were observed in
ZIKV-infected NSCs and SNB-19 cells compared to uninfected
cells. Of note, varying degrees of mitochondria structural
damage and cristolysis (disappearing cristae) were found
in ZIKV-infected cells. Additionally, the hive-shaped ZIKV
particles accumulated in the rough endoplasmic reticulum
cavity, which was juxtaposed with the fragmented mitochondria
(Figure 2D, yellow arrows, and Supplementary Figure S2H).
Collectively, these data indicated that ZIKV-infection disrupted
healthy mitochondrial structure and caused mitochondrial
fragmentation.

Mitochondrial Fragmentation Was
Related to ZIKV Protein Expression
Because ZIKV is translated as a single polypeptide that
is then post-translationally processed to yield all ten viral
proteins in equimolar amounts (Gerold et al., 2017), we next
performed immunostaining of ZIKV NS1 protein to monitor
viral protein levels in cells. While mitochondria exhibited
compact filamentous network structures in uninfected NSCs,
fragmented mitochondria were observed in ZIKV infected cells
that related to the expression of viral protein NS1 (Figure 2E
and Supplementary Figure S2I). Increased mitochondrial
fragmentation is positively related to increased viral protein
expression (Figure 2F and Supplementary Figure S2J).

Furthermore, fragmented mitochondria were observed
surrounding the sites of viral replication in MR766
and PRVABC59-infected cells, supporting the abovementioned
electron microscopy observations (Figure 2E). Concurrent with
the expression of ZIKV proteins, the number of mitochondrial
network structures, the mean length of the mitochondrial
branches, and the footprint of total mitochondria in the cells
were markedly decreased (Figures 2G–I and Supplementary
Figures S2K–M). Taken together, these data indicated that the
magnitude of mitochondrial fragmentation was proportional to
the amount of ZIKV proteins in host cells (Figure 2J).

Decreased MFN 2 in ZIKV-Induced
Mitochondrial Fragmentation
Mitochondria are highly dynamic organelles; mitochondrial
fusion and fission must be in equilibrium to maintain the healthy
structure and function (Cao et al., 2017). To understand the
cause of mitochondrial fragmentation during ZIKV infection,

we hypothesized that an imbalance in mitochondrial fusion
and fission proteins may lead to mitochondrial dysregulation.
While only 50% of cells were infected after 24 h of virus
exposure (Figure 3A and Supplementary Figure S3A), the
protein, but not the mRNA, levels of MFN 2, a mitochondrial
fusion-promoting protein (Rojo et al., 2002), was decreased in
both ZIKV-infected NSCs and SNB-19 cells (Figures 3B,C).
The reduction of MFN 1, which regulates mitochondrial outer
membrane fusion (Chen et al., 2003), was only observed in
SNB-19 cells but not in NSCs after ZIKV infection (Figure 3B
and Supplementary Figure S3B), which might be due to the
lower expression of MFN 1 in neuronal cells. As the decrease of
MFN 2 in ZIKV-infected cells may be diluted in the homogenate
assay due to a 50% infection rate, immunofluorescence staining
was employed to detect the expression level of MFN 2 in
each ZIKV-infected cell, and the results showed a weaker
MFN 2 signal in ZIKV-infected cells than in uninfected cells
(Figures 3D,E). Along with the decreased MFN2 protein,
fragmented mitochondria were observed in ZIKV ENV-
positive cells (Figures 3F–H and Supplementary Figure S3C).
The results here indicated a decrease in mitochondrial fusion in
ZIKV-infected cells (Figure 3I).

Protein levels of three other mitochondrial fission and fusion-
related proteins, OPA1, DNM1L, and FIS1 were not significantly
changed in ZIKV-infected cells (Figure 3B and Supplementary
Figures S3D,E). Intriguingly, the phosphorylation of DNM1L
at Ser616, a post-translational modification that activates
mitochondrial fission (Gottlieb and Bernstein, 2016), was
not phosphorylated in ZIKV-infected cells (Figure 3B and
Supplementary Figure S3E). The dephosphorylation of DNM1L
may have been due to a feedback regulation in response to
the over-fragmented mitochondria to prevent even more fission.
These data suggested that ZIKV infection yielded an imbalance
of mitochondrial fusion and fission, leading to mitochondrial
network fragmentation.

ZIKV Infection Reduced Mitochondrial
Transmembrane Potential
Typically, healthy mitochondrial morphology is reflected
in the bioenergetics and function of the mitochondria
(Yu T. et al., 2015). The mitochondrial transmembrane potential
(delta-psi(m) or 19m), generated by proton pumps (Complexes
I, III, and IV), is a critical, bioenergetic parameter controlling
mitochondria respiration, ATP synthesis, and the generation
of reactive oxygen species (Nicholls, 2004). A drop in 19m
levels may induce dysfunction of mitochondria that results in
a decrease in cell viability. Additionally, 19m plays a key role
in mitochondrial homeostasis through selective elimination
of dysfunctional mitochondria. It is also a driving force for
transport of ions (other than H+) and proteins which are
necessary for healthy mitochondrial functioning (Zorova et al.,
2018).

To determine whether the ZIKV-induced mitochondrial
fragmentation disrupted mitochondrial bioenergetics, we
measured the mitochondrial membrane potential using
DePsipher dye, a unique cationic dye (5,5′,6,6′-tetrachloro-1,1′,3,
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FIGURE 2 | ZIKV induced mitochondria fragmentation. (A) Fluorescence images of NSCs 24 h after infection with MR766, PRVABC59, or mock control and stained
for ZIKV ENV (green), nuclei (Hoechst, blue), and mitochondria (MitoTracker, red). Scale bar, 10 µm. (B) Violin plot of the mean mitochondrial branch length in (A)
(n = 12). (C) The average percentage of the mitochondrial network and individual structures in (A) (n = 12). (D) Electron microscope imaging data of Mock, MR766,
or PRVABC59-infected NSCs. Scale bar, 2 µm. Red arrows indicate mitochondria; yellow arrows indicate the virus particles in the rough endoplasmic reticulum.
(E) Fluorescence images of SNB-19 infected with ZIKV PRVABC59 for 24 h and stained for ZIKV NS1 (green), nuclei (Hoechst, blue), and mitochondria (MitoTracker,
red). Scale bar, 5 µm. (F) The average percentage of mitochondrial networks and individual structures in (E) (n = 12). (G–I) Violin plot representing the numbers of
mitochondrial networks (G), mean branch length (H), and footprint (I) in (E) (n = 12). (J) A diagram shows the mitochondrial fragmentation in ZIKV-infected cells, and
the fragmentation severity is positively related to the ZIKV protein expression level. All P-values were calculated by one-way ANOVA with Tukey’s
multiple-comparison. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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FIGURE 3 | MFN2 protein level was reduced in ZIKV-infected cells. (A) Immunofluorescent images of ZIKV-infected NSCs and SNB-19 cells (multiplicity of infection,
MOI = 2) stained for ZIKV MR766 ENV protein (red), PRVABC59 ENV protein (green), and nuclei (blue). Scale bar, 50 µm. (B) Western blot for MFN2, MFN1, OPA1,
FIS1, DNM1L, TOMM20, and ENV from NSC and SNB-19 cell lysates 24 h after infection with Mock, MR766, or PRVABC59 (MOI = 2) Beta-actin (ACTB) is the
loading control. (C) Quantification of MFN2 protein in the western blot in (B) (upper panel). Real-time PCR for MFN2 mRNA expression after 24 h of infection (lower
panel). All values represent the mean ± the standard deviation (SD) (n ≥ 3 replicates). (D) Fluorescence images of SNB-19 infected with either ZIKV MR766 or
PRVABC59 and stained for MFN2 (green), ZIKV NS1 (white), nuclei (blue), and mitochondria (red). Scale bar, 10 µm. (E) Average immunostaining intensity of MFN2
in (D). (F) The violin plot shows the mean branch length in (D) (n = 12). (G) The histogram shows the percentage of the mitochondrial network in (D) (n = 12).
(H) Pearson correlation analysis shows the relationship between the percentage of mitochondrial individual and average MFN2 intensity in (D). (I) Graphical
illustration of ZIKV-induced mitochondrial fragmentation by reduced MFN2 protein resulting in mitochondrial fusion deficient. P-values were calculated by two-way
ANOVA with Tukey’s multiple-comparison (C), one-way ANOVA with Tukey’s multiple-comparison (E–G). ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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3′-tetraethylbenzimidazolyl-carbocyanine iodide) to indicate
the loss of 19m. The dyes readily enter cells and emit green
fluorescence, while the dyes emit red fluorescence in healthy
mitochondria as they are aggregated. When the mitochondrial
membrane potential collapses, the DePsipher dye cannot
accumulate within the mitochondria resulting in a reduction
in red fluorescence. Thus, unhealthy mitochondria, showing
primarily green fluorescence, are easily differentiated from
healthy mitochondria, which show red puncta besides green
fluorescence. In ZIKV-infected cells, staining with the dye
DePsipher produced fewer red puncta compare with uninfected
cells, indicating a reduction in mitochondrial membrane
potential and impaired mitochondrial function (Figures 4A,B).
In SNB-19 cells, the loss of 19m was proportional to the MOI
of ZIKV (started at MOI = 1) (Figure 4C). However, in NSC,
infection of ZIKV PRVABC59 at MOI = 0.5 is sufficient to
cause a significant decrease in membrane potential, suggesting
that NSC is more sensitive to ZIKV infection than SNB-19,
especially the PRVABC59 strain (Figure 4D). The cells with
reduced mitochondrial membrane potential after ZIKV infection
also exhibited increased mitochondrial fragmentation, fewer
networks, decreased mean branch length, and a reduced
mitochondrial footprint (Supplementary Figures S4A–C). The
results revealed impaired mitochondrial function after ZIKV
infection combined with mitochondrial fragmentation.

ZIKV-Induced Mitochondrial
Fragmentation Occurred Prior to
Apoptosis
Although mitochondrial fragmentation has been shown to
precede cell death, it remains unclear whether it is sufficient
to activate the cell death pathway (James and Martinou, 2008).
To examine whether mitochondrial fragmentation contributes
to ZIKV-induced cell death, we determined the temporal
relationship of mitochondrial fragmentation and cell death
after ZIKV infection in NSCs and SNB-19 cells using a cell
viability assay measuring ATP content in cells. Compared with
uninfected controls, intracellular ATP levels began to decrease
at 48 h post-infection in both the MR766 and PRVABC59
ZIKV strains (Figures 4E,F). As several studies have shown that
ZIKV infection results in apoptosis of infected cells (Ghouzzi
et al., 2016; Xu et al., 2016; Zhang et al., 2016; Devhare et al.,
2017; Zhu et al., 2017), we also measured the caspase activity
in the ZIKV-infected cells. Western blots showed significant
activation of caspase-3, -9, -7, and poly (ADP-ribose) polymerase
(PARP) (which indicated intrinsic apoptotic pathway activation),
but not caspase-8 (which is involved in the extrinsic apoptotic
signaling pathways), after 48 h of infection (Figure 4G). We also
observed the release of cytochrome C from mitochondria and
the aggregation of the apoptosis regulator BCL2-associated X
(BAX) on the mitochondrial outer membrane 48 h post-infection
(Supplementary Figures S4D,E), indicating that the intrinsic
apoptotic pathway played a critical role in ZIKV-induced
cell death.

Subsequently, we used the pan-caspase inhibitor emricasan
to block cell death caused by ZIKV infection (Hoglen et al.,

2004), which validated results from our previous study (Xu et al.,
2016). However, mitochondrial fragmentation was still observed
in the emricasan treated cells after ZIKV infection (Figures 4H,I
and Supplementary Figure S4F). This result suggested that
ZIKV-induced mitochondrial fragmentation was prior to or
independent of caspase activation and apoptotic cell death in
ZIKV-infected cells. Regardless of the presence of emricasan,
MFN 2 was significantly decreased in ZIKV-infected cells, and the
reduced MFN 2 level correlated with an increased mitochondrial
fragmentation (Figures 4J,K and Supplementary Figure S4G).
These data suggested that mitochondrial fragmentation could
precede or be independent of apoptosis (Figure 4L).

Blocking Mitochondrial Fragmentation
Increased Cell Survival After ZIKV
Infection
Mitochondrial fission and fusion are balanced to maintain
healthy mitochondrial morphology and function in cells.
To further explore if blocking mitochondrial fragmentation
would help increase cell survival after ZIKV infection,
we over-expressed both MFN1 and MFN2 to restore
normal fusion and treated cells with Mdivi-1 to inhibit
DNM1L activity, reducing mitochondrial fission. Both over-
expression of MFNs and treatment with Mdivi-1 produced
a hyperconnected mitochondrial network in uninfected cells
(Figure 5A). However, a combination of over-expressed
MFNs and Mdivi-1 treatment did not further change the
mitochondrial structure (Figure 5A). In uninfected control
cells, Mdivi-1 treatment significantly increased the mean
branch length of mitochondria, but not the numbers
of individual mitochondria (Figures 5B,C). After ZIKV
infection, Mdivi-1 treatment attenuated mitochondrial
fragmentation in control SNB-19 cells. We also observed
that in MFN1 or MFN2 over-expressing cells, Mdivi-1
moderately increased mitochondrial branch length and the
number of mitochondria in the networks. Although ZIKV
infection still shortened mitochondrial branch length in cells
overexpressing MFN1 or MFN2, the range of branch lengths
in these cells was similar to uninfected controls (Figure 5B).
The mitochondrial networks were only spared in MFN2
and not MFN1 overexpressing cells after ZIKV infection
(Figure 5C). These data suggested that either inhibition of
mitochondrial fission (by inhibiting DNM1L) or induction
of mitochondrial fusion (by over-expression of MFN2) could
counteract the mitochondrial fragmentation caused by ZIKV
infection (Figure 5D).

In addition, we found that Mdivi-1 treatment alone prevented
a decrease in cell viability after 48 h of infection without affecting
the rate of infection (Figure 5E and Supplementary Figure S5A).
Together with our previous data, this result suggested that
mitochondrial fragmentation precedes ZIKV-induced cell death.
However, we did not find that over-expression of MFN2 or
MFN1 protein rescued cell death caused by ZIKV infection
(Supplementary Figure S5B). This phenomenon could be
due to increased mitochondrial fusion that does not effectively
reduce the cytochrome C release from ZIKV-promoted
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FIGURE 4 | ZIKV-induced mitochondrial fragmentation proceeded apoptosis. (A,B) DePsipher staining images of NSCs (A) and SNB-19 cells (B) 24 h after infection
with ZIKV MR766 or PRVABC59 at various MOIs (0.5, 1, and 2). Green puncta indicate the DePsipher monomers in the mitochondria. Red puncta indicate the
DePsipher aggregates in the mitochondria and normal membrane potential. Scale bar, 10 µm. (C,D) Quantification of red puncta signal intensity in (A) and (B),
respectively. (E) Cell viability, as measured by intracellular ATP assay, of MR766 infected NSCs (left) and SNB-19 (right) at various MOIs (0–5). (F) Cell viability, as
measured by intracellular ATP assay, of PRVABC59 infected NSCs (left) and SNB-19 (right) at various MOIs (0–5). (G) Western blot of ZIKV ENV, CASP3, cleaved
CASP3, CASP9, cleaved CASP9, CASP7, cleaved CASP7, PARP, cleaved PARP, CASP8, and cleaved CASP8 of NSCs (left) or SNB-19 cells (right) at 24- or 48-h
post-infection with ZIKV MR766 or PRVABC59 (MOI = 1). (H) Fluorescence images of SNB-19 treated with 30 µM emricasan and infected with ZIKV MR766 or
PRVABC59 for 24 h. Cells were then stained for MFN2 (green), ZIKV NS1 (white), nuclei (blue) and mitochondria (red). Scale bar, 10 µm. (I) Violin plot of the mean
branch length in (H) (n = 12). (J) Quantification of immunostaining intensity of MFN2 in (H) (n = 12). (K) Pearson correlation analysis shows the relationship between
the percentage of mitochondrial individual and average MFN2 intensity in (H). (L) A time-course schematic diagram of cells after ZIKV infection. P-values were
calculated by two- tailed Student’s t-test (C,D) or one-way ANOVA with Tukey’s multiple-comparison test (I,J). ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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FIGURE 5 | Inhibiting mitochondrial fragmentation increased cell survival after ZIKV infection. (A) Fluorescence images of SNB-19 over-expressing GFP-MFN1 or
GFP-MNF2 (green) treated with 50 µM Mdivi-1 and infected with ZIKV for 24 h. Cells were then stained for ZIKV ENV (white), nuclei (blue), and mitochondria (red).
Scale bar, 10 µm. (B) The violin plot shows the mean branch length in (A) (n = 18). (C) The histogram shows the percentage of mitochondrial networks in (A)
(n = 18). (D) A diagram of mitochondrial fusion and fission cycle and our strategy to rebalance mitochondrial dynamics, increase mitochondrial fusion by
over-expression MFNs and/or decrease mitochondrial fission by Mdivi-1 treatment, which blocks DNM1L activity. (E) SNB-19 cell viability after 48 h infection with
ZIKV at MOI = 5 in the presence of 50 µM Mdivi-1 or DMSO. The values represent mean ± SD (n ≥ 3 replicates). All P-values were calculated by two-way ANOVA
with Tukey’s multiple-comparison. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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mitochondrial fission, leading to the apoptosis (Suen et al., 2008).
Collectively, these data indicated that maintenance of normal
mitochondrial dynamics by inhibiting mitochondrial fission
corrected ZIKV-induced mitochondrial changes and increased
cell survival after ZIKV infection. This finding hints at a potential
therapeutic intervention – inhibition of mitochondrial fission in
neural cells – as a treatment for ZIKV infection.

DISCUSSION

The association between ZIKV infection and microcephaly has
motivated research towards the development of neurotherapeutic
interventions (Xu et al., 2016; Yang et al., 2018). ZIKV
preferably infected iPSC-derived human neural progenitor
cells with high efficiency resulting in cell death compared to
differentiated primary neurons (Tang et al., 2016). ZIKV also
impaired the growth of iPSC-derived human neurospheres
and brain organoids (Garcez et al., 2016; Qian et al., 2016). In
mouse models, ZIKV infection caused neurodevelopmental
abnormalities (Lazear et al., 2016; Miner et al., 2016;
Rossi et al., 2016; Schuler-Faccini et al., 2016; Yang et al.,
2018). Of note, several development-related pathways were
enriched in our analysis of ZIKV-infected cells (p < 0.05),
including stem cell population maintenance, regulation of
cell differentiation, forebrain morphogenesis, and neuron
differentiation (Supplementary Figure S1A).

Abnormal morphology and dysfunction in mitochondria have
been linked to many neurological diseases (Leshinsky-Silver et al.,
2002; Mattson et al., 2008; Condie et al., 2010; Falk, 2010).
MFN proteins have been shown to be essential for maintaining
healthy neuronal function and are dysregulated in several
neurological diseases like Parkinson’s disease (Brooks et al.,
1999; Betarbet et al., 2006; Tanaka et al., 2010; Lee et al., 2012),
Alzheimer’s disease (Wang et al., 2009; Manczak et al., 2011;
Chen et al., 2016), Huntington’s disease (Shirendeb et al., 2011),
and Charcot-Marie-Tooth disease type 2A (Verhoeven et al.,
2006; Calvo et al., 2009; Song et al., 2013). Abnormalities
of other critical mitochondrial dynamics parameters were
also reported in some neurological disorders. The abnormal
activation of DNM1L has been reported in Alzheimer’s disease
(Cho et al., 2009) and Huntington’s disease (Shirendeb et al.,
2011; Song et al., 2011), both of which promoted mitochondrial
fission and damaged neurons. Suppressing mitochondrial
fission by inhibiting DNM1L activity or overexpressing MFN2
restored healthy mitochondrial dynamics, preserved ATP, and
prevented cell death (Wang et al., 2009). Notably, abnormal
mitochondrial morphology and dysfunction such as giant
individual mitochondria were also reported in newborns with
microcephaly (Suzuki and Rapin, 1969; Waterham et al., 2007).

Mitochondria are dynamic organelles, continuously
undergoing cycles of fusion, and fission to maintain a wide
range of biological functions (Twig et al., 2008). Several studies
have reported that mitochondrial dynamics can be altered
during infections with pathogens such as viruses, bacteria, and
parasites, leading to changes in mitochondrial morphology
(Kim et al., 2013; Stavru et al., 2013; Gorbunov et al., 2015;

Ding et al., 2017; Escoll et al., 2017). In previous reports,
MFN2-knockout cells displayed mitochondrial spheres or
ovals of widely different sizes, including some with a diameter
several-fold larger than wild type mitochondrial tubules (Filadi
et al., 2018), similar to the mitochondrial phenotype of infants
with microcephaly (Suzuki and Rapin, 1969). Mitochondria
trafficking in neurons is mediated by MFN2, and disruption
of this function induces axon degeneration (Baloh et al., 2007;
Misko et al., 2012). In this study, the lower levels of MFN2 after
ZIKV infection implies a role for mitochondrial dysregulation
in ZIKV-mediated microcephaly. Although over-expression of
MFN2 in ZIKV-infected cells helped to prevent the pathological
changes in mitochondrial morphology, it failed to rescue cells
from the ZIKV-induced cell death. Interestingly, a mitochondrial
fission inhibitor, Mdivi-1, effectively reversed ZIKV-induced
mitochondrial morphological and functional changes, rescuing
cells from apoptotic cell death. We hypothesize that the
over-expression of MFN2 failed to rescue ZIKV infected cells
from cell death because the release of cytochrome C was not
blocked by MFN2 over-expression. In contrast, inhibition
of mitochondrial fission by Mdivi-1 not only prevented
mitochondrial fragmentation by rebalancing mitochondrial
dynamics but also prevented the release of cytochrome C,
which usually occurs during mitochondrial fission (Suen et al.,
2008). Thus, rebalancing mitochondrial fission and fusion
may be one strategy to mitigate the cellular pathology caused
by ZIKV infection.

In agreement with a previous report (Tang et al., 2016), the
mRNA expression levels of MFN1 and MFN2 were not changed
in ZIKV-infected iPS cell-derived cortical neural progenitor
cells compared with the control cells. Our data indicated
that the reduction of MFN2 protein occurred independently
without changes in the mRNA levels. However, a reduction
of MFN2 mRNA was observed in the myeloid dendritic
cells from ZIKV-infected patients, as well as the dendritic
cells 24 h after infection in vitro (Carlin et al., 2018),
implying differential regulation of MFN2 expression in different
types of host cells during ZIKV infection (Supplementary
Figures S3F,G). The MFN1 and MFN2 (MFNs) mRNA
levels remain unchanged in neuronal cells. Therefore, the
protein-level decreases of MFNs are most likely due to
an increase in MFN protein degradation or a decrease in
MFN protein synthesis rather than transcriptional repression;
additionally, reasons for the changes in MFN levels may vary
depending on cell type.

Other Flaviviridae viruses have been reported to modulate
mitochondrial proteins and function such as hepatitis C virus,
West Nile virus, and dengue virus (DENV) (Li et al., 2005; Piccoli
et al., 2006; Ramanathan et al., 2006; Aguirre et al., 2017;
Sun B. et al., 2017). In our study, we observed significant
fragmentation of mitochondrial networks in both MR766- and
PRVABC59-infected NSCs and glioblastoma SNB-19 cells. The
degree of mitochondrial fragmentation correlated positively
with ZIKV protein expression levels. Consistent with the
report by Garcez et al. (2016), some ZIKV-infected cells
exhibited mitochondrial swelling. Interestingly, round and giant
neuronal mitochondria were observed in microcephalic infants
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(Suzuki and Rapin, 1969). Chatel-Chaix et al. (2016) observed
mitochondrial elongation in Huh7 cells after ZIKV infection,
possibly due to its heterogeneous effects on different cell types.
The variation of changes in mitochondrial morphology observed
in ZIKV infection was also present in DENV research; Yu C.Y.
et al. (2015) demonstrated DENV cleaved MFN1 and MFN2 via
its NS2B-NS3 protease to impair mitochondrial fusion. Others
reported DENV-induced mitochondrial elongation through
inhibition of DNM1L-triggered mitochondrial fission via NS4B
(Chatel-Chaix et al., 2016) or via a combination of NS4B and
NS3 (Barbier et al., 2017). Several ZIKV proteins (NS4A, NS4B,
and NS5) have been reported to affect interferon-related signaling
pathways by targeting the mitochondrial antiviral signaling
protein (MAVS) to evade the host antiviral response (Grant
et al., 2016; Wu et al., 2017; Ma et al., 2018). These reports have
implicated the disruption of mitochondria function by ZIKV
infection.

ZIKV-induced apoptosis (Ghouzzi et al., 2016; Souza et al.,
2016; Tang et al., 2016; Zhang et al., 2016; Oh et al., 2017)
was reported to be mediated by TP53 (Ghouzzi et al., 2016).
In our study, ZIKV-induced cell death was observed only after
48 h of ZIKV infection, while mitochondrial fragmentation was
present at 24 h post-infection. Concurrently, we also observed
the loss of mitochondrial transmembrane potential, indicating
disrupted mitochondrial function after ZIKV infection. It has
been reported that over-expression of ZIKV NS4A in a fission
yeast led to cell death, which occurred in part by the induction
of intracellular oxidative stress (Li et al., 2017). In this work,
we demonstrated mitochondrial fragmentation as an early
event that preceded cell death in NSCs infected by ZIKV.
However, the changes in mitochondria after ZIKV infection may
vary in different cell types and may have different effects on
cell death events.

In summary, our work uncovered mitochondrial
fragmentation caused by ZIKV infection preceding cell death.
The MFN2 protein level in mitochondria was reduced in
the ZIKV infected cells, and over-expression of MFN2 in these
cells rescued the changes in morphology and function of the
mitochondria. Mdivi-1, the mitochondrial fission inhibitor
targeting DNM1L, also blocked mitochondrial fragmentation
and cell death caused by ZIKV infection. The reduction of the
MFN2 level caused a deficiency in mitochondrial fusion, resulting
in the fragmentation of the mitochondria. Therefore, rebalancing
mitochondrial dynamics may serve as a therapeutic strategy
for drug development to treat neuronal complications of ZIKV
infection. Future work in whole animal models will be needed to

validate the restoration of mitochondrial dynamics as a strategy
to reduce neuronal damage after ZIKV infection.
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