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Altered dopamine signaling is involved in many human disorders, 
from Parkinson’s disease to drug addiction. Yet the normal functions 
of dopamine have long been the subject of debate. There is extensive 
evidence that dopamine affects learning, especially the reinforcement 
of actions that produce desirable results1. Specifically, electrophysi-
ological studies suggest that bursts and pauses of dopamine cell firing 
encode the reward prediction errors (RPEs) of reinforcement learn-
ing (RL) theory2. In this framework, RPE signals are used to update 
estimated values of states and actions, and these updated values affect 
subsequent decisions when similar situations are re-encountered.  
Further support for a link between phasic dopamine and RPE comes 
from measurements of dopamine release using fast-scan cyclic  
voltammetry (FSCV)3,4 and optogenetic manipulations5,6.

There is also extensive evidence that dopamine modulates arousal 
and motivation7,8. Drugs that produce prolonged increases in 
dopamine release (for example, amphetamines) can markedly enhance 
psychomotor activation, whereas drugs or toxins that interfere with 
dopamine transmission have the opposite effect. Over slow times-
cales (tens of minutes) microdialysis studies have demonstrated that 
dopamine release ([DA]) is strongly correlated with behavioral activ-
ity, especially in the nucleus accumbens9 (that is, mesolimbic [DA]). 
It is widely thought that slow (tonic) [DA] changes are involved in 
motivation10–12. However, faster [DA] changes also appear to have 
a motivational function13. Subsecond increases in mesolimbic [DA] 
accompany motivated approach behaviors14,15, and dopamine ramps 
lasting several seconds have been reported as rats approach anticipated 
rewards16, without any obvious connection to RPE. Overall, the role of 
dopamine in motivation is still considered to be mysterious12.

We sought to better understand just how dopamine contributes to 
motivation and to learning simultaneously. We found that mesolimbic 

[DA] conveys a motivational signal in the form of state values, which 
are moment-by-moment estimates of available future reward. These 
values were used for making decisions about whether to work, that is, to 
invest time and effort in activities that are not immediately rewarded, to 
obtain future rewards. When there was an unexpected change in value, 
the corresponding change in [DA] not only influenced motivation to 
work, but also served as an RPE learning signal, reinforcing specific 
choices. Rather than separate functions of phasic and tonic [DA], our 
data support a unified view in which the same dynamically fluctuating 
[DA] signal influences both current and future motivated behavior.

RESULTS
Motivation to work adapts to recent reward history
We used an adaptive decision-making task (Fig. 1a and Online 
Methods) that is closely related to the reinforcement learning frame-
work (a ‘two-armed bandit’). On each trial, a randomly chosen nose 
poke port lit up (Light-On), indicating that the rat might profitably 
approach and place its nose in that port (Center-In). The rat had to 
wait in this position for a variable delay (0.75–1.25s) until an audi-
tory white noise burst (Go cue) prompted the rat to make a brief 
leftward or rightward movement to an adjacent side port. Unlike pre-
vious behavioral tasks using the same apparatus, the Go cue did not 
specify which way to move; instead, the rat had to learn through trial- 
and-error which option was currently more likely to be rewarded.  
Left and right choices had separate reward probabilities (each was 
either 10, 50 or 90%), and these probabilities changed periodically 
without any explicit signal. On rewarded trials only, entry into 
the side port (Side-In) immediately triggered an audible click (the  
reward cue) as a food hopper delivered a sugar pellet to a separate 
food port at the opposite side of the chamber.
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Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine 
is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (phasic) dopamine 
fluctuations support learning, whereas much slower (tonic) dopamine changes are involved in motivation. We examined dopamine 
release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods 
during adaptive decision-making. We found that minute-by-minute dopamine levels covaried with reward rate and motivational 
vigor. Second-by-second dopamine release encoded an estimate of temporally discounted future reward (a value function). 
Changing dopamine immediately altered willingness to work and reinforced preceding action choices by encoding temporal-
difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly evolving decision variable, the 
available reward for investment of effort, which is employed for both learning and motivational functions.
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Trained rats readily adapted their behavior in at least two respects 
(Fig. 1b,c). First, actions followed by rewards were more likely to 
be subsequently selected (that is, they were reinforced), producing 
left and right choice probabilities that scaled with actual reward  
probabilities17 (Fig. 1d).

Second, rats were more motivated to perform the task while it pro-
duced a higher rate of reward18,19. This was apparent from latency 
(the time taken from Light-On until the Center-In nose poke), which 
scaled inversely with reward rate (Fig. 1e–g). When reward rate was 
higher, rats were more likely to be already waiting near the center 
ports at Light-On (engaged trials; Supplementary Fig. 1), produc-
ing very short latencies. Higher reward rates also produced shorter 
latencies even when rats were not already 
engaged at Light-On (Supplementary Fig. 1), 
as a result of an elevated moment-by-moment 
probability (hazard rate) of choosing to begin  
work (Fig. 1h,i).

These latency observations are consistent 
with optimal foraging theories20, which argue 
that reward rate is a key decision variable 
(currency). As animals perform actions and 
experience rewards, they construct estimates 
of reward rate and can use these estimates to 
help decide whether engaging in an activity  
is worthwhile. In a stable environment, the 
best estimate of reward rate is simply the 

total magnitude of past rewards received over a long time period, 
divided by the duration of that period. It has been proposed that such 
a long-term average reward rate is encoded by slow (tonic) changes 
in [DA]10. However, under shifting conditions such as our trial- 
and-error task, the reward rate at a given time is better estimated 
by more local measures. Reinforcement learning algorithms use past 
reward experiences to update estimates of future reward from each 
state: a set of these estimates is called a value function21.

Minute-by-minute dopamine correlates with reward rate
To test whether changes in [DA] accompany reward rate during adap-
tive decision-making, we first employed microdialysis in the nucleus 
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Figure 1 Adaptive choice and motivation 
in the trial-and-error task. (a) Sequence of 
behavioral events (in rewarded trials). (b) Choice 
behavior in a representative session. Numbers 
at top denote nominal block-by-block reward 
probabilities for left (purple) and right (green) 
choices. Tick marks indicate actual choices 
and outcomes on each trial (tall ticks indicate 
rewarded trials, short ticks unrewarded).  
The same choice data is shown below in 
smoothed form (thick lines, seven-trial 
smoothing). (c) Relationship between reward 
rate and latency for the same session. Tick marks  
indicate only whether trials were rewarded or 
not, regardless of choice. Solid black line shows 
reward rate and cyan line shows latency (on 
inverted log scale), both smoothed in the same 
way as in b. (d) Choices progressively adapted 
toward the block reward probabilities (data set 
for d–i: n = 14 rats, 125 sessions, 2,738 ± 
284 trials per rat). (e) Reward rate breakdown 
by block reward probabilities. (f) Latencies by 
block reward probabilities. Latencies became 
rapidly shorter when reward rate was higher. 
(g) Latencies by proportion of recent trials 
rewarded. Error bars represent s.e.m.  
(h) Latency distributions presented as survivor 
curves (the average fraction of trials for which 
the Center-In event has not yet happened, by 
time elapsed from Light-On) broken down  
by proportion of recent trials rewarded.  
(i) Same latency distributions as h, but 
presented as hazard rates (the instantaneous 
probability that the center-in event will  
happen, if it has not happened yet). The initial 
bump in the first second after Light-On  
reflects engaged trials (Supplementary Fig. 1),  
after that hazard rates are relatively stable and 
continue to scale with reward history.
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accumbens combined with liquid chromatography–mass spectrom-
etry. This method allows us to simultaneously assay a wide range 
of neurochemicals, including all of the well-known low–molecular 
weight striatal neurotransmitters, neuromodulators and their metabo-
lites (Fig. 2a), each with 1-min time resolution. We performed regres-
sion analyses to assess relationships between these neurochemicals 
and a range of behavioral factors: reward rate, the number of trials 
attempted (as an index of a more general form of activation/arousal), 
the degree of exploitation versus exploration (an important decision 
parameter that has been suggested to involve [DA]; Online Methods) 
and the cumulative reward obtained (as an index of progressively 
increasing factors such as satiety).

We found a clear overall relationship between [DA] and ongoing 
reward rate (R2 = 0.15, P < 10−16). Among the 19 tested analytes, [DA] 
had by far the strongest relationship to reward rate (Fig. 2b), and 
this relationship was significant in six of seven individual sessions,  
from six different rats (P = 0.0052 or lower in each case; Fig. 2c and 
Supplementary Fig. 2). Modest relationships were also found for the 
dopamine metabolites DOPAC and 3-MT. We found a weak relation-
ship between [DA] and the number of trials attempted, but this was 
entirely accounted for by reward rate; that is, if the regression model 
already included reward rate, adding number of attempts did not 
improve model fit. We did not find support for alternative proposals 
that tonic [DA] is related to exploration or exploitation, as higher 
[DA] was not associated with an altered probability of choosing the 
better left or right option (Fig. 2b and Supplementary Fig. 2). [DA] 
also showed no relationship to the cumulative total rewards earned 

(though there was a strong relationship between cumulative reward 
and the dopamine metabolite HVA, among other neurochemicals; 
Fig. 2b and Supplementary Fig. 3).

We conclude that higher reward rate is associated specifically with 
higher average [DA], rather than other striatal neuromodulators, 
and with increased motivation to work. This finding supports the 
proposal that [DA] helps to mediate the effects of reward rate on 
motivation10. However, rather than signaling an especially long-term 
rate of reward, [DA] tracked minute-by-minute fluctuations in reward 
rate. We therefore needed to assess whether this result truly reflects 
an aspect of [DA] signaling that is inherently slow (tonic) or could 
instead be explained by rapidly changing [DA] levels, that signal a 
rapidly changing decision variable.

Dopamine signals time-discounted available future reward
To help distinguish these possibilities, we used FSCV to assess task-
related [DA] changes on fast timescales (from tenths of seconds 
to tens of seconds; Fig. 3). In each trial, [DA] rapidly increased as 
rats poked their nose in the start hole (Fig. 3c,d), and for all rats 
this increase was more closely related to this approach behavior 
than to the onset of the light cue (for data from each of the single  
sessions from all six rats, see Supplementary Fig. 4). A second abrupt 
increase in [DA] occurred following presentation of the Go cue  
(Fig. 3c,d). If received, the reward cue prompted a third abrupt increase  
(Fig. 3c,d). [DA] rose still further as the rat approached the food 
port (Fig. 3c,d), then declined once the reward was obtained.  
The same overall pattern of task-related [DA] change was observed 
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Figure 2 Minute-by-minute dopamine levels track reward rate. (a) Total ion chromatogram of a single representative microdialysis sample, illustrating 
the set of detected analytes in this experiment. x axis indicates chromatography retention times, y axis indicates intensity of ion detection for each 
analyte (normalized to peak values). Inset, locations of each microdialysis probe in the nucleus accumbens (all data shown in the same Paxinos atlas 
section; six were on the left side and one on the right). DA, dopamine; 3-MT, 3-methoxytyramine; NE, norepinephrine; NM, normetanephrine; 5-HT, 
serotonin; DOPAC, 3,4-dihydroxyphenylacetate acid; HVA, homovanillic acid; 5HIAA, 5-hydroxyindole-3-acetic acid; ACh, acetylcholine. (b) Regression 
analysis results indicating strength of linear relationships between each analyte and each of four behavioral measures (reward rate, number of attempts, 
exploitation index and cumulative rewards). Data are from six rats (seven sessions, total of 444 1-min samples). Color scale shows P values, Bonferroni-
corrected for multiple comparisons (4 behavioral measures × 19 analytes), with red bars indicating a positive relationship and blue bars indicating 
a negative relationship. Given that both reward rate and attempts showed significant correlations with [DA], we constructed a regression model that 
included these predictors and an interaction term. In this model, R2 remained at 0.15 and only reward rate showed a significant partial effect (P < 2.38 
× 10−12). (c) An alternative assessment of the relationship between minute-long [DA] samples and behavioral variables. In each of the seven sessions, 
[DA] levels were divided into three equal-sized bins (low, medium and high); different colors indicate different sessions. For each behavioral variable, 
means were compared across [DA] levels using one-way ANOVA. There was a significant main effect of reward rate (F(2,18) = 10.02, P = 0.0012), but 
no effect of attempts (F(2,18) = 1.21, P = 0.32), exploitation index (F(2,18) = 0.081, P = 0.92) or cumulative rewards (F(2,18) = 0.181, P = 0.84). 
Post hoc comparisons using the Tukey test revealed that the mean reward rates of low and high [DA] differed significantly (P = 0.00082). See also 
Supplementary Figures 2 and 3.
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in all rats, albeit with some variation (Supplementary Fig. 4). [DA] 
increases did not simply accompany movements, given that, on the 
infrequent trials in which the rat approached the food port without 
hearing the reward cue, we observed no corresponding increase in 
[DA] (Fig. 3c,d).

The overall ramping up of [DA] as rats drew progressively closer 
to reward suggested some form of reward expectation16. Specifically, 
we hypothesized that [DA] continuously signals a value function: the 
temporally discounted reward predicted from the current moment.  
To make this more clear, consider a hypothetical agent moving 
through a sequence of distinct, unrewarded states leading up to an 
expected reward (perhaps a rat running at constant speed along a 
familiar maze arm; Fig. 4a). As the reward is more discounted when 
more distant, the value function will progressively rise until the 
reward is obtained.

This value function describes the time-varying level of motiva-
tion. If a reward is distant (so strongly discounted), animals are less 
likely to choose to work for it. Once engaged, animals are increas-
ingly motivated, and so less likely to quit, as they detect progress 
toward the reward (the value function produces a ‘goal gradient’)22. 
If the reward is smaller or less reliable, the value function will be 

lower, indicating less incentive to begin work. Moving closer to our 
real situation, suppose that reward is equally likely to be obtained, 
or not, on any given trial, but a cue indicates this outcome halfway 
through the trial (Fig. 4a). The increasing value function should 
initially reflect the overall 0.5 reward probability, but if the reward 
cue occurs, estimated value should promptly jump to that of the 
(discounted) full reward.

Such unpredicted sudden transitions to states with a different 
value produce ‘temporal-difference’ RPEs (Fig. 4b). In particular, 
if the value function is low (for example, the trajectory indicating 
0.25 expectation of reward), the reward cue produces a large RPE, as 
value jumps up to the discounted value of the now-certain reward. If 
instead reward expectation was higher (for example, 0.75 trajectory), 
the RPE produced by the reward cue is smaller. Given that temporal 
difference RPEs reflect sudden shifts in value, under some condi-
tions they can be challenging to dissociate from value itself. However, 
RPE and value signals are not identical. In particular, as reward gets 
closer, the state value progressively increases but RPE remains zero 
unless events occur with unpredicted value or timing.

Our task includes additional features, such as variable timing 
between events and many trials. We therefore considered what the 
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‘true’ value function should look like, on average, based on actual 
times to future rewards (Fig. 4c). At the beginning of a trial, reward is 
at least several seconds away and may not occur at all until a later trial. 
During correct trial performance each subsequent, variably timed 
event indicates to the rat that rewards are getting closer and more 
likely, and thus causes a jump in state value. For example, hearing the 
Go cue indicates both that reward is closer and that the rat will not 
lose out by moving too soon (an impulsive procedural error). Hearing 
the reward cue indicates that reward is now certain and only a couple 
of seconds away.

To assess how the intertwined decision variables, state value 
and RPE, are encoded by phasic [DA], we compared our FSCV  
measurements to the dynamically varying state value and RPE of a 
reinforcement learning model (Online Methods). This simplified 
model consisted of a set of discrete states (Supplementary Fig. 5) 
whose values were updated using temporal-difference RPEs. When 

the actual sequence of behavioral events experienced by the rat was 
given as input, the model’s value function consisted of a series of 
increases in each trial (Fig. 4d,e), resembling the observed time 
course of [DA] (Fig. 3c).

Consistent with the idea that state value represents motivation to 
work, model state value early in each trial correlated with behavioral 
latencies for all rats (across a wide range of model parameter settings; 
Supplementary Fig. 5). We identified model parameters (learning rate 
= 0.4, discount factor = 0.95) that maximized this behavioral correla-
tion across all rats combined and examined the corresponding within-
trial correlation between [DA] and model variables. For all of the six 
FSCV rats, we found a clear and highly significant positive correlation 
between phasic [DA] and state value V (Fig. 4f). [DA] and RPE were 
also positively correlated, as expected given that V and RPE partially 
covary. However, in every case, [DA] had a significantly stronger 
relationship to V than to RPE (Fig. 4f and Supplementary Fig. 5).  
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inherently hyperbolic). Time parameters were chosen here simply to illustrate  
the distinct curve shapes. Bottom, effect of reward cue or omission on 
state value. At trial start, the discounted value of a future reward will be 
less if that reward is less likely. Lower value provides less motivational 
drive to start work, producing, for example, longer latencies. If a cue 
signals that upcoming reward is certain, the value function jumps up to 
the (discounted) value of that reward. For simplicity, the value of subsequent 
rewards is not included. (b) The reward prediction error δ reflects abrupt 
changes in state value. If the discounted value of work reflects an unlikely 
reward (for example, probability = 0.25) a reward cue prompts a larger δ 
than if the reward was likely (for example, probability = 0.75).  
Note that in this idealized example, δ would be zero at all other times. 
(c) Task events signal times to reward. Data is from the example session 
shown in Figure 3c. Bright red indicates actual times to the very next 
reward, dark red indicates subsequent rewards. Green arrowheads indicate 
average times to next reward (harmonic mean, only including rewards in 
the next 60s). As the trial progresses, average times-to-reward get shorter. 
If the reward cue is received, rewards are reliably obtained ~2 s later. Task 
events are considered to prompt transitions between different internal 
states (Supplementary Fig. 5) whose learned values reflect these different 
experienced times to reward. (d) Average state value of the RL model for 
rewarded (red) and unrewarded (blue) trials, aligned on the Side-In event. 
The exponentially discounting model received the same sequence of 
events as in Figure 3c, and model parameters (α = 0.68,  
γ = 0.98) were chosen for the strongest correlation to behavior  
(comparing state values at Center-In to latencies in this session, 
Spearman r = −0.34). Model values were binned at 100 ms, and only  
bins with at least three events (state transitions) were plotted.  
(e) Example of the [DA] signal during a subset of trials from the same 
session compared with model variables. Black arrows indicate Center-In  
events, red arrows indicate Side-In with reward cue, and blue arrows 
indicate Side-In alone (omission). Scale bars represent 20 nM ([DA]), 
0.2 (V) and 0.2 (δ). Dashed gray lines mark the passage of time in 10-s 
intervals. (f) Within-trial [DA] fluctuations were more strongly correlated 
with model state value (V) than with RPE (δ). For every rat, the [DA]:V 
correlation was significant (number of trials for each rat: 312, 229, 345, 
252, 200, 204; P < 10−14 in each case; Wilcoxon signed-rank test of null 
hypothesis that median correlation within trials is zero) and significantly 
greater than the [DA]:δ correlation (P < 10−24 in each case, Wilcoxon 
signed-rank test). Group-wise, both [DA]:V and [DA]:δ correlations 
were significantly nonzero, and the difference between them was also 
significant (n = 6 sessions, all comparisons P = 0.031, Wilcoxon signed-rank test). Model parameters (α = 0.4, γ = 0.95) were chosen to maximize 
the average behavioral correlation across all six rats (Spearman r = −0.28), but the stronger [DA] correlation to V than to δ was seen for all parameter 
combinations (Supplementary Fig. 5). (g) Model variables were maximally correlated with [DA] signals ~0.5 s later, consistent with a slight delay caused 
by the time taken by the brain to process cues, and by the FSCV technique.
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We emphasize that this result was not dependent on specific model 
parameters; in fact, even if parameters were chosen to maximize 
the [DA]:RPE correlation, the [DA]:V correlation was stronger 
(Supplementary Fig. 5).

Correlations were maximal when V was compared with the [DA] 
signal measured ~0.4–0.5 s later (Fig. 4g). This small delay is con-
sistent with the known brief lag associated with the FSCV method 
using acute electrodes23 and prior observations that peak [DA] 
response occurs ~0.5 s after cue onset with acute FSCV recordings3. 
As an alternative method of incorporating temporal distortion that 
might be produced by FSCV and/or the finite speeds of DA release 
and update, we convolved model variables with a kernel consisting 
of an exponential rise and fall, and explored the effect of varying 
kernel time constants. Once again, [DA] always correlated much 
better with V than with RPE across a wide range of parameter values 
(Supplementary Fig. 6). We conclude that state value provides a 
more accurate description of the time course of [DA] fluctuations 
than RPE alone, even though RPEs can be simultaneously signaled 
as changes in state value.

Abrupt dopamine changes encode RPEs
FSCV electrode signals tend to drift over a timescale of minutes, so 
standard practice is to assess [DA] fluctuations relative to a pre-trial 
‘baseline’ of unknown concentration (as in Fig. 3). Presented this way, 
reward cues appeared to evoke a higher absolute [DA] level when 
rewards were less common (Fig. 5a,b), consistent with a conventional 
RPE-based account of phasic [DA]. However, our model implies a 
different interpretation of this data (Figs. 4b and 5c). Rather than 
a jump from a fixed to a variable [DA] level (that encodes RPE), we 
predicted that the reward cue actually causes a [DA] jump from a 
variable [DA] level (reflecting variable estimates of upcoming reward) 
to a fixed [DA] level (that encodes the time-discounted value of the 
now certain reward).

To test these competing accounts, we compared [DA] levels 
between consecutive pairs of rewarded trials with Side-In events  
< 30 s apart (that is, well within the accepted stable range of FSCV 
measurements24; for included pairs of trials, the average time between 
side-in events was 11.5 s). If the [DA] level evoked by the reward cue 
reflects RPE, then this level should tend to decline as rats experience  
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Figure 5 Between-trial dopamine shifts reflect 
updated state values. (a) Less-expected 
outcomes provoke larger changes in [DA]. 
[DA] data from all FSCV sessions together (as 
in Fig. 3d), broken down by recent reward 
history and shown relative to pre-trial baseline 
(−3 to −1 s relative to Center-In). Note that 
the [DA] changes after reward omission last 
at least several seconds (shift in level), rather 
than showing a highly transient dip followed 
by return to baseline, as might be expected 
for encoding RPEs alone. (b) Quantification of 
[DA] changes, between baseline and reward 
feedback (0.5–1.0 s after Side-In for rewarded 
trials, 1–3 s after Side-In for unrewarded trials). 
Error bars show s.e.m. (c) Data are presented 
as in a, but plotted relative to [DA] levels after 
reward feedback. These [DA] observations are 
consistent with a variable baseline whose level 
depends on recent reward history (as in  
Fig. 4b model). (d) Alternative accounts of [DA] 
make different predictions for between-trial 
[DA] changes. When reward expectation is low, 
rewarded trials provoke large RPEs, but RPEs 
should decline across repeated consecutive 
rewards. Thus, if absolute [DA] levels encode 
RPE, the peak [DA] evoked by the reward cue 
should decline between consecutive rewarded 
trials (and baseline levels should not change). 
For simplicity, this cartoon omits detailed 
within-trial dynamics. (e) Predicted pattern of 
[DA] change under this account, which also 
does not predict any baseline shift after reward 
omissions (right). (f) If instead [DA] encodes 
state values, then peak [DA] should not decline 
from one reward to the next, but the baseline 
level should increase (and decrease following 
unrewarded trials). (g) Predicted pattern of [DA] change for this alternative account. (h) Unexpected rewards cause a shift in baseline, not in peak [DA]. 
Average FSCV data from consecutive pairs of rewarded trials (all FSCV sessions combined, as in a), shown relative to the pre-trial baseline of the first 
trial in each pair. Data were grouped into lower reward expectation (left pair of plots, 165 total trials; average time between side-in events = 11.35 ± 
0.22 s, s.e.m.) and higher reward expectation (right pair of plots, 152 total trials; time between side-in events = 11.65 ± 0.23 s) by a median split of 
each individual session (using number of rewards in last ten trials). Dashed lines indicate that reward cues evoked a similar absolute level of [DA] in 
the second rewarded trial compared with the first. Black arrow indicates the elevated pre-trial [DA] level for the second trial in the pair (mean change 
in baseline [DA] = 0.108, P = 0.013, one-tailed Wilcoxon signed rank test). No comparable change was observed if the first reward was more expected 
(right pair of plots; mean change in baseline [DA] = 0.0013, P = 0.108, one-tailed Wilcoxon signed rank test). (i) [DA] changes between consecutive 
trials follow the pattern expected for value coding, rather than RPE coding alone. Error bars represent ±s.e.m.
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consecutive rewards (Fig. 5d,e). However, if [DA] represents state 
value, then baseline [DA] should asymptotically increase with 
repeated rewards while reward cue-evoked [DA] remains more stable 
(Fig. 5f,g). The latter proved correct (Fig. 5h,i). These results provide 
clear further evidence that [DA] reflects reward expectation (the value 
function), not just RPE.

Considering the microdialysis and FSCV results together, a  
parsimonious interpretation is that, across multiple measurement 
timescales, [DA] simply signals estimated availability of reward.  
The higher minute-by-minute [DA] levels observed with greater 
reward rate reflect both the higher values of states distal to rewards 
(including baseline periods between active trial performance) and 
the greater proportion of time spent in high-value states proximal 
to rewards.

By conveying an estimate of available reward, mesolimbic [DA] 
could be used as a motivational signal, helping to decide whether it 
is worthwhile to engage in effortful activity. At the same time, abrupt 
relative changes in [DA] could be detected and used as an RPE signal 
for learning. But is the brain actually using [DA] to signal motivation 
or learning, or both, during this task?

Dopamine both enhances motivation and reinforces choices
To address this question, we turned to precisely timed, bidirectional, 
optogenetic manipulations of dopamine. Following an approach vali-
dated in previous studies6, we expressed channelrhodopsin-2 (ChR2) 
selectively in dopamine neurons by combining Th-Cre+ rats with 
DIO-ChR2 virus injections and bilateral optic fibers in the ventral 
tegmental area (Supplementary Fig. 7). We chose optical stimulation 
parameters (10-ms pulses of blue light at 30 Hz, 0.5-s total duration; 
Fig. 6a,b) that produced phasic [DA] increases of similar duration 
and magnitude to those naturally observed with unexpected reward 

delivery. We provided this stimulation at one of two distinct moments 
during task performance. We hypothesized that enhancing [DA]  
coincident with Light-On would increase the estimated motivational 
value of task performance; this would make the rat more likely to 
initiate an approach, leading to shorter latencies on the same trial. We 
further hypothesized that enhancing [DA] at the time of the major 
RPE (Side-In) would affect learning, as reflected in altered behavior 
on subsequent trials. In each session, laser stimulation was given at 
only one of these two times, and on only 30% of trials (randomly 
selected) to allow within-session comparisons between stimulated and  
unstimulated trials.

Providing phasic [DA] at Side-In reinforced choice behavior: it 
increased the chance that the same left or right action was repeated 
on the next trial, whether or not the food reward was actually 
received (n = 6 rats, two-way ANOVA yielded significant main effects 
for laser, F(1,5) = 224.0, P = 2.4 × 10−5; for reward, F(1,5) = 41.0,  
P = 0.0014; without a significant laser × reward interaction, P = 0.174; 
Fig. 6c and Supplementary Fig. 8c). No reinforcing effect was seen 
if the same optogenetic stimulation was given in littermate controls  
(n = 6 Th-Cre− rats, laser main effect F(1,5) = 2.51, P = 0.174; Fig. 6c). 
For a further group of Th-Cre+ animals (n = 5), we instead used the 
inhibitory opsin Halorhodopsin (eNpHR3.0). Inhibition of dopamine 
cells at Side-In reduced the probability that the same left or right choice 
was repeated on the next trial (laser main effect F(1,4) = 18.7, P = 0.012; 
without a significant laser × reward interaction, P = 0.962). A direct 
comparison between these three rat groups also demonstrated a group-
specific effect of Side-In laser stimulation on choice reinforcement 
(two-way ANOVA, laser × group interaction F(2,14) = 69.4, P = 5.4 × 
10−8). These observations support the hypothesis that abrupt [DA] fluc-
tuations serve as an RPE learning signal, consistent with prior optoge-
netic manipulations7. However, extra [DA] at Side-In did not affect  
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Figure 6 Phasic dopamine manipulations 
affect both learning and motivation. (a) FSCV 
measurement of optogenetically evoked [DA] 
increases. Optic fibers were placed above 
VTA and [DA] change examined in nucleus 
accumbens core. Example shows dopamine 
release evoked by a 0.5-s stimulation train 
(average of six stimulation events, shaded area 
indicates ±s.e.m.). (b) Effect of varying the 
number of laser pulses on evoked dopamine 
release, for the same 30-Hz stimulation 
frequency. (c) Dopaminergic stimulation at 
Side-In reinforces the chosen left or right 
action. Left, in Th-Cre+ rats stimulation of ChR2 
increased the probability that the same action 
would be repeated on the next trial. Circles 
indicate average data for each of six rats (three 
sessions each, 384 trials per session ± 9.5, 
s.e.m.). Middle, this effect did not occur in  
Th-Cre− littermate controls (six rats, three 
sessions each, 342 ± 7 trials per session). 
Right, in Th-Cre+ rats expressing Halorhodopsin, 
orange laser stimulation at Side-In reduced the 
chance that the chosen action was repeated on 
the next trial (five rats, three sessions each,  
336 ± 10 trials per session). See Supplementary 
Figure 8 for additional analyses. (d) Laser 
stimulation at Light-On causes a shift toward sooner engagement, if the rats were not already engaged. Latency distribution (on log scale, 10 bins 
per log unit) for non-engaged, completed trials in Th-Cre+ rats with ChR2 (n = 4 rats with video analysis; see Supplementary Figure 9 for additional 
analyses). (e) Same latency data as d, but presented as hazard rates. Laser stimulation (blue ticks at top left) increased the chance that rats would 
decide to initiate an approach, resulting in more Center-In events 1–2 s later (for these n = 4 rats, one-way ANOVA on hazard rate F(1,3) = 18.1,  
P = 0.024). See Supplementary Figure 10 for hazard rate time courses from the individual rats.
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subsequent trial latency (Supplementary Fig. 8a,b), indicating that 
our artificial [DA] manipulations reproduced some, but not all, types 
of behavioral change normally evoked by rewarded trials.

Optogenetic effects on reinforcement were temporally specific: 
providing extra [DA] at Light-On (instead of Side-In) on trial n did 
not affect the probability that rats made the same choice on trial  
n + 1 (laser main effect F(1,5) = 0.031, P = 0.867; Supplementary  
Fig. 8c) nor did it affect the probability that choice on trial n was the 
same as trial n − 1 (laser main effect F(1,5) = 0.233, P = 0.649).

By contrast, extra [DA] at Light-On markedly affected latency for 
that very same trial (Fig. 6d and Supplementary Fig. 8). The effect on 
latencies depended on what the rat was doing at the time of Light-On 
(two-way ANOVA yielded a significant laser × engaged interaction, 
F(1,3) = 28.1, P = 0.013). If the rat was already engaged in task per-
formance, the very short latencies became slightly longer on average 
(median control latency = 0.45 s, median stimulated latency = 0.61 
s; simple main effect of laser, F(1,3) = 10.4, P = 0.048). This effect 
apparently resulted from additional laser-evoked orienting move-
ments on a subset of trials (Supplementary Fig. 9). By contrast, for 
non-engaged trials extra [DA] significantly reduced latencies (median 
control latency = 2.64 s, median stimulated latency = 2.16 s; simple 
main effect of laser, F(1,3) = 32.5, P = 0.011; Fig. 6d). These optoge-
netic results are consistent with the idea that mesolimbic [DA] is less 
important for the initiation of simple, cue-evoked responses when 
a task is already underway25, but is critical for motivating ‘flexible 
approach’ behaviors26.

The shorter latencies produced by extra [DA] were not the result 
of rats approaching the start port at faster speeds, as the average 
approach trajectory was unaffected (Supplementary Fig. 9). Instead,  
extra [DA] transiently increased the probability that rats initi-
ated the approach behavior. As the approach itself lasted ~1–2 s 
(Supplementary Fig. 9), the result was an increased rate of Center-In 
events ~1–2 s after the laser pulse train (Fig. 6e and Supplementary 
Fig. 10). This effect of Light-On laser stimulation on hazard rates was 
dependent on rat group (two-way ANOVA, laser × group interac-
tion F(2,14) = 26.28, P = 0.000018). Post hoc pairwise comparison of 
simple laser effects showed a significant increase in hazard rate for 
Th-Cre+ ChR2 rats (F(1,14) = 62.06, P = 1.63 × 10−6) and a significant 
reduction in hazard rate for Th-Cre+ eNpHR3.0 rats (F(1,14) = 6.31, 
P = 0.025), with no significant change in Th-Cre− ChR2 rats (F(1,14) 
= 2.81, P = 0.116). Overall, we conclude that, beyond just correlating 
with estimates of reward availability, mesolimbic [DA] helps translate 
those estimates into decisions to work for reward.

DISCUSSION
A dopamine value signal used for both motivation and learning
Our results help confirm a range of disparate prior ideas, while plac-
ing them within a newly integrated theoretical context. First, phasic 
[DA] has been previously related to motivated approach14,15, reward  
expectation16 and effort-based decision-making27, but our demon-
stration that [DA] specifically conveys the temporally discounted  
value of future rewards grounds this motivational aspect of 
dopamine fluctuations in the quantitative frameworks of machine 
learning and optimal foraging theory. This idea is also consistent 
with findings using other techniques; for example, fMRI signals 
in ventral striatum (often argued to reflect dopamine signaling) 
encode reward expectation in the form of temporally-discounted 
subjective value28.

Second, using the complementary method of microdialysis to 
assess slower changes, we partly confirmed proposals that reward 
rate is reflected specifically in increased [DA], which in turn enhances  

motivational vigor10. However, our critical argument is that this  
motivational message of reward availability can dynamically change 
from moment to moment, rather than being an inherently slow (tonic) 
signal. Using optogenetics, we confirmed that phasic changes in [DA] 
levels immediately affect willingness to engage in work, supporting 
the idea that subsecond [DA] fluctuations promptly influence moti-
vational decision-making13,29. This dynamic [DA] motivation sig-
nal can help to account for detailed patterns of time allocation30.  
For example, animals take time to reengage in task performance after 
getting a reward (the post-reinforcement pause), and this pause is 
longer when the next reward is smaller or more distant. This behav-
ioral phenomenon has been a long-standing puzzle31, but fits well 
with our argument that the time-discounted value of future rewards, 
conveyed by [DA], influences the moment-by-moment probability 
(hazard rate) of engaging in work.

Third, we confirmed the vital role of fast [DA] fluctuations, includ-
ing transient dips, in signaling RPEs to affect learning4–6. However, 
a notable result from our analyses is that RPEs were conveyed by fast 
relative changes in the [DA] value signal, rather than by deviations 
from a steady (tonic) baseline. This interpretation explains for the 
first time, to the best of our knowledge, how [DA] can simultane-
ously provide both learning and motivational signals, an important 
gap in prior theorizing. Our results also highlight the importance 
of not assuming a consistent baseline [DA] level across trials in  
voltammetry studies.

One interesting implication is that, among the many postsynap-
tic mechanisms that are affected by dopamine, some are concerned 
more with absolute levels and others with fast relative changes.  
This possibility needs to be investigated further, together with the 
natural working hypothesis that [DA] effects on neuronal excitability 
are closely involved in motivational functions32, whereas [DA] effects 
on spike-timing-dependent-plasticity are responsible for reinforce-
ment-driven learning1. It is also intriguing that a pulse of increased 
[DA] sufficient to immediately affect latency, or to alter left or right 
choice on subsequent trials, does not appear to be sufficient to alter 
latency on subsequent trials. This suggests that state values and left 
and right action values17 may be updated via distinct mechanisms or 
at different times in the trial.

Although dopamine is often labeled as a reward transmitter,  
[DA] levels dropped during reward consumption, consistent with 
findings that dopamine is relatively less important for consum-
ing, and apparently enjoying, rewards7,33. Mesolimbic [DA] has 
also been shown to not be required for performance of simple  
actions that are immediately followed by reward, such as pressing a 
lever once to obtain food34. Rather, loss of mesolimbic [DA] reduces 
motivation to work, in the sense of investing time and effort in  
activities that are not inherently rewarding or interesting, but may even-
tually lead to rewards12. Conversely, increasing [DA] with drugs such 
as amphetamines increases motivation to engage in prolonged work, 
in both normal subjects and those with attention-deficit hyperactivity  
disorder35,36.

Dopamine and decision dynamics
Our interpretation of mesolimbic [DA] as signaling the value of work 
is based on rat decisions to perform our task rather than alternative 
‘default’ behaviors, such as grooming or local exploration. In this 
view, mesolimbic [DA] helps to determine whether to work, but not 
which activity is most worthwhile (that is, it is activational more than  
directional12). It may be best considered as signaling the overall  
motivational excitement associated with reward expectation or,  
equivalently, the perceived opportunity cost of sloth10,30.
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Based on prior results27, we expect that [DA] signals reward avail-
ability without factoring in the costs of effortful work, but we did not 
parametrically vary such costs here. Other notable limitations of our 
study are that we only examined [DA] in the nucleus accumbens and 
we did not selectively manipulate [DA] in various striatal subregions 
(and other dopamine targets). Our functional account of [DA] effects 
on behavioral performance is undoubtedly incomplete and it will be 
important to explore alternative descriptions, especially more general-
izable accounts that apply throughout the striatum. In particular, our 
observation that mesolimbic [DA] affects the hazard rate of decisions 
to work seems compatible with a broader influence of striatal [DA] 
over decision-making, such as setting ‘thresholds’ for decision process 
completion27,37,38. In sensorimotor striatum, dopamine influences 
the vigor (and learning) of more elemental actions38,39, and it has 
been shown that even saccade speed in humans is best predicted by 
a discounting model that optimizes the rate of reward40. In this way, 
the activational, invigorating role of [DA] on both simple movements 
and motivation may reflect the same fundamental, computational-
level mechanism applied to decision-making processes throughout 
striatum, affecting behaviors across a range of timescales.

Activational signals are useful, but not sufficient, for adaptive  
decision-making in general. Choosing between alternative, simulta-
neously available courses of action requires net value representations 
for the specific competing options27,41. Although different subpopula-
tions of dopamine neurons may carry somewhat distinct signals42, the 
aggregate [DA] message received by target regions is unlikely to have 
sufficient spatial resolution to represent multiple competing values 
simultaneously43 or sufficient temporal resolution to present them 
for rapid serial consideration44. By contrast, distinct ensembles of 
GABAergic neurons in the basal ganglia can dynamically encode the 
value of specific options, including through ramps-to-reward45,46 that 
may reflect escalating bids for behavioral control. Such neurons are 
modulated by dopamine, and in turn provide key feedback inputs to 
dopamine cells that may contribute to the escalating [DA] patterns 
observed here.

Relationship between dopamine cell firing and release
Firing rates of presumed dopamine cells have been previously reported 
to escalate in trials under some conditions47, but this has not been 
typically reported with reward anticipation. Several factors may con-
tribute to this apparent discrepancy with our [DA] measures. The first 
is the nature of the behavioral task. Many important prior studies of 
dopamine2,3 (although not all41) used Pavlovian situations, in which 
outcomes are not determined by the animal’s actions. When effortful 
work is not required to obtain rewards, the learned value of work may 
be low and corresponding decision variables may be less apparent.

Second, a moving rat receives constantly changing sensory input, 
and may therefore more easily define and discriminate a set of discrete 
states leading up to reward compared with situations in which elapsed 
time is the sole cue of progress. When such a sequence of states can be 
more readily recognized, it may be easier to assign a corresponding 
set of escalating values as reward gets nearer in time. Determining 
subjects’ internal state representations, and their development during 
training, is an important challenge for future work. It has been argued 
that ramps in [DA] might actually reflect RPE if space is nonlinearly 
represented48 or if learned values rapidly decay in time49. However, 
these suggestions do not address the critical relationship between 
[DA] and motivation that we aim to account for here.

Finally, release from dopamine terminals is strongly influenced 
by local microcircuit mechanisms in striatum50 producing a dis-
sociation between dopamine cell firing and [DA] in target regions.  

This dissociation is not complete: the ability of unexpected sensory 
events to drive a rapid, synchronized burst of dopamine cell firing 
is still likely to be of particular importance for abrupt RPE signal-
ing at state transitions. More detailed models of dopamine release, 
incorporating dopamine cell firing, local terminal control and uptake 
dynamics, will certainly be needed to understand how [DA] comes 
to convey a value signal.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowledgmentS
We thank K. Berridge, T. Robinson, R. Wise, P. Redgrave, P. Dayan, D. Weissman, A.  
Kreitzer, N. Sanderson, D. Leventhal, S. Singh, J. Beeler, M. Walton, S. Nicola and 
members of the Berke laboratory for critical reading of various manuscript drafts, 
N. Mallet for initial assistance with viral injections, and K. Porter-Stransky for 
initial assistance with microdialysis procedures. Th-Cre+ rats were developed  
by K. Deisseroth and I. Witten and made available for distribution through RRRC  
(http://www.rrrc.us). This work was supported by the National Institute on Drug 
Abuse (DA032259, training grant DA007281), the National Institute of Mental 
Health (MH093888, MH101697), the National Institute on Neurological Disorders 
and Stroke (NS078435, training grant NS076401), and the National Institute of 
Biomedical Imaging and Bioengineering (EB003320). R.S. was supported by the 
BrainLinks-BrainTools Cluster of Excellence funded by the German Research 
Foundation (DFG grant number EXC1086).

AUtHoR contRIBUtIonS
A.A.H. performed and analyzed both FSCV and optogenetic experiments, 
and J.R.P. performed and analyzed the microdialysis experiments. O.S.M. 
assisted with microdialysis, C.M.V.W. assisted with FSCV, V.L.H. assisted with 
optogenetics and R.S. assisted with reinforcement learning models. B.J.A. helped 
supervise the FSCV experiments and data analysis, and R.T.K. helped supervise 
microdialysis experiments. J.D.B. designed and supervised the study, performed 
the computational modeling, developed the theoretical interpretation, and wrote 
the manuscript. 

comPetIng FInAncIAl InteReStS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Reynolds, J.N., Hyland, B.I. & Wickens, J.R. A cellular mechanism of reward-related 
learning. Nature 413, 67–70 (2001).

2. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. 
Science 275, 1593–1599 (1997).

3. Day, J.J., Roitman, M.F., Wightman, R.M. & Carelli, R.M. Associative learning 
mediates dynamic shifts in dopamine signaling in the nucleus accumbens.  
Nat Neurosci 10, 1020–8 (2007).

4. Hart, A.S., Rutledge, R.B., Glimcher, P.W. & Phillips, P.E. Phasic dopamine release 
in the rat nucleus accumbens symmetrically encodes a reward prediction error term. 
J. Neurosci. 34, 698–704 (2014).

5. Kim, K.M. et al. Optogenetic mimicry of the transient activation of dopamine 
neurons by natural reward is sufficient for operant reinforcement. PLoS ONE 7, 
e33612 (2012).

6. Steinberg, E.E. et al. A causal link between prediction errors, dopamine neurons 
and learning. Nat. Neurosci. 16, 966–973 (2013).

7. Berridge, K.C. The debate over dopamine’s role in reward: the case for incentive 
salience. Psychopharmacology (Berl.) 191, 391–431 (2007).

8. Beierholm, U. et al. Dopamine modulates reward-related vigor. Neuropsycho-
pharmacology 38, 1495–1503 (2013).

9. Freed, C.R. & Yamamoto, B.K. Regional brain dopamine metabolism: a marker for 
the speed, direction, and posture of moving animals. Science 229, 62–65 
(1985).

10. Niv, Y., Daw, N. & Dayan, P. How fast to work: response vigor, motivation and tonic 
dopamine. Adv. Neural Inf. Process. Syst. 18, 1019 (2006).

11. Cagniard, B., Balsam, P.D., Brunner, D. & Zhuang, X. Mice with chronically elevated 
dopamine exhibit enhanced motivation, but not learning, for a food reward. 
Neuropsychopharmacology 31, 1362–1370 (2006).

12. Salamone, J.D. & Correa, M. The mysterious motivational functions of mesolimbic 
dopamine. Neuron 76, 470–485 (2012).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.4173
http://www.nature.com/doifinder/10.1038/nn.4173
http://www.nature.com/doifinder/10.1038/nn.4173
http://www.rrrc.us
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


126  VOLUME 19 | NUMBER 1 | JANUARY 2016 nature neurOSCIenCe

a r t I C l e S

13. Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and 
outcome of decision by dopamine neurons. J. Neurosci. 23, 9913–9923  
(2003).

14. Phillips, P.E., Stuber, G.D., Heien, M.L., Wightman, R.M. & Carelli, R.M. Subsecond 
dopamine release promotes cocaine seeking. Nature 422, 614–618 (2003).

15. Roitman, M.F., Stuber, G.D., Phillips, P.E., Wightman, R.M. & Carelli, R.M. 
Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24, 
1265–1271 (2004).

16. Howe, M.W., Tierney, P.L., Sandberg, S.G., Phillips, P.E. & Graybiel, A.M. Prolonged 
dopamine signaling in striatum signals proximity and value of distant rewards. 
Nature 500, 575–579 (2013).

17. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific 
reward values in the striatum. Science 310, 1337–1340 (2005).

18. Guitart-Masip, M., Beierholm, U.R., Dolan, R., Duzel, E. & Dayan, P. Vigor in the 
face of fluctuating rates of reward: an experimental examination. J. Cogn. Neurosci. 
23, 3933–3938 (2011).

19. Wang, A.Y., Miura, K. & Uchida, N. The dorsomedial striatum encodes net expected 
return, critical for energizing performance vigor. Nat. Neurosci. 16, 639–647 (2013).

20. Stephens, D.W. Foraging theory (Princeton University Press, 1986).
21. Sutton, R.S. & Barto, A.G. Reinforcement Learning: an Introduction (MIT Press, 

1998).
22. Hull, C.L. The goal-gradient hypothesis and maze learning. Psychol. Rev. 39, 25 

(1932).
23. Venton, B.J., Troyer, K.P. & Wightman, R.M. Response Times of carbon fiber 

microelectrodes to dynamic changes in catecholamine concentration. Anal. Chem. 
74, 539–546 (2002).

24. Heien, M.L. et al. Real-time measurement of dopamine fluctuations after cocaine 
in the brain of behaving rats. Proc. Natl. Acad. Sci. USA 102, 10023–10028 
(2005).

25. Nicola, S.M. The flexible approach hypothesis: unification of effort and cue-
responding hypotheses for the role of nucleus accumbens dopamine in the activation 
of reward-seeking behavior. J. Neurosci. 30, 16585–16600 (2010).

26. Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated 
behavior: a unifying interpretation with special reference to reward-seeking.  
Brain Res. Brain Res. Rev. 31, 6–41 (1999).

27. Gan, J.O., Walton, M.E. & Phillips, P.E. Dissociable cost and benefit encoding of 
future rewards by mesolimbic dopamine. Nat. Neurosci. 13, 25–27 (2010).

28. Kable, J.W. & Glimcher, P.W. The neural correlates of subjective value during 
intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

29. Adamantidis, A.R. et al. Optogenetic interrogation of dopaminergic modulation of 
the multiple phases of reward-seeking behavior. J. Neurosci. 31, 10829–10835 
(2011).

30. Niyogi, R.K. et al. Optimal indolence: a normative microscopic approach to work 
and leisure. J. R. Soc. Interface 11, 20130969 (2014).

31. Schlinger, H.D., Derenne, A. & Baron, A. What 50 years of research tell us about 
pausing under ratio schedules of reinforcement. Behav. Anal. 31, 39 (2008).

32. du Hoffmann, J. & Nicola, S.M. Dopamine invigorates reward seeking by promoting 
cue-evoked excitation in the nucleus accumbens. J. Neurosci. 34, 14349–14364 
(2014).

33. Cannon, C.M. & Palmiter, R.D. Reward without dopamine. J. Neurosci. 23,  
10827–10831 (2003).

34. Ishiwari, K., Weber, S.M., Mingote, S., Correa, M. & Salamone, J.D. Accumbens 
dopamine and the regulation of effort in food-seeking behavior: modulation of work 
output by different ratio or force requirements. Behav. Brain Res. 151, 83–91 
(2004).

35. Rapoport, J.L. et al. Dextroamphetamine. Its cognitive and behavioral effects in 
normal and hyperactive boys and normal men. Arch. Gen. Psychiatry 37, 933–943 
(1980).

36. Wardle, M.C., Treadway, M.T., Mayo, L.M., Zald, D.H. & de Wit, H. Amping up 
effort: effects of d-amphetamine on human effort-based decision-making.  
J. Neurosci. 31, 16597–16602 (2011).

37. Nagano-Saito, A. et al. From anticipation to action, the role of dopamine in 
perceptual decision making: an fMRI-tyrosine depletion study. J. Neurophysiol. 108, 
501–512 (2012).

38. Leventhal, D.K. et al. Dissociable effects of dopamine on learning and performance 
within sensorimotor striatum. Basal Ganglia 4, 43–54 (2014).

39. Turner, R.S. & Desmurget, M. Basal ganglia contributions to motor control: a vigorous 
tutor. Curr. Opin. Neurobiol. 20, 704–716 (2010).

40. Haith, A.M., Reppert, T.R. & Shadmehr, R. Evidence for hyperbolic temporal 
discounting of reward in control of movements. J. Neurosci. 32, 11727–11736 
(2012).

41. Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine 
neurons encode decisions for future action. Nat. Neurosci. 9, 1057–1063 (2006).

42. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey 
positive and negative motivational signals. Nature 459, 837–41 (2009).

43. Dreyer, J.K., Herrik, K.F., Berg, R.W. & Hounsgaard, J.D. Influence of phasic and tonic 
dopamine release on receptor activation. J. Neurosci. 30, 14273–14283 (2010).

44. McClure, S.M., Daw, N.D. & Montague, P.R. A computational substrate for incentive 
salience. Trends Neurosci. 26, 423–428 (2003).

45. Tachibana, Y. & Hikosaka, O. The primate ventral pallidum encodes expected reward 
value and regulates motor action. Neuron 76, 826–837 (2012).

46. van der Meer, M.A. & Redish, A.D. Ventral striatum: a critical look at models of 
learning and evaluation. Curr. Opin. Neurobiol. 21, 387–392 (2011).

47. Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and 
uncertainty by dopamine neurons. Science 299, 1898–902 (2003).

48. Gershman, S.J. Dopamine ramps are a consequence of reward prediction errors. 
Neural Comput. 26, 467–471 (2014).

49. Morita, K. & Kato, A. Striatal dopamine ramping may indicate flexible reinforcement 
learning with forgetting in the cortico-basal ganglia circuits. Front Neural Circuits 
8, 36 (2014).

50. Threlfell, S. et al. Striatal dopamine release is triggered by synchronized activity 
in cholinergic interneurons. Neuron 75, 58–64 (2012).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature neurOSCIenCedoi:10.1038/nn.4173

ONLINE METhODS
Animals and behavioral task. All animal procedures were approved by the 
University of Michigan Committee on Use and Care of Animals. Male rats 
(300–500 g, either wild-type Long-Evans or Th-Cre+ with a Long-Evans back-
ground51 were maintained on a reverse 12:12 light:dark cycle and tested during 
the dark phase. Rats were mildly food deprived, receiving 15 g of standard labora-
tory rat chow daily in addition to food rewards earned during task performance. 
Training and testing was performed in computer-controlled Med Associates oper-
ant chambers (25 cm × 30 cm at widest point) each with a five-hole nose-poke 
wall, as previously described52–54. Training to perform the trial-and-error task 
typically took ~2 months, and included several pretraining stages (2 d to 2 weeks 
each, advancing when ~85% of trials were performed without procedural errors).  
First, any one of the five nosepoke holes was illuminated (at random), and pok-
ing this hole caused delivery of a 45-mg fruit punch–flavored sucrose pellet into 
the Food Port (FR1 schedule). Activation of the food hopper to deliver the pellet 
caused an audible click (the reward cue). In the next stage, the hole illuminated 
at trial start was always one of the three more-central holes (randomly-selected), 
and rats learned to poke and maintain hold for a variable interval (750–1,250 ms) 
until Go cue onset (250-ms duration white noise, together with dimming of the 
start port). Next, Go cue onset was also paired with illumination of both adjacent 
side ports. A leftward or rightward poke to one of these ports was required to 
receive a reward (each at 50% probability), and initiated the inter-trial inter-
val (5–10 s randomly selected from a uniform distribution). If the rat poked an 
unlit center port (wrong start) or pulled out before the end of the hold period 
(false start), the house light turned on for the duration of an inter-trial interval. 
During this stage (only), to discourage development of a side bias, a maximum of 
three consecutive pokes to the same side were rewarded. Finally, in the complete 
trial-and-error task left and right choices had independent reward probabilities, 
each maintained for blocks of 40–60 trials (randomly selected block length and 
sequence for each session). All combinations of 10, 50 and 90% reward probability 
were used except 10:10 and 90:90. There was no event that indicated to the rat 
that a trial would be unrewarded other than the omission of the Reward cue and 
the absence of the pellet.

For a subset of ChR2 optogenetic sessions, overhead video was captured at 
15 frames per s. The frames immediately preceding the Light-On events were 
extracted, and the positions of the nose tip and neck were marked (by scorers 
blind to whether that trial included laser stimulation). These positions were used 
to determine rat distance and orientation to the center port (the one that will be 
illuminated on that trial). Each trial was classified as ‘engaged’ or ‘unengaged’, 
using cutoff values of distance (10.6 cm) and orientation (84°) that minimized 
the overlap between aggregate distributions. To assess how path length was  
affected by optogenetic stimulation, rat head positions were scored for each 
video frame between Light-On and Center-Nose-In. Engaged trials were further  
classified by whether the rat was immediately adjacent to one of the three  
possible center ports, and if that port was the one that became illuminated at 
Light-On or not (that is lucky, unlucky guesses).

Smoothing of latency (and other) time series for graphical display (Fig. 1b,c) 
was performed using the MATLAB filtfilt function with a seven-trial window. 
To quantify the impact of prior trial rewards on current trial latency, we used a 
multiple regression model 

log latency10 1 1 2 2 10 10( ) = + +− −b b br r rt t…
 

where r = 1 if the corresponding trial was rewarded. All latency analyses excluded 
trials of zero latency (that is those for which the rat’s nose was already inside the 
randomly-chosen center port at Light-On). For analysis of prior trial outcomes 
on left/right choice behavior we used another multiple regression model, just as 
previously described55.

Latency survivor curves were calculated simply as the proportion of trials for 
which the Center-In event had not yet occurred, at each 250-ms interval after 
Light-On (an inverted cumulative latency distribution), smoothed with a three-
point moving average (xt′ = 0.25xt − 1 + 0.5xt + 0.25xt + 1). These survivor curves 
were then used to calculate hazard rates, as the fraction of the remaining latencies 
that occurred in each 250-ms bin (the number of Center-In events that happened, 
divided by the number that could have happened).

We defined reward rate as the exponentially weighted moving average of 
individual rewards (a leaky integrator56–58). For each session the integrator time 

constant was chosen to maximize the (negative) correlation between reward rate 
and behavioral latency. If instead we defined reward rate as simply the number 
of rewards during each minute (ignoring the contributions of trials in previous  
minutes to current reward rate), the relationship between microdialysis- 
measured [DA] in that minute and reward rate was lower, although still significant  
(R2 = 0.084, P = 5.5 × 10−10).

An important parameter in reinforcement learning is the degree to which 
agents choose the option that is currently estimated to be the best (exploitation) 
versus trying alternatives to assess whether they are actually better (exploration), 
and dopamine has been proposed to mediate this trade-off59,60. To assess this 
we examined left/right choices in the second half of each block, by which time 
choices have typically stabilized (Fig. 1d; this behavioral pattern was also seen 
for the microdialysis sessions). We defined an exploitation index as the propor-
tion of trials for which rats choose the better option in these second block halves 
(so values close to 1 would be fully exploitative, and values close to 0.5 would 
be random/exploratory). As an alternative metric of exploration/exploitation, 
we examined the number of times that the rat switched between left and right 
choices in each minute; this metric also showed no significant relationship to any 
neurochemical assayed in our microdialysis experiments.

microdialysis. After 3–6 months of behavioral training rats were implanted with 
guide cannulae bilaterally above the nucleus accumbens core (NAcc; +1.3–1.9 
mm AP, 1.5 mm ML from bregma) and allowed to recover for at least 1 week 
before retraining. On test days (3–5 weeks after cannula implantation) a single 
custom made microdialysis probe (300-µm diameter) with polyacrylonitrile 
membrane (Hospal; 20-kDa molecular weight cutoff) was inserted into NAcc, 
extending 1 mm below the guide cannula. Artificial CSF (composition in mM: 
CaCl2 1.2; KCl 2.7, NaCl 148, MgCl2 0.85; ascorbate, 0.25) was perfused continu-
ously at 2 µl min−1. Rats were placed in the operant chamber with the house light 
on for an initial 90min period of probe equilibration, after which samples were 
collected once every minute. Following five baseline samples the house light was 
extinguished to indicate task availability.

For chemical analyses, we employed a modified version of our benzoyl chloride 
derivatization and HPLC-MS analysis method61. Immediately after each 2-µl 
sample collection, we added 1.5 µl of buffer (sodium carbonate monohydrate 
100 mM), 1.5 µl of 2% benzoyl chloride in acetonitrile, and 1.5 µl of a 13C-
labeled internal standard mixture (total mixture volume 6.5 µl). The mixture was  
vortexed for 2 s between each reagent addition. Since ACh is a quaternary amine 
and thus not derivatized by benzoyl chloride, it was directly detected in its native 
form (transition 146→87). Deuterated ACh (d4-ACh) was also added to the 
internal standard mixture for improved ACh quantification62. 5 µl of the sample 
mixture was automatically injected by a Thermo Accela HPLC system (Thermo 
Fisher Scientific) onto a reverse-phase Kinetex biphenyl HPLC column (2.1 mm 
× 100 mm; 1.7 particle size; Phenomenex). The HPLC system was interfaced 
to a HESI II ESI probe and Thermo TSQ Quantum Ultra (Thermo Scientific) 
triple quadrupole mass spectrometer operating in positive mode. Sample run 
times for all analytes were 3 min. To quantify neurochemicals in dialysate sam-
ples, we constructed six-point external calibration curves encompassing known  
physiological concentrations. Thermo Xcalibur 2.1 software (Thermo Fisher 
Scientific) automatically detected chromatographic peaks and quantified con-
centrations. To reduce noise each resulting minute-by-minute time series was 
smoothed with a three-point moving average (as above), then converted to  
Z-scores to facilitate comparison between subjects.

Regression analysis of microdialysis data was performed stepwise. We first 
constructed models with only one behavioral variable as predictor and one out-
come (analyte). If two behavioral variables showed a significant relationship to 
a given analyte, we constructed a model with both behavioral variables and an 
interaction term, and examined the capacity of each variable to explain analyte 
variance without substantial multicollinearity.

To determine cross-correlogram statistical thresholds we first shuffled the 
time series for all sessions 200,000 times, and calculated the average Pearson 
correlation coefficients (that is the zero-lag cross-correlation) for each shuffled 
pair of time series. Thresholds were based on the tails of the resulting distribu-
tion: that is for uncorrected two-tailed alpha = 0.05 we would find the levels for 
which 2.5% of the shuffled values lay outside these thresholds. As we wished to 
correct for multiple comparisons we divided alpha by the number of tests (276; 
number of cross-correlograms = 23 timeseries × 22 timeseries divided by two, as 
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the crosscorrelograms are just mirror-reversed when the order is changed, plus 
23 autocorrelograms).

Voltammetry. FSCV electrode construction, data acquisition and analysis were 
performed as described63. Rats were implanted with a guide cannula above the 
right NAcc (+1.3–2.0 mm AP, 1.5 mm ML from bregma), a Ag/AgCl reference 
electrode (in the contralateral hemisphere) and a bipolar stimulation electrode 
aimed at the VTA (−5.2 mm AP, 0.8 mm ML, 7.5 mm DV). Carbon fiber elec-
trodes were lowered acutely into the NAcc. Dopaminergic current was quan-
tified offline by principal component regression (PCR)24 using training data 
for dopamine and pH from electrical stimulations. Recording time points that 
exceeded the PCR residual analysis threshold (Qα) were omitted from further 
processing or analysis. Current to [DA] conversion was based on in vitro calibra-
tions of electrodes constructed in the same manner with the same exposed fiber 
length. On many days data was not recorded due to electrode breakage or obvious 
movement-related electrical noise. FSCV recordings were made from 41 sessions 
(14 rats total). We excluded those sessions for which the rat failed to complete 
at least three blocks of trials, and those in which electrical artifacts caused >10% 
of trials to violate the assumptions of PCR residual analysis. The remaining ten 
sessions came from six different rats. To avoid aggregate results being overly 
skewed by a single animal, we only included one session from each of the six rats 
(the session with the largest reward-evoked [DA] increase). Upon completion 
of FSCV testing, animals were deeply anesthetized and electrolytic lesions were 
created (40 µA for 15 s at the same depth as recording site) using stainless steel 
electrodes with 500 µm of exposed tip (AM Systems). Lesion locations were later 
reconstructed in Nissl-stained sections.

For between-session comparisons we normalized [DA] to the average [DA] 
difference between the pre-trial baseline and Food-Port-In aligned peak levels. 
To visualize the reward-history-dependence of [DA] change between consecutive 
trials (Fig. 5h), we first extracted time series of normalized [DA] from consecu-
tive pairs of rewarded trials (Side-In event to subsequent Side-In event separated 
by less than 30 s). For each session we divided these traces into ‘low-reward-rate’ 
and ‘high-reward-rate’ groups, using the (number of rewarded trials in the last 
10) that best approximated a median-split (so low- and high- reward-rate groups 
had similar trial numbers). We then averaged all low-reward-rate traces, and 
separately all high-reward-rate traces.

Reinforcement learning model. To estimate the time-varying state value and 
RPE in each trial, we used a Semi-Markov Decision Process64 with temporal 
difference learning, implemented in MATLAB. The model consisted of a set of 
states, with rat behavioral events determining the times of transitions between 
states (Supplementary Fig. 5). Each state was associated with a stored (‘cached’) 
value of entering that state, V(s). At each state transition a reward prediction 
error δ was calculated using 

d gt t t t
n

t t nr V s V s= + − −
−( ) ( )

 

where n is the number of time steps since the last state transition (a time step of 
50ms was used throughout), r is defined as one at reward receipt and zero oth-
erwise, and γ specifies the rate at which future rewards are discounted at each 
timestep (γ < 1). The V terms in the equation compare the cached value of the new 
state to the value predicted, given the prior state value and the elapsed time since 
the last transition (as illustrated in Fig. 4c). Each state also had e(s), an eligibility 
trace that decayed with the same time parameter γ (following the terminology 
of ref. 21, this is a TD(1) model with replacing traces). RPEs updated the values 
of the states encountered up to that point, using 

′ = +V s V s e st( ) ( ) . . ( )a d  

where α is the learning rate. V and γ were defined only at state transitions, and V 
was constrained to be non-negative. The model was ‘episodic’, as all eligibilities 
were reset to zero at trial outcome (reward receipt, or omission). V is there-
fore an estimate of the time-discounted value of the next reward, rather than 
total aggregate future reward; with exponential discounting and best-fit param-
eters subsequent time-discounted rewards are negligible (but this would not  
necessarily be the case if hyperbolic discounting was used).

We also examined the effect of calculating prediction errors slightly differently 

d gt t
n

t t t t nr V s V s= + − −( ) ( )

This version compares a discounted version of the new state value to the pre-
vious state value. As expected, the results were the same. Specifically, overall 
[DA] correlation to V remained ~0.4, overall δ correlation was ~0.2, and each 
individual session [DA] was significantly better correlated to V than to δ, across 
the full parameter space.

We present results using γ in the 0.9 to 1 range, because 0.9 is already a very fast 
exponential discount rate when using 50-ms time steps. However we also tested 
smaller γ (0.05–0.9) and confirmed that the [DA]:δ correlation only diminished 
in this lower range (data not shown).

To compare within-trial [DA] changes to model variables, we identified all 
epochs of time (3 s before to 3 s after Center-In) with at least six state transitions 
(this encompasses both rewarded and unrewarded trials). Since the model can 
change state value instantaneously, but our FSCV signal cannot65, we included 
an offset lag (so we actually compared V and δ to [DA] a few measurements 
later). The size of the lag affected the magnitude of the observed correlations  
(Fig. 4f), but not the basic result. Results were also unchanged if (instead of a lag) 
we convolved model variables with a kernel consisting of an exponential rise and 
fall (Supplementary Fig. 6), demonstrating that our results are not a simple arti-
fact of time delays associated with the FSCV method or sluggish reuptake. Finally, 
we also tried using the SMDP model with hyperbolic (instead of exponential) 
discounting66–69, and again found a consistently stronger correlation between 
[DA] and V than between [DA] and δ (data not shown).

code availability: custom MATLAB code for the SMDP model is available  
on request.

optogenetics. We used three groups of rats to assess the behavioral effects of 
VTA DA cell manipulations (first Th-Cre+ with AAV-EF1α-DIO-ChR2-EYFP 
virus, then littermate Th-Cre− with the same virus, then Th-Cre+ with AAV-
EF1α-DIO-eNpHR3.0-EYFP). All virus was produced at the University of 
North Carolina vector core. In each case rats received bilateral viral injections 
(0.5 or 1 µl per hemisphere at 50 nl min−1) into the VTA (same coordinates as 
above). After 3 weeks, we placed bilateral optic fibers (200-µm diameter) under 
ketamine/xylazine anesthesia with FSCV guidance, at an angle of 6° from the sag-
ittal plane, stopping at a location that yielded the most laser-evoked [DA] release 
in NAc. Once cemented in place, we used FSCV to test multiple sets of stimulation 
parameters from a 445-nm blue laser diode (Casio) with Arroyo Instruments 
driver under LabView control. The parameters chosen for behavioral experiments 
(0.5-s train of 10-ms pulses at 30 Hz, 20 mW power at tip) typically produced 
[DA] increases in Th-Cre+ / ChR2 rats comparable to those seen with unexpected 
reward delivery. All rats were allowed to recover from surgery and retrained to 
pre-surgery performance. Combined behavioral / optogenetic experiments began 
5 weeks after virus injection. On alternate days, sessions either included bilateral 
laser stimulation (on a randomly selected 30% of trials, regardless of block or 
outcome), or not. In this manner, each rat received three sessions of Light-On 
stimulations and three sessions of Side-In stimulation, interleaved with control 
(no laser) sessions, over a 2-week period. Halorhodopsin rats were tested with 1 
s of constant 20-mW illumination from a 589-nm (yellow/orange) laser (OEM 
Systems), starting either at Light-On or Side-In as above. One Th-Cre+ /ChR2 rat 
was excluded from analyses due to misplaced virus (no viral expression directly 
below the optic fiber tips).

For statistical analysis of optogenetic effects on behavior we used repeated 
measure ANOVA models, in SPSS. For each rat we first averaged data across the 
three sessions with the same optogenetic conditions. Then, to assess reinforcing 
effects we examined the two factors of LASER (off versus on) and REWARD 
(rewarded versus omission), with the dependent measure the probability that the 
same action was repeated on the next trial. For assessing effects on median latency 
we examined the two factors of LASER (off versus on) and ENGAGED (yes ver-
sus no). For assessing group-dependent effects on hazard rate we examined the 
factors of LASER (off versus on) and GROUP (Th-Cre+ /ChR2; Th-Cre− /ChR2; 
Th-Cre+ /eNpHR3.0), with the dependent measure the average hazard rate during 
the epoch 1–2.5 s after Light-On. This epoch was chosen since it is 1–2 s after 
the laser stimulation period (0–0.5 s) and approach behaviors have a consistent  
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duration of ~1–2 s (Supplementary Fig. 9). Post hoc tests were Bonferroni- 
corrected for multiple comparisons.

A Supplementary methods checklist is available.
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