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Short-read RNA sequencing (RNA-seq) is the most widely used 
assay for transcriptome profiling, and many computational 
methods have been developed to identify and quantify tran-

scripts from the produced sequence read data. Transcript quantifi-
cation methods assign reads to known species-specific transcripts 
to obtain a quantitative measurement for their relative expression, 
and the assembly of transcript sequences can reveal novel types of 
RNA molecules. In contrast to the reference-based assembly that 
builds full-length transcripts from reads ordered by a prior align-
ment to a reference genome, the de novo assembly approach recon-
structs transcripts based on the sequence overlap of reads alone and 
can be applied to species for which no or just a highly fragmented 
reference genome is available.

Despite many methodological advances, the accuracy of 
transcript-level inference methods developed over the last decade is 
severely limited by the lack of long-range information contained in 
each individual short read. They perform particularly poorly in the 
detection and quantification of lowly expressed transcripts and tran-
scripts from complex genes1–3that share large parts of their sequences 
due to alternative splicing. Multi-sample approaches, such as the 
recently introduced PsiCLASS4, try to address these limitations by 
assembling transcripts simultaneously across multiple RNA-seq 
samples. On the other hand, third-generation technologies, such 

as those marketed by Pacific Biosciences or Oxford Nanopore 
Technologies (ONT), are able to read full-length transcripts but at 
a lower throughput, a higher error rate and a higher cost per base5.

Here we propose Ladder-seq, a new variant of the RNA-seq 
protocol that effectively breaks gene complexity by separating 
mRNAs according to their lengths into a small number of bands 
before their fragmentation. This experimental deconvolution can 
guide an algorithm to assemble or assign reads to transcripts only 
of a correct length. We extend and tailor state-of-the-art RNA-seq 
analysis methods for quantification, reference-based assembly and 
de novo assembly to use the extra layer of information introduced in 
Ladder-seq to detect and quantify transcripts at an unprecedented 
level of accuracy and reveal transcripts that are invisible to conven-
tional RNA-seq approaches.

More accurate transcript-level estimates from Ladder-seq will 
facilitate downstream differential analysis, which we exploited in a 
study of epitranscriptomic regulation of splicing in mouse neural 
progenitor cells (NPCs). m6A is the most abundant internal modi-
fication of mRNA in eukaryotic cells6 and is involved in multiple 
aspects of mRNA biology. Here we reveal a critical role of m6A 
methylation in NPCs as a regulator of alternative splicing, which is 
highly prevalent in the nervous system7–9 and has been associated 
with neurological disorders such as autism.
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The accuracy of methods for assembling transcripts from short-read RNA sequencing data is limited by the lack of long-range 
information. Here we introduce Ladder-seq, an approach that separates transcripts according to their lengths before sequenc-
ing and uses the additional information to improve the quantification and assembly of transcripts. Using simulated data, we 
show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of complex genes with substantially 
higher accuracy than conventional kallisto. For reference-based assembly, a tailored scheme based on the StringTie2 algorithm 
reconstructs a single transcript with 30.8% higher precision than its conventional counterpart and is more than 30% more 
sensitive for complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly assembles 78% 
more transcripts than conventional Trinity while improving precision by 78%. In experimental data, Ladder-seq reveals 40% 
more genes harboring isoform switches compared to conventional RNA sequencing and unveils widespread changes in isoform 
usage upon m6A depletion by Mettl14 knockout.
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Results
Generation of Ladder-seq libraries of mouse NPCs. We generated 
Ladder-seq datasets from Mettl14 wild-type (WT) and knockout 
(KO) mouse NPCs (Methods). Mettl14 encodes for a methyltrans-
ferase necessary for m6A methylation of mRNA. Four independent 
replicates were prepared per genotype.

Compared to conventional RNA-seq, in Ladder-seq, mRNAs 
are separated by their lengths into a small number of bands before 
their fragmentation (Fig. 1a). To achieve mRNA separation by tran-
script length, we performed denaturing gel electrophoresis. After 
electrophoresis, each sample was cut into seven bands guided by a 
single-stranded RNA ladder running on the same gel. This effec-
tively reduced gene complexity in our dataset (Extended Data Fig. 1)  
by partitioning transcripts expressed per gene into different sub-
groups. We denote the size of each subgroup as its effective com-
plexity. mRNAs were effectively separated into seven distinct length 
ranges with a certain degree of overlap between consecutive bands 
(Fig. 1b and Supplementary Table 1). mRNA from each band of 
each sample was extracted from the agarose gel, and equal volumes 
per band were used for cDNA library construction. Each band from 
each sample was given a unique barcode to track the originating 
band (per sample) of each read.

Correlation analyses of transcript expressions show high tech-
nical reproducibility of our Ladder-seq protocol (r = 0.96–0.98; 
Supplementary Fig. 1). Furthermore, transcript expression levels 
were well-correlated between each of the four WT Ladder-seq sam-
ples and three conventional RNA-seq reference datasets (without 
length separation) from WT NPCs (r = 0.81–0.82; Supplementary 
Fig. 2 and Supplementary Table 2), despite using different experi-
mental batches. Pearson correlation coefficients of our Ladder-seq 
samples were similar to those of five public RNA-seq samples of 
mouse NPCs10,11 (Supplementary Tables 2 and 3), which holds also 
when correlation was stratified by transcript length ranges that fol-
low the location of cuts used in our experiments (Supplementary 
Fig. 3). Transcripts with low correlation did not differ significantly 

in length from highly correlated tanscripts (Supplementary Fig. 4). 
The total number of detected annotated transcripts is highly simi-
lar between Ladder-seq and conventional RNA-seq (Supplementary 
Figs. 5 and 6), and the detection rate increased with transcript 
length, as previously reported12 (Supplementary Figs. 7 and 8).

The separation of mRNAs by length from NPCs on an agarose 
denaturing gel introduces separation errors that result in the spread 
of molecules of the same transcript species across different bands. 
Even though transcript length is the main determinant for mRNA 
migration13, residual secondary structure formation plays a role in 
determining the migration pattern of transcripts (migration errors). 
This might vary between molecules and can even occur under dena-
turing conditions. We apply a histogram-based method to estimate 
a discrete density function according to which reads obtained from 
transcripts of a given length distribute across bands (Methods). We 
rely on reads that map uniquely to annotated transcripts with high 
confidence. The ‘in silico gel’ in Fig. 1c (and Extended Data Fig. 2) 
confirms the migration of transcripts according to their annotated 
length.

Transcript quantification—kallisto-ls. Reads that map to a unique 
genomic position often cannot be assigned unambiguously to one 
of a gene’s transcripts, because alternatively spliced isoforms might 
overlap in genomic coordinates. Transcript quantification methods, 
therefore, use a statistical model of RNA-seq to probabilistically 
assign reads to transcripts. We have extended this statistical model 
to our new protocol, Ladder-seq, and implemented an expectation 
maximization (EM) algorithm that infers transcript abundances 
that can best explain the observed reads and their (inexact) separa-
tion into bands. The read’s band contains transcripts of a specific 
length range and, thus, provides valuable information when try-
ing to probabilistically resolve its assignment ambiguity between 
transcripts of different lengths (Fig. 2a). Based on estimated migra-
tion patterns of transcripts, we adjust the probability of obtaining 
a read in a given band from a specific transcript by the probability 
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Fig. 1 | Ladder-seq uses mRNA length information to aid transcriptome reconstruction. a, Ladder-seq uses a denaturing agarose gel to separate mRNA 
by length into discrete bands before library preparation and sequencing. Each band contains transcripts of a certain length range that depends on the 
location of cuts through the gel. The originating band of the resulting reads is tracked using barcodes. In our dataset of mouse NPCs, Ladder-seq reveals 
transcript Paip2b-204 that contains intronic sequence of transcript Paip2b-201. b, Assessment of length separation by denaturing gel electrophoresis. 
Length-separated mRNA was run on a new denaturing agarose gel with each band loaded into a separate lane. This assay was conducted once. c, In silico 
gel. For every annotated transcript, the intensity of a point with y coordinate equal to its annotated length (plus 200-nt average poly(A) tail size46) shows 
the fraction of reads obtained from each band (x axis) that can be assigned unambiguously to it.
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of seeing a transcript of the same length in the corresponding band 
(Methods).

We extend the EM implementation in one of the most widely 
used software tools, kallisto14, to quantify transcripts based on 
pseudo-alignments of Ladder-seq reads. To assess the advantages 
of our Ladder-seq-tailored EM implementation, kallisto-ls, over 
conventional kallisto, we compared their performance on simulated 
Ladder-seq samples and matching RNA-seq samples, respectively 
(Extended Data Fig. 3). As in the original benchmark in ref. 14,  
we simulated 30 million and 75 million 2 × 75-bp paired-end 
reads. From each simulated RNA-seq sample, we derive a matching 
Ladder-seq sample by introducing an in silico length separation. We 
assign each read randomly to one of a fixed number of bands (here, 
seven), where the random assignment follows a distribution that 
reflects migration patterns estimated from our mouse NPC data.

We measure quantification accuracy by mean absolute relative 
difference (MARD) and Pearson correlation (Methods), the same 
metrics used in a benchmark of transcript quantification methods1. 
kallisto-ls makes use of the additional length information contained 
in the Ladder-seq data to quantify transcripts more accurately than 
conventional kallisto (Fig. 2b and Extended Data Fig. 4). In fact, 
kallisto-ls is able to quantify transcripts of genes expressing ten iso-
forms as accurately (in terms of MARD) as conventional kallisto is 
able to quantify merely two expressed isoforms.

To evaluate the effect that a more precise length separation has 
on the accuracy of Ladder-seq, we mimic an idealized version of the 
Ladder-seq protocol, which perfectly separates transcripts by length 
without any migration errors. To this end, the same set of reads 
is partitioned into the same number of bands deterministically  

according to the length of the originating transcript. Figure 2b  
(and Extended Data Fig. 4) shows that a more accurate length sepa-
ration can improve quantification accuracy even further, yielding 
a reduction in MARD of more than 31% for genes expressing four 
transcripts.

Reference-based transcript assembly—StringTie-ls. Current 
methods for reference-based assembly represent reads connecting 
neighboring exons by a graph structure, such as the splicing graph15, 
and infer transcripts as paths through this graph. However, the 
space of possible candidate transcripts that can be obtained by com-
bining locally connected exons in paths through the graph can grow 
exponentially, and smoothing the local coverage along transcripts 
cannot unambiguously point to a single best subset of transcripts16.

Here, we propose a computational framework (Fig. 3a) that 
enables conventional RNA-seq assembly methods to exploit the 
extra layer of information provided by Ladder-seq to reduce the 
ambiguity of combining distant splicing events into transcript iso-
forms. In this scheme, a separate splicing graph is built from reads 
in each band, and transcript length constraints aid in breaking 
(too-long) erroneous fusions and in eliminating (too-short) tran-
script fragments. Length constraints are derived from distribu-
tions of transcript lengths across bands, which are estimated using 
a histogram-based method (Methods). We use kallisto-ls to assign 
reads to assembled transcripts according to our statistical model of 
Ladder-seq.

We chose StringTie2 (ref. 17) as the presumably most accurate 
RNA-seq assembly method17,18 to illustrate the benefit of our Ladder- 
seq-tailored assembly approach (StringTie-ls) over its conventional 

M
AR

D

0.16

0.20

0.24

0.28

Complexity

0.98

0.97

0.96

0.95

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Complexity

Conventional kallisto Kallisto-is Kallisto-is-perfect

t2

t2

t1

t1

t3

t3

b2
b3
b6

b7

Ladder-seq

RNA-seq

0.4 0.6 0.8 0.2 0.4 0.60.25 0.350.15

b2
b3

b6

b7

C
or

re
la

tio
n

a b

Fig. 2 | Reduced read assignment ambiguity in Ladder-seq improves transcript quantification. a, This illustrative example shows reads that were 
sampled in bands 2, 3, 6 and 7 in our genome-wide simulation study from three transcripts (t1 = ENST00000519483, t2 = ENST00000524124 and 
t3 = ENST00000357668; not all transcripts shown). The color of each read indicates the transcript to which the read is dominantly assigned after the first 
E-step of the EM algorithm in the original kallisto implementation based on conventional RNA-seq data (bottom) and in our extension of the algorithm to 
Ladder-seq (top). More precisely, we color every read according to the additional fraction that is assigned to the transcript of maximal assignment. The 
original algorithm fractionally assigns each read equally to every transcript that it overlaps (normalized by length), leading to indistinguishable black reads. 
Our adaptation of the algorithm uses the partitioning of reads into bands to hint at the read’s originating transcript, shown by matching read and transcript 
colors. Based on the migration patterns estimated from the length of the three transcripts, our EM algorithm assigns larger read fractions to transcripts 
that are expected to occur more abundantly in the read’s band (Methods). This length-based deconvolution allows the EM algorithm to ultimately 
quantify transcript abundances more accurately. In this example, our Ladder-seq-specific EM algorithm estimates 17, 257 and 67 counts (rounded) for 
transcripts t1, t2 and t3 respectively, which closely match their true expression of 15, 250 and 83 counts, respectively. In contrast, original kallisto fails to 
detect expression of t3 (zero counts) and overestimates expression of t2 (334 counts) from highly ambiguous RNA-seq reads. It estimates four counts for 
t1. b, Quantification accuracy of kallisto-ls compared to conventional kallisto on 30 million simulated reads. Mean values over 20 repeated simulations 
are reported. Pearson correlation of estimated and ground truth abundance in log 2 transformed TPM and mean absolute relative difference are shown as 
a function of gene complexity—that is, the number of transcripts expressed by a gene. Genes expressing a single transcript (omitted) or two transcripts 
were estimated to be lowly expressed by RSEM (Supplementary Table 4), making their quantification less accurate (Supplementary Tables 5 and 6).
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RNA-seq counterpart. We simulated additional Ladder-seq samples 
that mimic an improved length separation step by gradually reduc-
ing the degree of migration errors (Methods).

Figure 3b (and Extended Data Fig. 5) shows that StringTie-ls is able 
to correctly reconstruct a much larger fraction of expressed transcripts 
than conventional StringTie2, and, as expected, this improvement in 
sensitivity increases with gene complexity. For genes expressing four 
transcripts, StringTie-ls detects 16% more transcripts than conven-
tional StringTie2, and this improvement increases to 31.1% and 35.2% 
for complex genes expressing seven and ten transcripts, respectively. 
The sensitivity gap between these two technologies widens with a 
more accurate length separation of transcripts, reaching an improve-
ment of 25.2% for genes expressing four transcripts and 49.2% and 
58.7% for genes of complexity 7 and 10, respectively, in the most 
optimistic scenario. At the same time, StringTie-ls assembles tran-
scripts with higher precision across all complexity classes. StringTie-ls 
benefits considerably from the additional length information that 
allows it to detect too-short transcript fragments. For genes express-
ing single transcripts, for example, StringTie-ls recognizes 699 of 824 
false-positive assemblies from conventional StringTie2 as being too 
short and eliminates them, improving precision by 30.8%.

In addition, we compared transcripts assembled from our 
Ladder-seq NPC samples to transcripts identified from long reads 
generated by ONT. We performed ONT long-read native RNA 
(ONT-RNA) and direct cDNA (ONT-cDNA) sequencing of WT and 
Mettl14 KO mouse NPCs. Expression levels were well-correlated 
between ONT and Ladder-seq samples (Supplementary Fig. 9 and 
Supplementary Tables 11 and 12) and consistent with previously 
reported correlations between ONT and RNA-seq data12,19.

Third-generation sequencing technologies, such as those  
from ONT and Pacific Biosciences, can produce reads longer than 

10,000 bp, which, in principle, can capture full-length transcripts. 
The lower sequencing depth and the higher error rate, however, 
result in an incomplete transcriptome reconstruction that will also 
include false transcripts. Nevertheless, a transcript assembled from 
short reads is likely to be truly expressed if it can be independently 
identified in the long-read data. Conventional StringTie2 missed 
many long-read transcripts successfully recovered by StringTie-ls, 
in both conditions and compared to both native RNA and cDNA 
libraries (Supplementary Tables 13 and 14). The large number of 
transcripts assembled only from short reads that matched an anno-
tated transcript can be attributed to the incompleteness of the 
long-read transcriptomes.

De novo transcript assembly—Trinity-ls. To study the transcrip-
tome of species for which no or just a highly fragmented refer-
ence genome is available, or in samples with a substantially altered 
genomic sequence, transcripts need to be assembled de novo. 
Omitting the read mapping step that arranges reads in order leaves 
the sequence overlap of reads as the only source of information to be 
used by methods for this most challenging transcript-level inference 
task. Most methods, including one of the most widely used meth-
ods, Trinity20, stitch together k-mers, subsequences of k nucleotides, 
to transcript sequences by traversing paths in so-called de Bruijn 
graphs. No part of these data connects subpaths at longer distances, 
which can cause erroneous fusions of isoforms or paralogs, espe-
cially in complex genes with a large number of alternative splicing 
events21.

Here, we follow a similar strategy as in the reference-based assem-
bly (Fig. 3a) to access the additional layer of information provided by 
Ladder-seq to guide the de novo assembly of full-length transcripts 
by Trinity. We use Trinity to compute length-constrained paths in de 
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Fig. 3 | Ladder-seq-based transcript assembly. a, Overview of the proposed computational framework. For each band, a graph is constructed that 
captures connectivity information contained in read alignments. Reference-based assembly methods, such as StringTie2, use variants of splicing graphs 
to capture connectivity of exonic segments in expressed transcripts evidenced by spliced alignments of reads. Transcript sequences are then assembled 
by traversing paths through these graphs according to some optimization criteria, such as maximum flow for StringTie2. In contrast to conventional 
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inferred the best possible set of transcripts satisfying given length constraints in each band independently, we integrate them to a refined set of transcripts 
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b, Accuracy of transcript assembly from 30 million simulated RNA-seq and matching Ladder-seq reads. Reads were aligned to the reference genome 
using STAR47. Sensitivity (left) and precision (right) of StringTie-ls and its conventional counterpart StringTie2 are shown as a function of gene complexity 
defined as the number of expressed transcripts. The lower ground truth expression of some genes with complexity 1 (Supplementary Table 4) makes 
them detectable with lower sensitivity than transcripts of genes with complexity 2. StringTie-lsi denotes the result of StringTie-ls on the simulated 
Ladder-seq dataset to which i-fold error reduction was applied (Methods), starting from the migration error estimated from the NPC sample (StringTie-ls). 
StringTie-ls-perfect represents the results of StringTie-ls on the most optimistic Ladder-seq experiment in which transcripts perfectly separate by length, 
without any migration error. All results are listed in Supplementary Tables 7–10.
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Bruijn graphs representing k-mer connectivity rather than paths in 
splicing graphs. Again, we quantify assembled transcripts by proba-
bilistically assigning reads using our statistical model of Ladder-seq, 
taking into account estimated migration errors.

Figure 4 (and Extended Data Fig. 6) shows an enormous  
performance gain of Trinity-ls over conventional Trinity on our 
simulated data, in terms of both sensitivity and precision. In total, 
Trinity-ls correctly recovers an additional 4,072 (78%) transcripts 
compared to Trinity while, at the same time, increasing preci-
sion equally by 78%. A more accurate separation of transcripts by 
length further boosts the performance of Trinity-ls, approaching an 
additional 163% of correctly discovered transcripts and a 3.9-fold 
increase in precision when transcripts are perfectly separated by 
their lengths.

Ladder-seq improves differential analysis of transcriptomes. We 
evaluated the effect of a more accurate reconstruction of transcrip-
tomes on differential analysis between two biological conditions. 
We used Ladder-seq to profile the transcriptome of WT and Mettl14 
KO mouse NPCs. To assess transcript usage under these conditions, 
we first assembled transcripts using StringTie-ls on each sample 
to identify novel transcripts that are expressed consistently across 
replicates of the same genotype. We quantified annotated (Ensembl 
release 95) and newly reconstructed transcripts using kallisto-ls and 
compared their expression between conditions to detect their dif-
ferential usage. For comparison with conventional RNA-seq, we ran 
the same computational pipeline replacing the Ladder-seq-tailored 
methods, kallisto-ls and StringTie-ls, by their conventional coun-
terparts, which ignore the separation of reads into bands (Extended 
Data Fig. 7a).

Ladder-seq identified 40% more genes harboring switching iso-
forms in Mettl14 KO compared to conventional RNA-seq (Extended 
Data Fig. 7b and Supplementary Table 19). Taking gene complex-
ity—that is, the number of expressed transcripts per gene—as a 
measure of difficulty in assembling transcripts, genes identified as 

switching exclusively by Ladder-seq appear to be particularly dif-
ficult to reconstruct by the conventional pipeline without the addi-
tional length separation (Fig. 5a). In contrast, Ladder-seq breaks 
down gene complexity, effectively reducing the number of tran-
scripts that need to be reconstructed in an individual band. This 
effective complexity is considerably lower in all three categories of 
genes identified as switching (Fig. 5a), including genes identified as 
switching only by the conventional pipeline.

Ladder-seq uncovers otherwise buried transcripts that are not 
identified by conventional RNA-seq. This is exemplified by the iso-
form switch in gene Pi4k2a, which is only identified by our method 
(Fig. 5b,c). StringTie-ls uncovered a shorter transcript that is absent 
from the Ensembl release 95, but it does appear in the later release 
98 version (ENSMUST00000235932) and is also present in the ONT 
long-read data (TCONS_00005143 in Supplementary Tables 20 and 
21), confirming that what Ladder-seq assembled is indeed accurate. 
In addition, we confirmed this isoform switch with reverse transcrip-
tion quantitative polymerase chain reaction (RT–qPCR) (Fig. 5d).  
Additional illustrative examples of isoform switches uncovered only 
by Ladder-seq are shown in Extended Data Fig. 7c–f.

Ladder-seq makes use of estimated probability distributions, 
which describe how mRNA molecules migrated through the dena-
turing gel. We used Jensen–Shannon divergence (JSD) to compare 
these estimated migration patterns of transcripts to distributions 
of reads across bands assigned to them by conventional kallisto or 
by kallisto-ls. JSD values for kallisto-ls were consistently low for 
all identified switching genes, which is to be expected given that 
kallisto-ls makes explicit use of these distributions to guide the 
assignment of reads. On the other hand, JSD values for conven-
tional kallisto were highest for those genes identified as switching 
only by conventional RNA-seq (Fig. 5e). These large JSD values are 
likely an indication of erroneous assignments of reads by conven-
tional kallisto, because JSD values also increase with the difficulty 
of the quantification task (Fig. 5f). More generally, we observed that 
the more conventional kallisto differs from kallisto-ls, the more its 
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assigned read band distribution deviates from the estimated distri-
bution, resulting in larger JSD values (Extended Data Fig. 7g).

Finally, we used ONT long reads of WT and KO NPCs to vali-
date novel transcripts involved in isoform switches. Of all 499 novel 
switching isoforms detected exclusively by Ladder-seq, 206 (41.3%) 
were identified from ONT-cDNA or ONT-RNA long-read data by 
FLAIR or assembled by StringTie2 or were contained in a recently 

published ONT long-read mouse NPC transcriptome22. Only 18 of 
97 (18.6%) novel switching isoforms reported only by conventional 
RNA-seq were confirmed by long-read sequencing.

Mettl14 KO leads to isoform switches in m6A methylated genes. 
We next set out to delineate the characteristics of isoform switches 
and their relationship to m6A methylation. To assess whether m6A 
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is associated with isoform switches in Mettl14 KO, we identified 
m6A-tagged genes in a public m6A RNA IP and sequencing data-
set from mouse NPCs23. We found that switching genes are sig-
nificantly enriched for m6A methylated genes (P = 2.36 × 10−19) 
(Fig. 6a). These genes are enriched for Gene Ontology (GO) terms 
related to transcriptional regulation, neurogenesis and synaptic sig-
naling (Extended Data Fig. 8a).

To investigate the involvement of m6A methylation in isoform 
switching, we explored a potential spatial proximity between  
m6A and alternative splicing. We assessed whether exonic seg-
ments24,25 bounding differentially spliced regions are enriched for 
m6A methylation (Methods). We found a significant enrichment  
of m6A within these segments (P = 8.6 × 10−39) (Fig. 6b).  
This enrichment persists when normalizing for segment length  
(P = 1.09 × 10−5), which accounts for a possible bias toward  
longer exons26,27. Illustrative examples of m6A methylation 
within a differentially spliced exonic segment are shown for 
neurogenesis-related genes Fbxl5 (ref. 28) and Ptprz1 (ref. 29) (Fig. 6c 
and Extended Data Fig. 8b).

We then studied the consequences of isoform switches on func-
tional protein domains. We found 295 genes with loss of functional 
domains in the upregulated isoform in the KO. GO analysis of these 
genes shows enrichment for terms related to neuronal function, such 
as glutamatergic synaptic transmission, synapse organization and 
GABA secretion (Extended Data Fig. 8c and example in Fig. 6d).

Although other types of splicing events were balanced  
between WT and Mettl14 KO, upregulated isoforms in KO had 
significantly more intron retention losses than gains (Fig. 6e  
and Extended Data Fig. 8d). Again, these genes were enriched 
for m6A methylated genes (P = 1.6 × 10−6). GO analysis revealed 
enrichment for terms unrelated to neuronal functions but rather 
associated with pluripotency, such as DNA repair and gamete 
generation (Extended Data Fig. 8e). We found enrichment for 
nonsense-mediated decay (NMD) insensitive isoforms as well as for 
shorter 3′ untranslated region (UTR) (Fig. 6f), both hallmarks of 
decreased regulation of gene expression30,31. Finally, we validated a 
selection of identified isoform switches by RT–qPCR (Fig. 5d and 
Supplementary Table 22).
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Long-read sequencing confirms many Ladder-seq transcripts. 
We next compared the Ladder-seq-inferred WT transcriptome of 
mouse NPCs (Extended Data Fig. 7a) with transcripts identified 
by FLAIR32 from our ONT-cDNA and ONT-RNA long reads. We 
found that 63.3% of ONT-cDNA transcripts were contained in at 
least one WT Ladder-seq transcriptome with relative expression of 
at least 0.1 transcripts per million (TPM). Of those, a larger frac-
tion of transcripts was independently assembled by StringTie2 from 
the ONT-cDNA data or contained in a recently published ONT 
long-read mouse NPC transcriptome (Dong et al.22), compared 
to those reported only by ONT-cDNA (Extended Data Fig. 9a). 
The substantially lower validation rate suggests that a larger frac-
tion of transcripts missing in the Ladder-seq transcriptomes were 
falsely inferred by FLAIR from ONT-cDNA reads and, similarly, 
from our ONT-RNA data (Supplementary Fig. 10a). As expected12, 
Ladder-seq detected more annotated genes and transcripts than 
could be mapped from the ONT libraries (Supplementary Figs. 11  
and 12). Nevertheless, 71.1% of transcripts reconstructed by 
Ladder-seq with relative abundance of at least 1 TPM were identi-
fied by FLAIR or assembled by StringTie2 in the ONT-cDNA data-
set or were contained in Dong et al. (Extended Data Fig. 10). This 
overlapping set of transcripts showed higher expression levels than 
the remaining set of transcripts (Extended Data Fig. 9b), suggest-
ing the limited sequencing depth of the ONT dataset as one pos-
sible explanation for their absence in the long-read transcriptome12. 
This was consistently observed in the ONT-RNA data (Extended 
Data Fig. 10 and Supplementary Fig. 10b). A more likely explana-
tion for the low abundance of transcripts reported only by FLAIR 
(Supplementary Fig. 13) is a higher rate of incorrectly inferred 
sequences among them, as suggested by their low validation rate 
and low fraction of annotated transcripts (2.7% of FLAIR-only tran-
scripts (TPM ≥1) compared to 69% of Ladder-seq-only transcripts 
(TPM ≥1)). Of transcripts upregulated in WT or KO as part of an 
isoform switch in our Ladder-seq analysis, 57.8% were identified by 
FLAIR or assembled by StringTie2 in our WT and KO ONT-cDNA 
datasets. Again, overlapping switching transcripts were higher 
expressed than uniquely identified ones (Extended Data Fig. 9b and 
Supplementary Fig. 10b).

For five of the six isoform switches validated by RT–qPCR  
(Fig. 5d), the two participating isoforms were identified by at least 
one of the two methods (StringTie2 or FLAIR) in the ONT-cDNA 
dataset (Supplementary Table 20). The single switch for which both 
methods independently detected both isoforms was formed by the 
two highest expressed transcripts. In contrast, the only isoform 
missed by both methods was the lowest expressed among all 12 tran-
scripts. Overall, the two methods disagreed on the presence of six 
of 12 validated switching isoforms, which underlines the non-trivial 
nature of the computational task of inferring high-confidence tran-
scripts from long reads. As expected, the lower sequencing depth in 
the ONT-RNA dataset resulted in a smaller number of confirmed 
isoforms (Supplementary Table 21).

Discussion
In this work, we introduced Ladder-seq, a combined experimental–
computational approach that substantially improves the accuracy 
with which the set of expressed transcripts can be inferred from 
short RNA-seq reads. The experimental separation of transcripts by 
their lengths provides an additional layer of information that can be 
used by computational analysis methods to detect and quantify tran-
scripts that cannot be distinguished based on short-read data alone. 
We showed that a more accurate reconstruction of the transcrip-
tome benefits its subsequent comparison and, in our experiments, 
revealed isoform switches of differentially methylated transcript 
isoforms that are invisible to conventional RNA-seq approaches.

Our computational framework for reference-based and de  
novo assembly of transcripts from Ladder-seq reads employs the 

previously developed methods StringTie2 and Trinity without any 
internal modifications. We, therefore, provide a Snakemake-based33 
workflow template that allows users to implement the same frame-
work based on other methods that have originally been developed 
for the analysis of conventional RNA-seq data. This will make 
many computational methods that have been developed over the 
last decade instantly available for the analysis of Ladder-seq data-
sets. On the other hand, we expect algorithms that are tailored to 
the specifics of Ladder-seq to even further improve the accuracy of 
reconstructed transcriptomes.

On the experimental side, the Ladder-seq protocol involves 
a denaturing gel electrophoresis to achieve length separation of 
mRNAs. In our proof-of-principle experiment, we separated tran-
scripts into seven bands. In principle, a larger number of cuts 
could further reduce the effective complexity transcriptome-wide 
(Supplementary Fig. 14) or of a subset of genes of interest and, thus, 
simplify the computational task of inferring their expressed tran-
scripts. On the other hand, fewer cuts might be sufficient to achieve 
a similar improvement over conventional RNA-seq for species with 
a less complex transcriptome. In our repository, we, therefore, pro-
vide R code that can guide the selection of the number and approx-
imate location of cuts. We used a gel-based approach to separate 
transcripts because of its relative simplicity and low cost. However, 
the separation of mRNAs by their lengths could be achieved using 
other technologies, including solid-phase reversible immobiliza-
tion beads34, capillary electrophoresis35 and ion-pair reversed-phase 
high-performance liquid chromatography36. These methods will 
vary in degrees of accuracy in separating mRNAs, costs and level of 
involvement for the experimentalist. As we showed with our simu-
lated data experiments, a higher accuracy in the separation step will 
yield a greater advantage in transcriptome reconstruction.

High accuracy of Ladder-seq transcriptomes of mouse NPCs was 
confirmed by comparison with transcripts inferred from ONT long 
reads. Although the overlap between the two technologies was large, 
many transcripts were uniquely inferred from long reads. Their sub-
stantially lower validation rate, however, suggests the presence of a 
larger fraction of false transcripts. Alternatively, the low expression 
of transcripts uniquely identified by Ladder-seq indicates the lim-
ited sequencing depth of ONT as a possible reason for their absence 
in the long-read dataset.

Both differences between long-read sequencing and Ladder-seq 
are expected. Even though long-read technology greatly simplifies 
many analytical challenges that occur in short-read assembly, exper-
imental challenges and higher error rate of long reads motivated 
the development of different computational strategies to extract 
high-confidence, full-length transcripts. Different approaches and 
filtering criteria can yield substantially different results22, as observed 
in our own experiments using StringTie2 and FLAIR. In addition, 
long-read sequencers have much lower throughput and, thus, detect 
a much smaller fraction of genes and transcripts as contained in 
short-read libraries. The lower sequencing depth renders the sta-
tistical comparison of transcript abundances between conditions 
as performed in our study infeasible. Current studies, therefore, 
combine long reads with high-throughput short-read (Ilumina) 
sequencing37 and limit the differential analysis to fold-change cal-
culations38. Ladder-seq improves this limitation by combining the 
high throughput of short-read RNA-seq with the ability to reveal 
transcript isoforms that are invisible to conventional RNA-seq. 
However, if a large number of overlapping transcripts expressed by 
a complex gene have similar lengths, Ladder-seq will not offer any 
benefit over conventional RNA-seq in resolving such intrinsically 
difficult expression patterns from short reads.

In our Ladder-seq experiment on mouse NPCs, we explored 
the consequences of the deletion of m6A writer protein Mettl14 
on isoform usage. Ladder-seq identified a large number of genes  
with isoform switches. We showed that differentially spliced exonic 
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segments of a transcript tend to lie close to a methylation site. This 
result suggests a direct involvement of m6A in alternative splicing in 
NPCs, possibly through interaction of m6A readers with the splicing 
machinery, as it has been reported for other cell types and organ-
isms39–42. Which nuclear m6A reader is active in NPCs remains to be 
determined. An intriguing finding of our study is the enrichment for 
intron retention losses in Mettl14 KO NPCs in non-neuronal genes 
related to DNA repair and gamete generation. Intron retentions are 
known to act as regulators of gene expression during normal devel-
opment43, and previous work reported progressive intron retention 
gains in genes related to cell cycle, pluripotency and DNA repair 
during the process of differentiation from mouse embryonic stem 
cells to neurons44. Expression of these genes is under tighter con-
trol as differentiation progresses. Intron retention losses in Mettl14 
KO NPCs suggest that they are in a lesser state of differentiation 
compared to WT NPCs, which fits with our previous finding of 
delayed differentiation of radial glial cells in Mettl14 KO mice45. To 
our knowledge, this is the first in-depth analysis of m6A-mediated 
alternative splicing in NPCs, and it highlights the diversity of m6A 
function within a single cell type. It further extends the role of m6A 
in NPCs from mediating mRNA degradation45 to regulating iso-
form usage, which is known to be especially important in the brain.

Ladder-seq—the concerted advancement of the RNA-seq pro-
tocol and its computational methods—will allow research facilities 
to study the composition and dynamics of the transcriptome at an 
unprecedented level of accuracy based on a technology that has 
been established for over a decade.
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Methods
Estimating mRNA migration. The accurate assembly and quantification of 
transcripts from Ladder-seq reads requires the computational estimation of 
transcript migration errors across bands. To estimate the migration pattern of 
a transcript of length ℓ through the agarose gel across k bands, we introduce 
probability mass function f(x) over discrete random variable x ∈ [k] ≔ {1, …, k}, 
which indicates the band to which transcripts of length ℓ migrate. If we observe 
reads sampled from transcripts of length ℓ in bands X1, …, Xn ∈ [k], then we simply 
count how often reads are obtained in a given band and take the relative frequency 
as density estimate:

f̂(i) =

∑n
j=1 (Xj = i)

n ,

where  is the indicator function that takes value 1 if its argument evaluates to true 
and 0 otherwise. To obtain reads for which we can infer the originating transcript 
with high confidence, we select reads that uniquely map to a single annotated 
transcript. More precisely, we run the kallisto pseudo-alignment step and select all 
reads that are compatible with only a single transcript according to the NH tag.

In addition, we account for potentially incomplete transcript annotations that 
might cause reads sampled from unannotated transcripts (of different length) 
to negatively affect our migration estimate of a transcript (length) that it was 
wrongly assigned to. To this end, we assemble transcripts using StringTie2 from 
reads pooled across bands and aligned using STAR. We augment the transcript 
annotation with novel transcripts before running the kallisto pseudo-alignment 
to obtain a more conservative selection of uniquely mapping reads. We do not 
consider reads mapping (uniquely) to newly assembled transcripts.

We further restrict observations to reads that uniquely map to protein-coding 
transcripts (Ensembl release 95), which are typically annotated more accurately, 
and which we were able to confirm to be expressed through the StringTie2 
assembly on the intron chain level. We required a minimum of 50 reads to  
uniquely map to a transcript of length, at most, 8,000 bp to be considered in our 
estimation. The resulting set of reads, along with their band of origin (identified 
by a barcode), constitute observations X1, …, Xn for the length of the transcript that 
they uniquely align to.

If no (high-quality) transcript catalog is available based on which uniquely 
mapping reads can be identified—for example, in de novo assembly or, if the 
species is poorly studied—mapping reads to synthetic RNA spike-in controls of 
varying lengths49 can be used to similarly estimate transcript migration error. 
Alternatively, a supplementary sample of a well-annotated organism—for example, 
mRNA from a human cell line—can be run in parallel on the same gel and 
allocated a small fraction of sequencing output.

Because transcripts of similar length show similar migration patterns through 
the gel13, we combine reads uniquely mapping to transcripts of a certain length 
range to more reliably estimate f(x) based on a larger number of reads. Starting 
from the shortest transcripts, we greedily define transcript length ranges as the 
shortest possible length intervals longer than 100 bp that contain at least 50 
different transcript species to which at least a total of 700,000 reads map  
uniquely. For each of these length ranges, we estimate one probability mass 
function f(x) as described above. The resulting length ranges are listed in 
Supplementary Table 23.

Simulation. We extend the widely used RNA-seq simulator RSEM50 by an 
additional in silico length separation step, which includes the introduction of 
migration errors to simulate data with characteristics similar to that generated 
by our novel Ladder-seq protocol. Because the effectiveness of the experimental 
deconvolution of reads into different bands by Ladder-seq depends on the 
differences in lengths of expressed, overlapping transcripts, we simulated reads 
from a transcriptome using abundances and error profiles learned from a real 
dataset. Following the approach in ref. 14, we simulated 30 million and 75 million 
2 × 75-bp paired-end reads from transcripts whose abundances were estimated  
by RSEM from sample NA12716_7 of the Genetic European Variation in Health 
and Disease (GEUVADIS)51. Given the RNA-seq reads produced by the simulator, 
we generate a matching Ladder-seq sample by assigning each read randomly  
to one of a fixed number of bands to introduce in silico length separation. This 
random assignment follows the probability mass function estimated from our  
NPC Ladder-seq sample KO 1, given the length of the transcript that originates 
the read (provided by the simulator). We use seven bands to reflect the specifics 
of our NPC Ladder-seq samples. See Extended Data Fig. 3 for an overview of the 
benchmark strategy.

To show how a more accurate experimental separation of transcripts by length 
can benefit transcript-level inference from Ladder-seq, we additionally simulated 
three Ladder-seq experiments that introduce gradually decreasing levels of 
migration errors. For every transcript length range for which we have estimated 
probability mass function f(x) from our NPC Ladder-seq sample, we halve the 
relative frequency of reads in every band as we move further away from its mode 
and normalize all values to sum up to 1. More precisely, for bands numbered 
consecutively from 1 to k, let m denote the band that contains the mode of f̂(x) 
estimated for a given length range. Then,

f1(i) =
f̂(i)/2|i−m|

∑k
j=1 f̂(j)/2|i−m|

(1)

Similarly, f2(x) and f3(x) are obtained by replacing f̂  in (1) by f1(x) and f2(x), 
respectively. By randomly assigning simulated reads according to probability mass 
functions fi(x), i = 1, 2, 3, instead of f̂(x), we obtain three additional Ladder-seq 
datasets with reduced levels of migration errors.

Finally, we simulated a most-optimistic Ladder-seq experiment that is  
able to perfectly separate transcripts by length, without introducing any migration 
error. This leads to a degenerate probability mass function for each length range 
implied by the seven in silico cuts in which the read band is a constant random 
variable that takes only a single value, the correct band corresponding to that 
length range.

Evaluation. We used the same metrics as in a benchmark of transcript 
quantification methods1 to measure the accuracy of kallisto and kallisto-ls 
estimates of transcript expression. MARD denotes the arithmetic mean of absolute 
relative differences, calculated as ∣i − j∣/(i + j) for estimated and ground truth 
counts i and j, respectively. We excluded transcripts with zero estimates by both 
methods—that is, if i + j = 0. Pearson correlation was calculated between log 2 
transformed TPM values, after adding 0.1 TPM.

Consistent with previous studies17,52, the accuracy of reference-based and 
de novo assemblies is evaluated using sensitivity defined as TP/(TP+FN) and 
precision defined as TP/(TP+FP), where true positives (TPs) denote correctly 
assembled transcripts; false negatives (FNs) denote true transcripts missing in 
the assembly; and false positives (FPs) denote wrongly assembled transcripts. 
We considered a transcript truly expressed if reads sampled by RSEM in the 
30-million-reads dataset fully cover the transcript and if it was estimated by 
RSEM to be expressed in GEUVADIS sample NA12716_7 with at least 0.1 TPM. 
An identical ground truth transcriptome facilitates comparison of sensitivity and 
precision values between different sequencing depths and between reference-based 
and de novo assemblies. As in refs. 53,54, we used GffCompare55 to compare 
transcripts assembled by StringTie2 or StringTie-ls to truly expressed transcripts. 
GffCompare defines an assembled transcript as correct if it shares the same 
sequence of introns with a true transcript. In the de novo assembly benchmark, 
correct assemblies by Trinity and Trinity-ls needed to be identified through 
an alignment of their sequences, which we computed using BLAT56. Applying 
commonly used criteria57,58, we require the sequences to align with 95% identity 
and, at most, 1% insertion and deletion rate and apply transcript coverage cutoffs 
of 80%, 85%, 90% and 95%.

Transcript quantification by kallisto-ls. After estimating migration patterns in a 
Ladder-seq sample using the histogram-based method described above, kallisto-ls 
uses an EM algorithm similar to that of kallisto to infer maximum likelihood 
estimates of transcript abundances in our statistical model of Ladder-seq. kallisto is 
based on the following likelihood function14 of RNA-seq:

L(α) ∝

∏

e∈E

(
∑

t∈e

αt

lt

)ce

(2)

It counts the number of fragments ce that cannot be distinguished by the set of 
transcripts e that they are compatible with and are, thus, considered equivalent. 
lt denotes the effective length59 of transcript t, and parameters αt denote the 
probability of obtaining a fragment from a transcript t.

In Ladder-seq, we observe fragments that originate from transcripts in different 
bands. The probability of obtaining a fragment from a transcript t in band b, 
then, is αtβtb, where βtb denotes the fraction of transcript t in band b, which we 
precompute in f̂(b) for each range of transcript lengths as described above. If we 
split equivalence class counts ce between k different bands, that is

ce =
k∑

b=1

ceb ,

then the likelihood function for Ladder-seq becomes:

L(α) ∝

∏

e∈E

k∏

b=1

(
∑

t∈e

αtβtb
lt

)ceb

(3)

The observed data likelihood remains a concave function under this adjustment 
(see next section), provided we precompute the extent of migration errors. We 
can, thus, extend the EM algorithm implemented in kallisto to find the values of 
α that maximize likelihood (3). The EM algorithm alternates between fractionally 
assigning fragments to transcripts in different bands based on current parameter 
estimates and recalculating parameters from these fragment assignments. 
Consistent with the original kallisto implementation, the EM algorithm terminates 
if αtN has changed by less than 1% compared to the previous iteration for every 
transcript t with αtN > 0.01, where N is the total number of fragments.
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Proof of concavity of Ladder-seq likelihood. The log-likelihood function of 
Ladder-seq is:

ln (L(α)) =
∑

e∈E

k∑

b=1

cebln
(
∑

t∈e

αtβtb
lt

)

. (4)

For arbitrary but fixed e ∈ E and b ∈ [k], we define

f(α) = cebln
(
∑

t∈e

αtβtb
lt

)

. (5)

Analogous to ref. 60, we prove in the following that f(α) is concave, from which it 
follows that ln (L(α)) is concave too. Let H(α) represent the Hessian matrix of 
function f(α):

Hjk(α) =
∂2cebln

(∑
t∈e

αt βtb
lt

)

∂αj∂αk
(6)

= −ceb
βjbβkb

ljlk
1

(
∑

t∈e

αt βtb
lt

)2 (7)

Then, we can rewrite H(α) = − z(α)xTx, where

z(α) =
ceb

(
∑

t∈e

αt βtb
lt

)2 and (8)

x =

(
β1b
l1

, β2b
l2

, β3b
l3

, …,
β|e|b

l|e|

)

. (9)

Because z(α) > 0, we have for all y =
(
y1, y2, …, y|e|

)
:

yH(α)yT = y
(
−z(α)xTx

)
yT (10)

= −z(α)(yxT)(xyT) (11)

= −z(α)(yxT)2 (12)

≤ 0 (13)

Thus, H(α) is negative semi-definite, and f(α) is concave.

Reference-based transcript assembly by StringTie-ls. Reads from all bands 
are aligned to the reference genome sequence using a short-read aligner, such as 
STAR47. For every band, and every union of two consecutive bands, we assemble 
transcripts using StringTie2 with default options. We additionally pool reads from 
neighboring bands to recover potentially low-expressed transcripts that migrated 
close to the boundary between two bands.

StringTie-ls estimates migration patterns in a Ladder-seq sample using the 
histogram-based approach described above. It uses these estimates to identify 
too-short transcript fragments and too-long transcript fusions. More precisely, for 
a transcript t of length ℓ assembled in the j-th band, we look up the probability 
mass function f(x) corresponding to the length range that contains ℓ to determine 
the most likely band bi to which a transcript of length ℓ would have migrated to. If 
j ≠ i and j ≠ i + 1, we remove t. Note that band bi+1 corresponds to the next longer 
range of transcripts but can also contain slightly shorter transcripts from band bi 
due to secondary structure effects. Similarly, if t was assembled in the combination 
of bands j and j + 1, we discard t if j < i or j > i + 2. To account for potential overlap 
with longer UTRs, we do not remove too-long transcripts assembled in a band 
i + 2…7 if they are sufficiently highly expressed (>1 TPM), if they contain a unique 
intron and if their first or last exon is longer than 500 bp.

The individual assemblies are subsequently merged using the GffCompare 
tool, which computes the union of all intron chains. In other words, transcripts 
that imply the same sequence of introns as a transcript assembled in a different 
band are discarded. We further eliminate single-exon transcripts that are identified 
as redundant by the merge mode of StringTie2 as well as transcript fragments 
that are fully contained in other transcripts with compatible intron chains. These 
transcripts most likely constitute transcript fragments that were only partially 
assembled from reads obtained from transcripts that migrated to a different band. 
We retain, however, transcripts with identical (partial) intron chains if they start 
or end within an intron of the containing transcript, unless a very small overhang 
of, at most, 2 bases indicates noisy read alignments. Finally, we quantify assembled 

transcripts using our statistical model of Ladder-seq implemented in kallisto-ls and 
report transcripts estimated to be expressed with at least 0.1 TPM.

De novo transcript assembly by Trinity-ls. The Ladder-seq-based de novo 
assembly follows a very similar scheme as applied in the reference-based 
assembly. We run Trinity on the reads from each band separately using default 
parameters. In contrast to the reference-based assembly, we do not pool reads 
from neighboring bands because the absence of a reference genome makes it 
more difficult to subsequently detect and remove false-positive transcripts. After 
estimating migration patterns from Ladder-seq data using the histogram-based 
method described above, Trinity-ls applies length constraints to assembled 
transcripts following the same strategy as in the reference-based approach. It then 
concatenates the individual assemblies, because the absence of a reference genome 
does not allow detection of potential redundancy with respect to the exon–intron 
structure of transcripts. Again, Trinity-ls quantifies assembled transcripts using 
our statistical model of Ladder-seq implemented in kallisto-ls and applies an 
expression threshold of 0.1 TPM.

Animals. All animal procedures used in this study were performed in accordance 
with the protocol approved by the Institutional Animal Care and Use Committee of 
Johns Hopkins University School of Medicine.

Mettl14 conditional KO mice contain a deletion of exons 7, 8 and 9 in the 
developing mouse nervous system starting at embryonic day (E) 11.5. Deletion was 
achieved using the Nestin-Cre;Mettl14f/f cKO model45.

Mettl14 floxed mice were crossed with Nestin-Cre mice and maintained in 
C57BL/6J background before all experiments. E14.5 embryos were collected 
(three Nestin-Cre+/+;Mettl14f/f or three Nestin-Cre−/+;Mettl14f/f, respectively) to 
isolate NPCs from the forebrains. Mice were bred and maintained under specific 
pathogen-free conditions and kept at an ambient temperature of 21 °C and 
humidity of 40–60% under a 12-h light/dark cycle with standard chow diet.

Primary mouse NPCs. Mouse NPCs were isolated from Mettl14 WT and cKO 
mouse embryonic cortices and cultured in Neurobasal medium (Gibco BRL) 
containing 20 ng ml−1 of FGF2, 20 ng ml−1 of EGF, 5 mg ml−1 of heparin, 2% 
B27 (v/v, Gibco BRL), GlutaMAX (Invitrogen) and penicillin–streptomycin 
(Invitrogen) on culture dishes precoated with Matrigel matrix (2%, Corning).

Generation of Ladder-seq libraries from mouse NPCs. Total RNA fraction 
was isolated from cultured NPC samples with TRIzol reagent (Thermo Fisher 
Scientific) followed by total RNA extraction using RNA Clean and Concentrator-25 
(Zymo Research). mRNA was isolated from total RNA with Dynabeads mRNA 
Purification Kit (Thermo Fisher Scientific).

Next, 5 μg of mRNA per sample was loaded in each well of a denaturing 
agarose gel (MOPS/2% formaldehyde). NEB single-stranded RNA ladder was 
loaded in the wells flanking the samples for guidance in the gel slicing step. Gel 
electrophoresis was run at 100 V for 55 min in chilled 1× MOPS buffer. Gel 
was stained with SYBR Gold (Thermo Fisher Scientific) and visualized under 
ultraviolet light for slicing. Each sample was sliced into seven fractions (bands) by 
slicing the gel at the following approximate lengths: 1,000 bp, 1,500 bp, 2,000 bp, 
3,000 bp, 4,000 bp and 6,000 bp. mRNA was extracted from gel slices using the 
Zymoclean Gel RNA Recovery Kit (Zymo Research) with gel incubation at room 
temperature. RNA-seq libraries were prepared with the NEBNext Ultra II RNA 
Library Prep Kit for Illumina, and each band of each sample used a unique index 
PCR primer (NEBNext Multiplex Oligos for Illumina). Libraries were multiplexed 
1:1 for sequencing in the NextSeq 500 (Illumina), yielding approximately 100 
million 2 × 75-bp paired-end reads per sample.

Nanopore direct cDNA sequencing. For nanopore direct cDNA sequencing, 
two biological replicates per genotype (WT and Mettl14 KO) were prepared 
from mouse NPCs. Total RNA was extracted from cultured NPC pellets with 
TRIzol reagent (Invitrogen), treated with DNase I (Takara) and cleaned up using 
RNeasy MinElute (Qiagen). Each 1.5 μg of purified total RNA with 0.1 μl of RCS 
from direct RNA-seq kit (SQK-RNA002) and 0.1 ng of the SIRV set 3 (Lexogen) 
control was prepared as a sequencing library following manufacturer instructions 
(SQK-DCS109, ONT), with some modifications as follows. A mixture of 1 μl 
each of RNase T1 (1 U μl−1, Invitrogen) and RNase A (10 mg ml−1, Thermo Fisher 
Scientific) was treated to degrade RNA after reverse transcription. Second-strand 
synthesis was carried out with 10 U of DreamTaq Hot Start DNA Polymerase (5 U 
μl−1, Thermo Fisher Scientific) with 5 μl of 10× DreamTaq buffer and 2 μl of dNTP 
Mix (10 mM each, Thermo Fisher Scientific) by incubating the mixture at 95 °C for 
90 s, 50 °C for 30 s and 72 °C for 20 min. The libraries were sequenced in parallel 
with four R9.4.1 flowcells (FLO-MIN106D, ONT) and separate MinION Mk1b 
devices (controlled by MinKNOW 4.1.2, ONT). The basecalls were produced 
offline using guppy 4.5.2 with ONT’s high-accuracy model, yielding approximately 
5.8 million and 4.9 million reads in WT and KO NPCs, respectively.

Nanopore native RNA sequencing. For nanopore native RNA sequencing, two 
biological replicates per genotype (WT and Mettl14 KO) were prepared from 
mouse NPCs. Total RNA was extracted using TRIzol from cell pellets following 
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the manufacturer’s protocol (Invitrogen). After DNase I treatment (Takara), 
the reaction was cleaned up using RNeasy MinElute (Qiagen). Each 4 μg of the 
purified total RNA was prepared as a sequencing library for direct RNA-seq by 
the standard kit (SQK-RNA002, ONT). The libraries were loaded onto R9.4.1 
flowcells (FLO-MIN106D, ONT) and sequenced using four MinION Mk1b devices 
separately in parallel (MinKNOW 4.1.2, ONT). Acquired squiggles were basecalled 
offline using guppy 4.4.1 with the ‘res_rna2’ flipflop model (ONT), yielding 
approximately 2.1 million and 1.8 million filtered high-quality reads in WT and 
KO NPCs, respectively.

Reconstruction of WT and Mettl14 NPC transcriptomes. We used StringTie-ls 
to reconstruct novel transcripts expressed in WT and Mettl14 NPCs but employ 
Ladder-seq replicates and the well-annotated mouse reference transcriptome 
(Ensembl release 95) to obtain high-quality transcriptomes for the two conditions. 
More specifically, we assemble transcripts using StringTie-ls in each sample 
independently and consider all transcripts that do not match any annotated 
transcript in their sequence of introns as novel. Among these novel transcript 
structures, we retain those that occur in at least three of the four replicates per 
genoypte and merge the two resulting sets of transcripts to a high-confidence 
set of novel transcripts across genotypes. We add these novel transcripts to the 
mouse reference transcriptome and use this catalog of transcripts in all subsequent 
analyses of NPC samples. We apply the same procedure when comparing the 
outcomes to the conventional RNA-seq analysis but replace StringTie-ls by 
conventional StringTie2. Depending on the quality of the reference annotation, 
a stepwise addition of novel isoforms as in AIDE5 can help prioritize annotated 
transcripts in the subsequent quantification.

To compute the number and rate of detected annotated transcripts (Ensembl 
release 95) in a Ladder-seq or RNA-seq dataset, we quantified transcript abundance 
using conventional kallisto, pooling reads from different bands in Ladder-seq. A 
transcript was considered detected if its estimated count was at least 1.

Differential isoform usage analysis. Abundance estimates per sample were 
obtained with kallisto-ls. The R Bioconductor package IsoformSwitchAnalyzeR61 
was used for differential isoform usage (DIU) analysis. Identification of 
differentially used isoforms across all genes with IsoformSwitchAnalyzeR is 
done through DEXseq62, which is a statistical method originally developed for 
differential exon usage based on the likelihood ratio test that has since been 
shown to adequately control for false discovery rate (FDR) in the setting of 
DIU. Analysis of consequences of isoform switches was performed through 
IsoformSwitchAnalyzeR with the function analyzeSwitchConsequences. This 
function allows the addition of input data from CPAT63 for analysis of coding 
potential and from PfamScan64 for protein domain annotation.

Analysis of published m6A sequencing from mouse NPCs. We built a set of 
high-confidence m6A peaks from a publicly available dataset of m6A sequencing 
in mouse NPCs23. BED files containing peaks called by MACS2 (ref. 65) from two 
replicates with two input samples each were downloaded from the National Center 
of Biotechnology Information’s Gene Expression Omnibus (GSE104686). Using 
BEDTools intersect66, we identified peaks that were reproducible in both replicates 
with both input controls. We then annotated these high-confidence peaks using the 
annotatePeaks.pl program from the Homer suite67 to identify the genes harboring 
m6A methylation.

Analysis of m6A enrichment at differentially spliced regions. Pairs of switching 
isoforms from m6A methylated genes were partitioned into minimal exonic 
segments that are bounded by splice sites, transcription start sites or transcription 
end sites of the two involved transcripts. These segments represent the largest 
exonic fragments that are entirely contained in one or both of the two transcripts. 
A segment bounds a differentially splice region if it is part of only one of the two 
transcripts, if it is not the first or last segment of that transcript and if it is adjacent 
to a segment that is contained in both transcripts. We take into account the length 
of segments in Fisher’s exact test by distinguishing individual bases that can lie 
within or outside of bounding segments and that can be methylated or not.

GO enrichment analysis. All GO enrichment analyses were performed using the 
R Bioconductor package TopGO68. Only genes passing the pre-filtering step for 
differential isoform usage (TPM >1) were considered for the gene universe.

Splicing analysis. Alternative splicing analysis was performed using the 
IsoformSwitchAnalyzeR R Bioconductor package61 with the functions 
extractSplicingSummary, which summarizes the types of alternative splicing  
events occurring in each isoform switch, and extractSplicingEnrichment, which 
identifies the uneven usage of a particular alternative splicing type in one of the 
conditions assayed.

Processing of ONT long-read libraries. ONT reads were aligned to the Ensembl 
mouse genome assembly GRCm38 using minimap2 version 2.17-r941. Following 
recommendations at https://github.com/lh3/minimap2, we used option -ax 
splice to allow spliced alignments and provided splice junctions extracted from 

the corresponding Ensembl release 95 transcriptome annotation with parameter 
–junc-bed. In the alignment of native RNA reads, we additionally used options 
-k14 -uf as recommended. We used FLAIR version 1.5.1 (ref. 32) to identify 
transcripts and StringTie2 (ref. 17) to assemble transcripts from ONT reads. We ran 
FLAIR with default settings on pooled reads from both WT and KO replicates and 
extracted condition-specific transcripts that had an estimated count of at least 1 in 
at least one of the two replicates per condition. FLAIR uses minimap2 internally to 
align reads using options -ax splice -t 8 –secondary=no and corrects 
misaligned splice sites using the Ensemble 95 annotation. It groups corrected 
reads with identical intron chains while comparing TSS/TSE with a window size 
of 100 bp, collapsing them to representative transcripts. It retains transcripts with 
at least three aligned reads with a minimum MAPQ of 1. StringTie2 was run with 
the -L option (for long reads) on each of two BAM files generated, respectively, 
from pooled replicates of two conditions. GffCompare version 0.10.4 was used 
to compare transcripts between ONT datasets and with transcripts assembled in 
Ladder-seq. Transcripts were considered identical if they shared the same sequence 
of introns.

To quantify expression and to compute the number and rate of detected 
annotated transcripts (Ensemble release 95) in an ONT dataset, we followed 
the strategy proposed in ref. 12. We aligned reads to the mouse cDNA sequences 
from Ensembl GRCm38.95 using minimap2 with options -ax map-ont and 
quantified their expression using salmon version 1.2.1 with options -l A and –
noErrorModel. A transcript was considered detected if its estimated count was 
at least 1.

RT–qPCR analysis. For relative isoform expression analysis, total RNA was 
isolated from biological triplicate WT and Mettl14 KO NPC samples using the 
RNeasy Plus Mini Kit (Qiagen) and treated with DNAseI. Equal amounts of total 
RNA from each sample were then reverse transcribed using SMARTScribe Reverse 
Transcriptase (Takara). Relative isomer expression was measured by quantitative 
real-time PCR on a 7500 Real-Time PCR system (Applied Biosystems) by adding 
SYBR Green to cDNA and using custom primers unique to each isomer of interest 
(Supplementary Table 22). For each gene, three isomers were tested: one common 
isomer identified in both WT and Mettl14 KO NPC RNA-seq data and two 
distinct isomers with differential expression between WT and Mettl14 KO NPC 
RNA-seq data. All samples were tested in triplicate and normalized to β-actin. The 
expression of the differentially expressed isomers was normalized to the expression 
level of the shared isomer, which consistently showed no significant difference 
between WT and KO NPCs.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Ladder-seq raw sequencing data from WT and Mettl14 KO mouse NPCs, 
conventional RNA-seq data from WT mouse NPCs and ONT long-read sequencing 
from WT and Mettl14 KO mouse NPCs are available in the Gene Expression 
Omnibus (GSE158985). m6A peaks from two replicates of m6A sequencing in 
mouse NPCs were downloaded from the Gene Expression Omnibus (GSE104686).

Code availability
The kallisto-ls, StringTie-ls and Trinity-ls programs and workflows are available at:
•https://github.com/canzarlab/ladderseq_quant,
•https://github.com/canzarlab/ladderseq_assembly and
•https://github.com/canzarlab/ladderseq_denovo,
respectively. The results of our benchmark studies can be reproduced via a 
Snakefile33, available at https://github.com/canzarlab/ladderseq_benchmark.
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Extended Data Fig. 1 | Reduced (effective) gene complexity in Ladder-seq. We estimate transcript expression in Mettl14 KO sample 1 using kallisto on 
Ladder-seq reads pooled across bands and show the histogram of gene complexity measured as the number of expressed transcripts. In Ladder-seq, we 
partition the set of expressed transcripts into 7 bands and count the number of transcripts contained in each band according to their annotated length 
(plus 200 nt average poly(A) tail size46), assuming cuts at 1000 bp, 1500 bp, 2000 bp, 3000 bp, 4000 bp and 6000 bp. The resulting histogram of 
effective gene complexity shows an increased fraction of gene bands with low complexity.
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Extended Data Fig. 2 | in silico gel for WT and Ko NPC samples. For every annotated transcript the intensity of a point with y- coordinate equal to its 
annotated length (plus 200 nt average poly(A) tail size) shows the fraction of reads obtained from each band (x-axis) that can be assigned unambiguously 
to it. As expected, each band contains predominantly reads from transcripts of a distinct length range.
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Extended Data Fig. 3 | overview of the benchmark strategy. 1. The ground truth transcriptome including abundances and error profile is calculated by 
RSEM from GEUVADIS sample NA12716_7. 2. Reads are simulated from the ground truth transcriptome by RSEM to obtain RNA-seq samples of different 
sequencing depths. 3. A matching Ladder-seq sample is obtained by separating reads in silico according to probability mass functions estimated from 
our NPC Ladder-seq sample (and variants thereof). 4. Transcripts are quantified and assembled by our Ladder-seq tailored transcript analysis methods 
kallisto-ls, StringTie-ls, and Trinity-ls from the Ladder-seq sample, while their conventional counterparts are run on the corresponding RNA-seq sample. 5. 
The results are compared to the ground truth to evaluate and compare their accuracy.
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Extended Data Fig. 4 | Quantification accuracy of kallisto-ls on 75 million simulated reads. Mean values across 20 simulations are reported. Pearson 
correlation of estimated and ground truth abundance in log2 transformed transcripts per million (TPM) and mean absolute relative difference (MARD) are 
shown as a function of gene complexity, that is the number of transcripts expressed by a gene. For ease of visualization, we omit genes expressing a single 
transcript, many of which are estimated to be lowly expressed in GEUVADIS sample NA12716_7 by RSEM.
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Extended Data Fig. 5 | Accuracy of transcript assembly from 75 million simulated reads. RNA-seq and Ladder-seq reads were aligned identically to the 
reference genome (GRCh38) using STAR. Sensitivity and precision of StringTie-ls and its conventional counterpart StringTie2 are shown as a function of 
gene complexity measured as the number of expressed transcripts. Sensitivity and precision are calculated with respect to the same set of ground truth 
transcripts as in the smaller 30 million read pairs data set.
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Extended Data Fig. 6 | Accuracy of de novo transcript assembly from 30 million (top row) and 75 million (bottom row) simulated reads. (a) Sensitivity 
of Trinity-ls and its conventional counterpart Trinity at 90% transcript length cut-off is shown as a function of gene complexity measured as the number of 
expressed transcripts. (b) Total number of correctly assembled transcripts at different transcript length cut-offs. (c) Precision at different transcript length 
cut-offs.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Ladder-seq improves differential analysis of reconstructed transcriptomes. (a) Computational pipeline for differential isoform 
usage analysis with conventional RNA-seq and Ladder-seq. Reads were aligned using STAR aligner prior to transcript assembly for both pipelines. (b) 
Venn diagram showing overlap between switching genes identified by Ladder-seq and conventional RNA-seq. (c and e) Isoform switches identified only 
by Ladder- seq in genes Exo1 and Tram1l1 (between n=4 WT and n=4 KO samples). Red arrows show location of m6A methylation. TCONS_00000541 and 
TCONS_00000542 are novel isoforms of Exo1 detected only by Ladder-seq. TCONS_00006855 is a novel isoform of Tram1l1 that was assembled by both 
methods, but conventional RNA-seq failed to identify the isoform switch. Without length information, conventional RNA-seq reads in KO bands 2 and 3 
were predominantly assigned to the annotated transcript in band 4. Barplots represent mean ± SEM; ***FDR corrected p<0.001. (d and f) Coverage plots 
for switching genes Exo1 and Tram1l1 showing separation of reads from transcripts of different lengths. (g) Jensen Shannon divergence for Ladder-seq and 
conventional RNA-seq for all identified transcripts grouped by relative difference in abundance estimation by both methods (n=18761 for <0.5, n=12722 
for 0.5-1, n=7918 for 1-1.5, n=6292 for 1.5-2 relative difference). Relative difference is defined as the absolute difference in estimated transcript abundance 
(in TPM) divided by the average of the two. Boxplot definition: Bottom and top of the box correspond to lower and upper quartiles of the data, bar is the 
median and whiskers are median ± 1.5x interquartile range.
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Extended Data Fig. 8 | Mettl14 Ko leads to isoform switches in m6A methylated genes. (a) Gene Ontology for m6A methylated genes containing isoform 
switches. (b) Isoform switch in Ptprz1 (between n=4 WT and n=4 KO samples). Red arrow shows location of m6A methylation. Barplots represent 
mean ± SEM; ***FDR corrected p<0.001. (c) Gene Ontology analysis for genes with loss of protein domains in KO NPCs. (d) Splicing analysis: Number of 
gains and losses of each splicing event in KO NPCs. A3: Alternative 3’ acceptor site; A5: Alternative 5’ acceptor site; ES: Exon skipping; IR: Intron retention; 
MEE: Mutually exclusive exon; MES: Multiple exon skipping. (e) Gene Ontology enrichment analysis of genes with intron retention loss in KO NPCs.
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Extended Data Fig. 9 | Comparison of Ladder-seq and oNT-cDNA sequencing on mouse NPCs. (a) Orange bars show validation by StringTie2 (left 
panel) or by an independent ONT dataset (Dong et al.) (right panel) of transcripts found by both Ladder-seq and ONT-cDNA while light blue bars 
show validation values for transcripts reported only by ONT-cDNA. In comparison, 32.5% of transcripts uniquely identified by Ladder-seq (average 
TPM ≥ 1) were also identified in the dataset by Dong et al. (b) Boxplots showing expression levels (TPM) for transcripts identified both by long- reads and 
Ladder-seq (green boxes) and for transcripts identified only by Ladder-seq (grey boxes). Left panel shows values for all Ladder-seq transcripts with TPM 
higher than 1 (n=6169 identified only by Ladder-seq, n=15099 by both). Right panel shows values for Ladder-seq switching transcripts with TPM higher 
than 1 (n=905 identified only by Ladder-seq, n=2012 by both). Boxplot definition: Bottom and top of the box correspond to lower and upper quartiles of 
the data, bar is the median and whiskers are median ± 1.5x interquartile range.
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Extended Data Fig. 10 | Cumulative percentage of Ladder-seq transcripts identified by long-read sequencing. Bars show percentage of Ladder-seq 
transcripts identified by FLAIR (green), plus those additionally identified by StringTie2 (blue), plus transcripts additionally found in a recently published 
long-read mouse NPC transcriptome (light blue).
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