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Abstract
Background: Neural stem cells (NSCs) are present in the adult mammalian brain and sustain life-
long adult neurogenesis in the dentate gyrus of the hippocampus. In culture, fibroblast growth
factor-2 (FGF-2) is sufficient to maintain the self-renewal of adult NSCs derived from the adult rat
hippocampus. The underlying signalling mechanism is not fully understood.

Results: In the established adult rat NSC culture, FGF-2 promotes self-renewal by increasing
proliferation and inhibiting spontaneous differentiation of adult NSCs, accompanied with activation
of MAPK and PLC pathways. Using a molecular genetic approach, we demonstrate that activation
of FGF receptor 1 (FGFR1), largely through two key cytoplasmic amino acid residues that are linked
to MAPK and PLC activation, suffices to promote adult NSC self-renewal. The canonical MAPK,
Erk1/2 activation, is both required and sufficient for the NSC expansion and anti-differentiation
effects of FGF-2. In contrast, PLC activation is integral to the maintenance of adult NSC
characteristics, including the full capacity for neuronal and oligodendroglial differentiation.

Conclusion: These studies reveal two amino acid residues in FGFR1 with linked downstream
intracellular signal transduction pathways that are essential for maintaining adult NSC self-renewal.
The findings provide novel insights into the molecular mechanism regulating adult NSC self-
renewal, and pose implications for using these cells in potential therapeutic applications.

Background
Neural stem cells (NSCs) represent a unique type of pre-
cursor cells that are capable of self-renewal and differenti-
ation into multiple neural cell types, including neurons

and glia [1-3]. During early brain development, NSCs in
the germinal region generate numerous progeny in a
highly organized manner to construct the nervous system.
Adult mammalian brains also harbour a population of
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adult NSCs that are primarily located in the subventricular
zone of the lateral ventricle and the dentate gyrus of the
hippocampus to maintain regional ongoing neurogenesis
[4-7]. Advances in NSC biology have highlighted the
promise of NSCs in stem cell-based therapies for neuro-
logical disorders [8-11]. Understanding molecular mech-
anisms regulating the behaviour of NSCs, including their
proper expansion in vitro with multipotentiality but not
tumorigenicity, is a critical step towards these goals.

As the defining hallmark of stem cells, self-renewal refers
to the process by which stem cells expand to generate at
least one of the two daughter cells with the same range of
developmental potentials as its parental cell [12,13]. Stem
cell self-renewal is critical for both embryonic develop-
ment and adult homeostatic tissue maintenance. In the
mammalian brain, NSCs are subject to tight and complex
regulation in different regions and at different stages of
development. The earliest neuroepithilial NSCs, for exam-
ple, self-renew and expand rapidly to produce a vast
number of progeny in order to meet the need of brain his-
togenesis. Whereas most adult stem cells in vivo usually
reside in a micro-environment (niche) and remain rela-
tively quiescent [14], they engage in active self-renewal
upon injury signals or under certain physiologic condi-
tions that demand rapid production of new progeny. Due
to the complex nature of self-renewal in vivo, stem cells in
culture provide a better-defined system to investigate how
self-renewal is controlled by intrinsic and extrinsic mech-
anisms.

Emerging evidence suggests that self-renewal is regulated
by diverse mechanisms in different stem cells [13,15]. In
the case of NSCs, it has long been noted that cell expan-
sion is promoted by the growth factor FGF-2, although lit-
tle is known about the underlying cytoplasmic signalling
mechanism [16-20]. NSCs isolated from different regions
of the brain or different stages of development, grown as
either "neurosphere" or adherent monolayer culture, all
undergo robust proliferation when supplemented with
FGF-2 in serum-free defined medium [21-25]. Self-
renewal entails not only proliferation but also mainte-
nance of the stem cell state. Cellular sub-cloning experi-
ments showed that the clonal progeny of NSCs still
preserved multipotentiality after expansion by FGF-2
[23,26], and in vitro expanded adult NSCs retained
multipotentiality in vivo even after serial transplantation
[27]. Genetic ablation of FGF-2 locus in mice resulted in
severe defects in the maintenance of a slow-dividing stem
cell pool, providing in vivo evidence that FGF-2 is neces-
sary for normal NSC self-renewal [28]. Interestingly, FGF-
2 is present in normal adult NSC niches, can be induced
by diverse types of pathological conditions, and is func-
tionally capable of enhancing the inherently limited self-
renewal of endogenous NSCs after ischemic stroke [29-

35]. Under different biological contexts, FGF-2 may addi-
tionally act in coordination with many other types of
extrinsic signalling molecules to exquisitely control adult
NSC self-renewal in response to changes of cell physiolog-
ical milieu, tissue homeostatic states and diverse environ-
mental stimuli [5,10,36-41].

FGF-2 receptors (FGFRs) belong to the family of receptor
tyrosine kinases [42,43]. The ligand binding, which is
facilitated by heparin, leads to dimerization and auto-
phosphorylation of FGFRs. Consequently, various phos-
phorylated tyrosine residues on the receptor serve as
docking sites for adaptor or enzymatic proteins that link
the receptor to downstream intracellular signalling path-
ways. Previous studies have implicated multiple pathways
downstream of FGFRs, including the canonical MAPK
(Extracellular signal-regulated kinase, Erk1/2) and phos-
pholipase C (PLC) signalling [42,44]. However, it is
unknown whether any of these pathways function in
adult NSC self-renewal despite genetic evidence that has
clearly implicated the role of FGFR1 in regulating adult
NSC proliferation and neurogenesis [32,45,46]. Erk1/2
activation, for instance, has been shown to be important
for myoblast proliferation, whereas its suppression pro-
motes self-renewal of mouse embryonic stem cells
[47,48]. These findings suggest that signalling pathways
are largely conserved, yet their effects are context-depend-
ent [42]. Thus, it is necessary to analyze the specific role of
a given pathway in a particular cellular process.

In this study, we aim to gain molecular understanding on
the role and mechanism of FGFR signalling in regulation
of adult NSC self-renewal. Choosing the well-established
rat hippocampal adult NSCs as our model system, we
undertook multiple experimental strategies to assess
whether specific FGFR signalling is sufficient to promote
the self-renewal of adult NSCs, and further dissect out the
functional requirement and cooperation of MAPK, PLC
pathways in FGF-2-dependent self-renewal of adult NSCs.

Results and discussion
FGF-2 regulates the self-renewal of adult NSCs through 
promoting proliferation and inhibiting spontaneous 
differentiation
When grown as monolayer cultures, adult rat hippocam-
pal NSCs remain multipotent and their self-renewal is
strictly dependent on FGF-2 (Additional file 1). Initially
isolated and purified from adult rat hippocampus, these
adult NSCs can be maintained for long-term in serum-free
F12/N2 medium supplemented with 20 ng/ml FGF-2
[22,24,25,49]. They give rise to neurons, astrocytes and
oligodendrocytes both in culture and after transplanted
into the dentate gyrus of adult rats in vivo [49,50]. Clonal-
derived adult NSCs retain multi-lineage potentials, con-
sistent with an FGF-2-dependent self-renewal of adult
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FGF-2 regulates self-renewal of adult NSCs by promoting proliferation and inhibiting spontaneous differentiationFigure 1
FGF-2 regulates self-renewal of adult NSCs by promoting proliferation and inhibiting spontaneous differentia-
tion. (A, B) Sample immunostaining images of adult NSC culture with or without treatment of exogenous FGF-2 (20 ng/ml). 
Nestin is a neural precursor cell marker; Ki67 is a cell proliferation marker; Tuj1 is a neuronal marker; RIP is an oligodendro-
cyte marker; GFAP is an astrocyte marker. Scale bar: 20 μm. (C) Quantification of the percentage of cells with characteristic 
markers in the presence or absence of FGF-2, or after treatment of RA (0.5 μM) and FBS (0.5%). Values represent mean ± 
SEM. (n = 6; *: P < 0.01, Student's t-test). (D) Multi-lineage differentiation potentials of adult NSCs after long-term culture in 
the presence of FGF-2. EGFP was used to label a single cell and allowed to expand in the presence of FGF-2 (20 ng/ml) and 
then induced to differentiate into Tuj1+ neurons (red) and GFAP+ glia (blue) with RA (0.5 μM) and FBS (0.5%) for 6 days. Scale 
bar: 20 μm.
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NSCs (Figure 1). To evaluate the effect of FGF-2 on adult
NSC self-renewal, we assessed several integral aspects of
stem cell self-renewal: proliferation, anti-differentiation,
and maintenance of multipotentiality.

In the presence of FGF-2, the adult NSC culture comprised
mostly Nestin+ (a neural progenitor maker) and Ki67+ (a
proliferation marker) population (Figure 1A). Differenti-
ation markers Tuj1 (neuronal), GFAP (astroglial), and RIP
(oligodendroglial) were rarely detected (Figure 1B). By
contrast, withdrawal of FGF-2 led to significant cell cycle
arrest and spontaneous differentiation within 4 days, as
shown by a significant decrease in the percentage of Ki67+

and Nestin+ cells and an increase of spontaneous neuro-
nal and oligodendroglial differentiation (Figure 1B, C).
Overall, the percentages of apoptotic cells were not signif-
icantly altered with or without FGF-2 under these culture
conditions. When the multipotentiality of adult NSCs was
examined at different passages (passage 15, 25, 35), the
culture consistently generated both neurons and glia. Fur-
thermore, EGFP-labelled clonal-derived adult NSCs gave
rise to both Tuj1+ neurons and GFAP+ astrocytes (Figure
1D). These results suggest that FGF-2 promotes self-
renewal of NSCs by stimulating proliferation, inhibiting
spontaneous differentiation, and maintaining multipo-
tentiality.

A chimeric receptor recapitulates effects of FGF-2 and 
implicates Erk1/2 and PLCγ1 signalling in adult NSC self-
renewal
How does FGF-2 exert such wide-ranging effects on adult
NSCs? Among the four members of FGFRs, FGFR1 was
highly expressed in adult NSCs (Figure 2A). These adult
NSCs exhibited little endogenous NGF receptor TrkA tran-
script during proliferation (Figure 2A). To test whether
FGFR1 activation is sufficient to promote self-renewal, we
derived an adult NSC line harbouring a chimeric receptor
with the extracellular domain of NGF receptor TrkA and
the intracellular domain of FGFR1 (TF1 line; Figure 2A).
In the chimeric NSC line, NGF was sufficient to activate
FGFR1 signalling and mimic effects of FGF-2 in promot-
ing long-term proliferation and inhibiting differentiation
of adult NSCs (Figure 2B, C). Importantly, the chimeric
TF1 NSC line remained to be responsive to FGF-2, and
multipotent after long-term culture in the present of NGF
(Figure 2B, C, E), suggesting that FGFR1 signalling is suf-
ficient to promote proliferation and maintain multipo-
tentiality of adult NSCs.

By expressing a chimeric TrkA-FGFR receptor, we used
NGF as a surrogate ligand to activate FGFR1 and examined
the influence of specific mutations from the intracellular
domain of FGFR1 on adult NSC self-renewal. We estab-
lished lines of adult NSCs with a series of chimeric recep-
tor constructs, including TrkA-FGFR1 (TF1), TF1L422A,

TF1Y463F, TF1Y653/4F, and TF1Y766F (Figure 2A). L422
is a critical leucine amino acid residue site for FRS2 bind-
ing, and its mutation leads to loss of downstream signal-
ling through the FRS2-Ras-MAPK cascade [51]. Y653/4F
(tyrosine to phenylalanine) is an FGFR1 kinase enzymatic
inactive mutation, and Y463F and Y766F disrupt substrate
actions of the tyrosine kinase Crk and a member of the
PLC family, PLCγ1, respectively [44,52]. In NSC prolifera-
tion assay, NGF recapitulated the effect of FGF-2 for the
TF1 line, whereas NGF failed to stimulate the proliferation
of the TF1Y653/4F kinase dead mutant line (Figure 2D).
In contrast, NGF-induced expansion of TF1L442A,
TF1Y766F lines were significantly decreased compared to
the TF1 line. Importantly, all these adult NSC lines
retained normal self-renewal in response to FGF-2 (Figure
2D). Taken together, these results indicate that L442 and
Y766 linked downstream Ras-MAPK and PLCγ1 activation
are likely essential for maintaining adult NSCs, through
direct regulation of NSC proliferation and/or mainte-
nance of progenitor characteristics.

Using phospho-specific antibodies against Erk1/2 and
PLCγ1, western blot analysis showed that FGF-2 induced
prominent Erk1/2 and PLCγ1 activation (Figure 3A).
While Erk1/2 phosphorylation persisted into 24 hours
after the addition of FGF-2, PLCγ1 tyrosine phosphoryla-
tion appeared to be transient in nature. The dependence
of Erk1/2 and PLCγ1 activation on L442 and Y766 resi-
dues was confirmed in chimeric NSC lines with respective
signalling deficiencies (Figure 3C to 3E). Collectively,
these results suggest that two key amino acid residues in
the intracellular domain of FGFR1 are important for adult
NSC self-renewal and mediate the effects of FGF-2
through ERK and PLCγ1 signal transduction pathways.

Activation of Erk1/2 is both required and sufficient for the 
proliferation of adult NSCs
To directly examine the specific role of Erk1/2 activation
in adult NSC self-renewal, we treated adult NSC cultures
with U0126, a selective and potent inhibitor for the Erk1/
2 kinase MEK1/2 [53]. As shown by western blot analysis
(Figure 4A), FGF-2-stimulated Erk1/2 activation was
inhibited by U0126 in a dose-dependent manner. In adult
NSC culture treated with 2.5 μM U0126, the percentage of
Ki67 or Nestin positive cells was significantly lower than
the untreated culture (Figure 4B). In contrast, U0124, the
inactive analogue of U0126, elicited no significant effects.
When subjected to clonal analysis assay in measuring self-
renewal expansion at the single cell level (Additional file
2), U0126 also suppressed FGF-2-induced clonal expan-
sion of EGFP-labelled NSCs in a dose-dependent manner
(Figure 4C, D).

To further examine the role of Erk1/2 activation in adult
NSC proliferation, we engineered retroviruses to over-
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express the dominant negative (DN), wild-type (WT) and
constitutively active (CA) mutants of MEK1 in adult NSCs
(Figure 4E, F). These mutants have been widely used to
manipulate cellular Erk1/2 activity [54,55]. Bicistronic
expression of EGFP was used to monitor transduced cells
with infection efficiency over 95%. Western blot analysis
using phosph-Erk1/2 antibodies confirmed that MEK1-
DN NSCs effectively attenuated Erk1/2 activation, and
MEK1-CA rendered Erk1/2 constitutively active in adult
NSC culture (Figure 4E). In clonal analysis assay, MEK1-
DN NSCs produced significantly reduced clone sizes in
the FGF-2 treated condition, whereas MEK1-CA NSCs
yielded significantly increased clone sizes even in the
absence of FGF-2 (Figure 4F). Collectively, these data sug-
gest that Erk1/2 activation is both required and sufficient
for FGF-2-dependent proliferation of adult NSC.

Activation of Erk1/2 blocks both spontaneous and induced 
differentiation of adult NSCs
Spontaneous differentiation of some adult NSCs was also
observed after U0126 treatment or MEK1-DN expression.
Next, we examined the role of Erk1/2 pathway in the anti-
neuronal differentiation effect of FGF-2 on adult NSCs in
detail. Spontaneous NSC differentiation occurred at a very
low basal level in the presence of FGF-2 (Figure 5A). Treat-
ment of U0126 (2.5 μM), but not U0124, led to signifi-
cant spontaneous differentiation of adult NSCs into RIP+

oligodendrocytes and Tuj1+ neurons (Figure 5A). Simi-
larly, the NSC line expressing MEK1-DN exhibited a
higher spontaneous differentiation rate than both MEK1-
WT and MEK1-CA lines. In standard differentiation condi-
tion with the treatment of retinoic acid (RA; 0.5 μM) and
fetal bovine serum (FBS; 0.5%) for 6 days [24,56], adult
NSC lines expressing MEK1-CA generated a significantly
lower percentage of RIP+oligodendrocytes and Tuj1+ neu-
rons (Figure 5B). Meanwhile, most cells from MEK1-CA
NSC lines remained in cell cycle as indicated by the signif-
icantly higher percentage of Ki67+ cells (Figure 5B). We
further explored these changes in neuronal differentiation

by performing western blot analysis. Tuj1 was up-regu-
lated in the absence of FGF-2 and reached a higher level
under differentiation conditions (Figure 5C). Such
increase was accelerated in the MEK1-DN NSC lines and
abrogated in the MEK1-CA NSC lines.

Considering the phenotype of MEK1 NSC lines, we also
tested whether expression and regulation of key genes
involved in proliferation and differentiation were affected
in MEK1 NSC lines. Indeed, NeuroD1, an essential tran-
scription factor for neuronal differentiation, was strongly
down-regulated in the MEK1-CA NSC line compared to
the MEK1-DN and WT NSC lines (Figure 5D). Interest-
ingly, CyclinD2, one of the key genes for cell cycle pro-
gression showed a reverse expression pattern as NeuroD1.
It has been shown that FGF and Shh control CyclinD2 and
CyclinD1 expression to maintain the cycling and undiffer-
entiated progenitor states at different brain regions with
NSCs, respectively [57]. While it is likely that proliferation
and anti-differentiation are coupled events, Erk1/2 may
also promote cell cycle progression and inhibit precocious
differentiation programs by independent mechanisms.
One of the prominent targets is Notch signalling, which
has been shown to inhibit neuronal differentiation from
multiple types of NSCs and its constitutive activation led
to astrocyte differentiation [58]. In adult NSCs, we
detected abundant expression of a Notch ligand Jagged-1
in the MEK1-CA, but not in MEK1-DN or WT NSCs, sug-
gesting that Jagged-1 and Notch signalling may mediate
the anti-differentiation effects of MEK1 (Figure 5D).
Taken together, these results indicate that the MAPK-ERK
pathway of FGFR1 signalling prevents both spontaneous
and induced neuronal and oligodendroglial differentia-
tion, possibly through regulation of key genes including
NeuroD1 and CyclinD2.

A chimeric receptor recapitulates effects of FGF-2 and implicates Erk1/2 and PLCγ1 signalling in adult NSC self-renewalFigure 2 (see previous page)
A chimeric receptor recapitulates effects of FGF-2 and implicates Erk1/2 and PLCγ1 signalling in adult NSC 
self-renewal. (A) A schematic diagram illustrating the chimeric receptor and the amino acid residues within the FGFR1 intra-
cellular domain that are linked to various downstream signalling pathways. Shown on the top is the RT-PCR analysis of the 
expression of endogenous TrkA and FGFRs under the proliferating condition in the presence of FGF-2. (B) A bright-field view 
(low and high density) of NSC lines with the TF1 chimeric receptor grown in the presence of FGF-2 (20 ng/ml) or the surro-
gate ligand NGF (50 ng/ml). Scale bar: 20 μm. (C) Growth curves of the NSC lines with TF1 chimeric receptors in the absence, 
and presence of FGF-2 (20 ng/ml) or the surrogate ligand NGF (50 ng/ml). Values represent mean ± SEM. (n = 3). (D) Quanti-
fication of NSC numbers of various chimeric receptor lines cultured in the medium alone, or with supplementation of FGF-2 
(20 ng/ml) or NGF (50 ng/ml). For each line, the total NSC numbers were normalized to those cultures in the presence of 
FGF-2 (20 ng/ml). Values represent mean ± SEM. (n = 3; *: P < 0.01, Student's t-test). (E) Normal NSC characteristics and 
multipotentiality of the TF1 chimeric NSC line maintained by NGF. Shown on the top are sample images of immunostaining of 
proliferating NSCs with Ki67 (red) and Nestin (green). Shown on the bottom are sample images of immunostaining with Tuj1 
(red) or GFAP (green) of cultures at 6 days after the treatment of RA (0.5 μM) and FBS (0.5%). Scale bar: 20 μm.
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Specific activation of signal transduction pathways in chimeric receptor lines with various mutations of several key amino acid residues of FGFR1Figure 3
Specific activation of signal transduction pathways in chimeric receptor lines with various mutations of several 
key amino acid residues of FGFR1. (A-B) Western blot analysis of Erk1/2 and PLCγ1 phosphorylation in normal adult 
NSCs in response to FGF-2 (20 ng/ml). (C-D) Western blot analysis of NGF-induced Erk1/2 phosphorylation in the TF1 line 
and in the mutant TF1L422A or TF1Y766F chimeric lines. (E) Western blot analysis of NGF-induced PLCγ1 phosphorylation in 
the mutant TF1L422A or TF1Y766F chimeric lines.
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Erk1/2 Activation is both required and sufficient for adult NSC proliferationFigure 4
Erk1/2 Activation is both required and sufficient for adult NSC proliferation. (A) Western blot analysis of Erk1/2 
inhibition in normal adult NSCs with the treatment of U0126 or U0124 at different concentrations. (B) Quantification of the 
cellular composition of adult NSC culture in the presence or absence of U0126, or its inactive analog U0124 (2.5 μM). Values 
represent mean ± SEM. (n = 6; *: P < 0.01, Student's t-test). (C) Sample images of clonal analysis of adult NSCs with MEK1 inhi-
bition. Scale bar: 20 μm. (D) Summary of clonal analysis of adult NSCs in the presence of U0126 or U0124. (E) Western blot 
analysis of Erk1/2 activation in MEK1-WT, DN or CA lines. (F) Summary of clonal analysis assay for adult NSCs expressing 
MEK1-DN, WT or CA. Values represent mean ± SEM. (n = 3; *: P < 0.01, Student's t-test).
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PLCγ1 maintains neuronal and oligodendroglial 
differentiation potentials of adult NSCs
In parallel with the MAPK pathway, we also examined
how PLCγ1 might participate in regulating adult NSC self-
renewal. To directly ascertain the function of PLCγ1, we
designed and screened a number of small hairpin RNAs
(shRNA) to knockdown endogenous PLCγ1 expression in
adult NSCs (Figure 6A). Retroviruses carrying the shRNAs
along with a visualizing marker ZsGreen were used to
infect adult NSCs. Both western blot analysis and immu-
nostaining confirmed the knockdown efficacy of one
shRNA from the screen (Figure 6A–B). This shRNA targets
the 3'UTR region to allow rescue experiments with the
exogenous full-length cDNA of PLCγ1.

Under normal proliferation conditions, PLCγ1-depleted
cells exhibited decreased number of GFAP negative and
Nestin positive cells, consistent with results from the
mutant chimeric receptor NSC line TF1Y766F (Figure

2D). We next assessed the differentiation profile of adult
NSCs infected with PLCγ1-shRNA and control shRNA
viruses. Surprisingly, in the standard differentiation con-
dition with 0.5 μM RA and 0.5% FBS for 6 days, the major-
ity of the progeny of PLCγ1-shRNA cells consisted of
GFAP+ astrocytes, instead of a mixed population of neu-
rons and glia as seen in control (Figure 6D). Cell death
rates were not significantly altered in these conditions. A
large fraction of PLCγ1-depleted cells remained to be
undifferentiated even with RA and FBS (Figure 6D), in
sharp contrast to adult NSCs with Erk1/2 inhibition,
which led to reduced proliferation and elevated neuronal
differentiation of adult NSCs (Figure 5). Even in the nor-
mal proliferation condition, the number of GFAP positive
and Nestin negative cells slightly increased among PLCγ1-
depleted cells. Results from immunostaining-based quan-
titative cell counting were further supported by western
blot analysis (Figure 6C and Additional file 3). The
amounts of neuronal and oligodendroglial differentiation

Erk1/2 Activation blocks both spontaneous and induced differentiationFigure 5
Erk1/2 Activation blocks both spontaneous and induced differentiation. (A) Cell number quantification for each dif-
ferentiation marker (Tuj1, GFAP or RIP) in proliferating adult NSC culture in the presence of FGF-2 (20 ng/ml) and with U0126 
or U0124 (2.5 μM) (n = 6; *: P < 0.01, Student's t-test). (B) Cell number quantification for each differentiation marker (Tuj1, 
GFAP or RIP) in adult NSCs expressing MEK1-WT, DN, or CA at 6 days after the induction of differentiation with RA (0.5 
μM) and FBS (0.5%) (n = 3; *: P < 0.01, Student's t-test). (C) Western blot analysis of neuronal marker Tuj1 expression in adult 
NSCs expressing MEK1-WT, DN, or CA under the medium only, FGF-2 supplemented and normal differentiation with RA (0.5 
μM) and FBS (0.5%) conditions. (D) Semi-quantitative RT-PCR analysis on the induction of NeuroD, CyclinD2 and Jag1 genes 
in adult NSCs expressing MEK1-WT, DN, or CA under the differentiation condition.
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markers Tuj1 and CNPase, but not astroglial marker
GFAP, were significantly less abundant in PLCγ1-shRNA
cells than the normal, vector transduced, or control
shRNA virus transduced adult NSCs after induction of dif-
ferentiation. Importantly, introducing WT PLCγ1 cDNA
back into the PLCγ1-shRNA cells rescued the impaired
neuronal differentiation capacity of cells depleted with
PLCγ1, excluding potential off-target effects of this partic-
ular shRNA (Figure 6E). Furthermore, adult NSCs express-
ing the lipase-inactive DN form of PLCγ1 [59] exhibited
similar deficits of neuronal differentiation (Figure 6F).
These experiments demonstrate that knockdown of PLCγ1
leads to largely exclusive commitment of adult NSC
towards astroglial fates, suggesting an essential role of
PLCγ1 to maintain the full developmental potential of
adult NSCs for proper neuronal and oligodendroglial dif-
ferentiation.

Intriguingly, the phenotype of PLCγ1-depleted cells
resembles glioblastoma, a type of brain tumor cells that
also exhibit impaired capacity for neuronal and oligoden-
droglial differentiation [60,61]. Accumulating evidence
also suggests that adult NSCs in vivo express GFAP, an
astrocytic marker, and glioblastoma may originate from
adult NSCs [60,61]. In addition to the impaired neuronal
and oligodendroglial differentiation, PLCγ1-shRNA cells
exhibited enhanced GFAP expression in the presence of
FGF-2 (Figure 6C). It is thus plausible that PLCγ1 nor-
mally regulates the transition of multipotent NSCs into
astrocyte versus other fates, and its depletion may predis-
pose NSCs to glial differentiation thus compromising
multipotentiality. Consistent with this notion, PLCγ1 is
abundantly expressed by embryonic radial glia during
fetal brain development, and its overall expression is
inversely correlated with GFAP expression from the
embryonic stage E14 to adulthood [62].

Our results support a model that FGF-2 induced Erk1/2
activation promotes the proliferation and blocks the
spontaneous neuronal and oligodendrocyte differentia-
tion of adult NSCs, while in parallel FGF-2-induced acti-
vation of PLCγ1 pathway maintains the full

differentiation capacity of NSCs into neuronal and oli-
godendroglial lineages by preventing excess astroglial
commitment of adult NSCs (Additional file 4). Other
pathways downstream of FGF-2 or alternative signal trans-
duction machineries, such as EGF, BMP, WNT, SHH, and
cytokine signalling molecules, may also interact with the
pathways studied in our work, and converge on the regu-
lation of adult NSC self-renewal in a context-specific and
coordinated manner [36,38,40,46,63-70]. Given that
FGF-2 is normally expressed in adult NSC niches, induced
by diverse injuries such as ischemic stroke, and promotes
the mobilization and self-renewal of adult NSCs in certain
physiological and pathologic conditions [29-35], it will
be of interest in the future to investigate the involvement
and functionality of these FGF-2 dependent intracellular
signalling pathways in regulating adult NSC self-renewal
in vivo in normal and disease contexts.

Conclusion
Understanding molecular mechanisms of stem cell behav-
iour regulated by extrinsic factors is an important step
towards therapeutic application of NSCs for neurodegen-
erative diseases. Here we identified two key intracellular
signalling pathways that dictate distinct aspects of adult
NSC self-renewal in response to FGF-2. Erk1/2 pathway
mediates both the proliferation and anti-neuronal differ-
entiation effects of FGF-2, whereas PLCγ1 maintains adult
NSC characteristics and developmental potentials of adult
NSCs for neuronal and oligodendroglial differentiation.
Coordination of these two pathways ensures that adult
NSC self-renewal is under the stringent control of growth
factor signalling, and to potentially prevent adult NSCs
from transforming into cancerous stem cells such as gliob-
lastoma, and losing precocious multipotentiality.

FGF-2 signaling is essential for self-renewal of adult neural
stem cells from multiple mammalian species, including
humans (Additional file 1). Our findings provide mecha-
nistic insights into the molecular and cellular machinery
regulating adult NSC self-renewal. Molecular genetic dis-
section of the FGFR1 pathway in this study also suggests
novel biomarkers and interventions for monitoring and

Impairment of neuronal and oligodendrocyte differentiation in PLCγ1-depleted adult NSCsFigure 6 (see previous page)
Impairment of neuronal and oligodendrocyte differentiation in PLCγ1-depleted adult NSCs. (A) A schematic dia-
gram illustrating the retroviral shRNA construct and western blot analysis on the efficacy of knockdown by shRNAs against 
endogenous PLCγ1 in adult NSCs. (B) Immunostaining of endogenous PLCγ1 in NSCs infected with shRNA-i1. Scale bar: 20 
μm. (C) Western blot analysis of neuronal differentiation marker Tuj1 and glial marker GFAP in PLCγ-depleted NSCs in the 
presence or absence of FGF-2, or after induction of differentiation with RA (0.5 μM) and FBS (0.5%) for 6 days. (D) Quantifi-
cation of various cell types in PLCγ1-depleted NSCs after induction of differentiation with RA (0.5 μM) and FBS (0.5%) for 6 
days. Values represent mean ± SEM. (n = 4; *: P < 0.01, Student's t-test). (E) Rescue of neuronal differentiation defects of 
endogenous PLCγ1-depleted adult NSCs by exogenous expression of PLCγ1 cDNA plasmid. (F) Western blot analysis of neu-
ronal differentiation marker Tuj1 after differentiation of adult NSCs expressing WT and two different dominant negative 
mutants of PLCγ1 (LIM: lipase inactive mutant, SH3: SH3 domain deletion mutant).
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preserving desired NSC states, and thus have clear impli-
cations for potential uses of adult NSCs expanded in vitro
in therapeutic applications.

Methods
Isolation, Culturing and Differentiation of Adult NSCs
The adult NSC line was initially established from primary
adult rat NSCs [22,24]. These adult NSCs were isolated
from hippocampi of adult (3-month-old) male Fischer
344 rats. Briefly, hippocampi were dissected and trans-
ferred to PBS medium containing penicillin and strepto-
mycin. Tissue was washed, minced, and enzymatically
digested for about 30 min in a mixture of 0.1% neural
protease, 0.01% papain and 0.01% DNAse I. Tissue was
then mechanically dissociated and cells were washed, cen-
trifuged, and resuspended in DMEM containing 10% FBS.
Equal volume of Percoll was added, and cells were centri-
fuged at 12,700 RPM for 30 min. The middle layer of the
gradient were removed and washed 3 times with PBS.
Cells were then resuspended and counted before plated
on laminin-coated flasks in DEME/F12 medium contain-
ing N2 supplement, L-glutamine (2 mM) and FGF-2 (20
ng/ml) as described [22,24]. Cells were passaged for
expansion when reaching 70% confluence or seeded at
clonal density for experiments. For differentiation studies,
fresh RA (0.5 μM) and FBS (0.5%) were added to FGF-2
free culture for six days and the medium was changed
every 3 days with fresh RA and FBS.

Constructs and molecular biology
The original chimeric TF1 constructs [71] were sub-cloned
into the retroviral vector pBMN-IRES-EGFP upstream of
IRES-EGFP. Mutagenesis was performed by QuickChange
(Stratagene) and confirmed by sequencing. The vector
pSilencer-RetroQ (Clontech) was used to amplify the frag-
ment containing the U6 promoter by a universal sense
primer and an shRNA-containing antisense primer. PCR
products were cloned into pSilencer-RetroQ to generate
retroviral vectors. The primer sequence for PLCγ1 shRNA
was as follows: PLCγ1: 5'-CTAGAATTCACGCGTAAAAAA
GAAACAACCGGCTCTTCGTCCAAGCTTCGACGAAGAG
CCGGTTGTTTCGGATCCTCGTCCTTTCCACA. Scram-
bled sequences were used as controls.

Virus Production and Transduction
Phoenix Eco-packaging cell line or 293-gp cells (Clon-
tech) were transfected with retroviral vectors pseudotyped
with VSVG by calcium phosphate methods as previously
described [72,73]. Supernatant was collected and subject
to ultra-centrifugation (25 k rpm, 90 min). Titer of virus
was determined in NIH3T3 cells and aliquots were frozen
at -80°C. Transduction was performed overnight with 2
μg/ml polybrene in a minimum volume of medium as
previously described [74].

Immunocytochemistry and in Vitro Quantification
Cells were fixed with 4% paraformaldehyde, followed by
immunocytochemical staining as described [22,24,56].
The following primary antibodies were used: rabbit anti-
Tuj1 (1:7500; Covance), mouse anti-RIP (1:50; Hybrid-
oma Bank); guinea pig anti-glial fibrillary acidic protein
(GFAP; 1:2,500; Advanced Immunochemical), mouse
anti-PLCγ1 (1:1000; Upstate). After incubation with sec-
ondary antibodies (1:250; Jackson Immunoresearch) for
90 min at room temperature, cultures were rinsed, stained
with 4',6-diamidino-2-phenylindole (DAPI), rinsed,
mounted and stored at 4°C. Images were taken with fluo-
rescence confocal microscopy system (Zeiss LSM510). All
experiments were independently replicated at least three
times.

Clonal analysis assay
Retrovirus transduced NSCs were mixed with WT NSCs at
a clonal ratio (generally 1:40) and assayed for clone size
and clonal composition in various conditions. For each
chimeric receptor, infected culture was grown in the pres-
ence of FGF-2 (20 ng/ml), NGF (50 ng/ml), or medium
only. After 4 days, the size of EGFP clones was counted
and quantified; cell death events in each clone was
assessed alive by propium iodide and Hoescht staining;
differentiation states was examined by immunostaining
with Nestin, Tuj1, RIP and GFAP. Another duplicate set of
cultures was allowed to differentiate in the presence of RA
(0.5 μM) and FBS (0.5%) for six days and the clonal com-
position (Tuj1+/RIP+/GFAP+) was examined for multipo-
tentiality.
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FGF-2 promotes the self-renewal of both rodent and human NSCs. A. 
Sample images of mouse, rat and human NSCs cultured in the presence 
of FGF-2 and/or other growth factors. Scale bar: 20 μm. B. Sample 
images of rat NSCs in various conditions. Scale bar: 20 μm.
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Clonal analysis assay. A. A schematic diagram of clonal analysis assay. 
B. Sample images and quantification of the effect of FGF-2 on clonal 
expansion. Scale bar: 20 μm.
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Additional file 3
Defective neuronal differentiation in PLCγ1-depleted cells. Immunos-
taining of differentiated culture from adult NSCs with PLCγ1 depleted. 
Shown are Tuj1 (A), DAPI (B), ZsGreen (C) and Merged image (D). 
Scale bar: 20 μm.
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