
The founding document of neurobiology is Ramón y 
Cajal’s ‘Histology of the Nervous System of Man and 
Vertebrates’ (REF. 1), which is perhaps the only 100‑year-
old manuscript that is still routinely consulted by neuro
scientists. The work was, to a large extent, an attempt 
to classify neurons. The classification used morpho‑
logical criteria (the only criteria available at the time) 
and buttressed its conclusions with remarkably mod‑
ern cross-species comparisons. Neuronal classification 
remained a dominant theme in neurobiology over the 
following half-century but fell out of fashion as physio
logical and molecular methods matured, and mechanis‑
tic, ‘hypothesis-driven’ research came to be valued over 
projects with ‘merely descriptive’ aims. Over the past 
decade, however, many have come to believe that sys‑
tematic categorization of cell types is an essential prereq‑
uisite for understanding mechanisms, and the descriptive 
enterprise has been revived2–12. Although we are propo‑
nents of this approach, we do not claim that such cate‑
gorization will in and of itself lead to enlightenment. We  
do, however, believe that without it, enlightenment will 
be unattainable.

There have been two major obstacles to neuronal 
classification. The first is technical. Until recently, clas‑
sification studies were both severely underpowered and 

highly biased owing to the laborious nature of the avail‑
able methods. Compounding this issue, most methods 
were, at best, semi-quantitative, and problems of var‑
iance were crippling. In the past ten years, however, 
transformative advances have made it possible to analyse 
hundreds to tens of thousands of neurons quickly.

The second problem is conceptual. It is difficult to 
know how fine and firm the distinctions used to dis‑
tinguish neuronal types from one another should be. It 
is indisputable that each neuron is different from every 
other neuron. If we take account of all the differences 
between neurons, however, the very notion of neuronal 
types becomes ephemeral. Conversely, although no one 
would doubt that broad classes of neurons are recog‑
nizable (motor neurons or cortical pyramidal cells, for 
example), these coarse distinctions are of little value 
for many experimental purposes. Is there a ‘sweet spot’ 
somewhere in between?

In this article, we tackle both of these issues. We 
describe recent attempts to circumvent the technical 
obstacles to cell-type classification using structural, 
functional and molecular criteria. To address the concep‑
tual difficulties in the field, we use an analogy to another 
type of categorization — the classification of organisms 
into species — to suggest common-sense guidelines. 
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Abstract| Neurons have diverse molecular, morphological, connectional and functional 
properties. We believe that the only realistic way to manage this complexity — and thereby pave 
the way for understanding the structure, function and development of brain circuits — is to 
group neurons into types, which can then be analysed systematically and reproducibly. However, 
neuronal classification has been challenging both technically and conceptually. New 
high-throughput methods have created opportunities to address the technical challenges 
associated with neuronal classification by collecting comprehensive information about 
individual cells. Nonetheless, conceptual difficulties persist. Borrowing from the field of species 
taxonomy, we propose principles to be followed in the cell-type classification effort, including 
the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation 
to define types and the creation of a hierarchical system to represent relationships between 
cells. We review the progress of classifying cell types in the retina and cerebral cortex and 
propose a staged approach for moving forward with a systematic cell-type classification in the 
nervous system.
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Finally, we illustrate progress and remaining issues 
regarding neuronal classification using the retina and 
cerebral cortex as examples. These regions have been the 
subject of many classification studies, and lessons learned 
therein should be applicable to less fully investigated cell 
populations both in the brain and in other organs. Space 
limitations prevent us from discussing the classification 
of non-neuronal cells, but we note that many of the issues 
discussed here will be relevant for such efforts.

Purposes of cell-type classification
Few neuroscientists view neuronal classification as an 
end in itself. Rather, we hope that development of a 
cellular taxonomy will facilitate our understanding of 
how the brain works or, in diseases, fails to work prop‑
erly. Designing a useful classification scheme therefore 
requires making explicit the needs it is meant to fulfil.

Reproducibility. One important purpose of neuronal 
classification is to enable the same types of neurons to 
be studied repeatedly. Long before molecular markers 
were available, investigators were able to map patterns of 
connectivity in invertebrates such as Aplysia, leech and 
Caenorhabditis elegans, successes that were enabled as 
much by the presence of uniquely identifiable neurons 
as by the circuits’ simplicity. For vertebrates, with a few 
exceptions13, neurons are not unique, and it is difficult to 
compare studies conducted in different places, at differ‑
ent times or with different methods. This problem was 
highlighted by Crick, who noted, “It is common for the 
experimentalist to record that, say, 25% of the neurons 
studied behave in a particular way, 37% in a different 
way and a further 15% in a third way. There is no indica‑
tion…what type of neuron they are…. This is not science 
but rather natural history” (REF. 14). To answer this criti‑
cism, classification schemes must be sufficiently robust 
and easy enough to apply that they help settle arguments 
rather than cause new ones.

Genetic access. Increasingly, one goal of classification 
is to enable genetic access to specific cell types so that 
they can be marked and/or manipulated15. This is most 
straightforward for those species in which transgenesis 
is advanced – flies, worms, mice and zebrafish. However, 
new genome engineering methods and viral vectors are 
rapidly expanding the range of species to which genetic 
tools can be applied. Achieving this goal will require us 
to put a premium on molecular classification methods 
that lead to the discovery of genes that can be used as 
entry points.

Discovery. Classification leads directly to discoveries in 
several ways. As known cell types are catalogued, previ‑
ously unrecognized ones may emerge. In addition, the 
profiling methods used for classification may lead to  
the identification of genes that become candidate deter‑
minants of cell type-specific morphology and function.

Understanding development. Elucidation of the steps by 
which a neuron acquires its form and function is difficult 
when it can be identified only after it has acquired those 

properties. As molecular markers have become availa‑
ble, immunohistochemical methods have transformed 
developmental neuroscience. Transgenic lines have 
improved the ability to prospectively identify neurons 
at early developmental stages. Molecular classification 
can identify new markers or marker combinations that 
drive this program forward. In addition, transcriptomic 
profiling of individual types can also provide candidate 
mediators of developmental choices.

Understanding evolution. As a fundamental unit of tis‑
sue and organismic function, cell types are invaluable for 
evolutionary comparisons16. For some cell types, conser‑
vation is obvious, and studies in one species are immedi‑
ately applicable to others. In other cases, cell types that are 
unique to one of a pair of species may be responsible for 
critical differences between them. In contrast to our deep 
knowledge about the evolution and conservation of genes, 
our knowledge about the evolution and conservation of 
cell types is limited.

Studying disease. Some brain diseases primarily affect 
specific cell types. For example, amyotrophic lateral scle‑
rosis affects upper and lower motor neurons17, and con‑
genital nystagmus affects starburst amacrine cells18. For 
others, the defects that lead to dysfunction remain mys‑
terious. We might gain a better understanding of such 
disorders if we could find specific vulnerable neuronal 
types in disease models or autopsy materials. This type 
of inquiry will require high-throughput approaches, and 
for human tissue, only transcriptomic methods are likely 
to be applicable in the near future.

Generating a ‘parts list’. Nowhere is the complexity of the  
brain more evident than in its enormous numbers of 
neurons and even greater numbers of synapses, both 
of which exhibit tremendous diversity. It seems obvi‑
ous that we cannot make headway in addressing this 
complexity unless we consider neurons as types rather 
than as individuals — a crucial mode of dimensionality 
reduction. In addition, the shared functions of groups 
of neurons are likely to be a key organizing principle of 
brain function. It is therefore fair to say that we have no 
hope of understanding the brain without an accounting 
of cell types and their properties.

Defining neuronal types
In principle, it seems obvious that neurons should be 
viewed as members of a type if they serve a function that 
differs from the functions of other types of neurons. In 
practice, however, the functions of individual neurons 
can seldom be determined. Moreover, some functions 
may emerge only at the level of circuits. We therefore sug‑
gest that a more useful definition of type is a population 
of neurons with properties that are homogeneous within 
the population but differ from those of other neurons.

What are the relevant properties? The three main 
categories are morphological, physiological and molec‑
ular2,5,6,9–11,19 (FIG. 1). Of the morphological properties of 
neurons, dendritic and axonal shapes and branching pat‑
terns have been the most informative; however, features 
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Figure 1 | Criteria by which neurons can be classified. Neurons can be 
classified using morphological, physiological and molecular criteria. 
a | Representative examples of five subclasses of cortical neurons obtained 
from brain slices. The cells were filled with biocytin, stained and imaged 
following patch clamp recording (see part b). Each subclass has distinct 
morphological features. For the four interneurons on the left, the dendrites 
are shown in dark grey and the axons in light grey. The soma of the 
5‑hydroxytryptamine receptor 3A‑expressing (HTR3A+) sparse neuro- 
gliaform cell is located in layer 1, and its axons are also concentrated in this 
layer. The vasoactive intestinal peptide-expressing (VIP+) bipolar cell has a 
characteristic bipolar dendritic extension. The soma of the somatostatin-
expressing (SST+) deep Martinotti cell is located in layer 5/6, and its axons 
extend upward into layer 1. The parvalbumin-expressing (PVALB+) basket 
cell has basket-like axonal arborisation. For the excitatory neuron on the 
right, the apical dendrites are shown in dark grey and the basal dendrites in 
light grey. This is a layer 5, thick-tufted cell from a retinol-binding protein 4 
(Rbp4) gene promoter-driven Cre-expressing mouse. The cell features thick 
apical dendritic tufts extending into layer 1. These morphological features 
are consistent with those described in published reports49,130,140. 
b | Differential electrophysiological responses of the five subclasses of 
neurons shown in part a to square pulses of current in patch clamp 

recordings. For example, the HTR3A+ cell is late spiking, whereas the PVALB+ 
cell is fast spiking. These responses are consistent with those described in 
published reports49,130,140. c | Differential molecular signatures of the five 
subclasses of cortical neurons illustrated in part a derived from single-cell 
RNA-sequencing data. The violin plot shows the collective gene expression 
profile for each gene of all the cells in a type (cluster). We define the smallest 
discrete clusters of cells as types and the aggregates of types that share 
common features as classes or subclasses. Each transcriptomic cell type is 
shown as a column of data points with the same colour (the colour coding 
corresponds to that of the transcriptomic taxonomy shown in FIG. 5). Shown 
here are three interneuron cell types expressing Htr3a but notVip, six 
interneuron cell types expressing Vip, six interneuron cell types 
expressing Sst and seven interneuron cell types expressing Pvalb. All of the 
interneurons express glutamate decarboxylase 1 (Gad1). Also shown are 
eight layer 5 excitatory neuron types, all of which express solute carrier 
family 17 member 7 (Slc17a7). All of the cells express synaptosome-
associated protein 25 (Snap25). The height of each ‘violin’-shaped data  
point represents the range of expression levels of the gene, and the width 
represents the proportion of cells displaying a particular level of expression. 
Parts a and b are from the Allen Cell Types Database (see Further 
Information). Part c is adapted with permission from REF. 136.
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such as soma size and spine density are also used. The 
physiological properties of neurons include the resting 
potential, biophysical properties and the firing rate. Of 
the many molecular properties that can be considered, the  
most useful are protein composition (generally assayed 
immunohistochemically) and mRNA composition 
(measured by in situ hybridization and, increasingly, 
RNA sequencing). A fourth category of properties, con‑
nectivity, is equally relevant but is harder to assess and 
is therefore less often used.

In applying these criteria, we must consider the fact 
that no neuronal type is homogeneous. Heterogeneity 
arises from at least three sources. First, variations arise as 
cells develop and mature: genetic specification is incom‑
plete, and cells that receive a single set of instructions 
(intrinsic and extrinsic) diversify as a result of a combi‑
nation of stochastic and environmental differences20,21. 
Second, there are continuous, genetically encoded 
sources of variation, such as topographic gradients of 
‘mapping molecules’ in the retina or tonotopic gradi‑
ents of hair length in the cochlea22,23. Finally, variations 
result from ongoing changes in the adult environment, 
such as neural activity variations, hormonal fluctuations, 
or circadian rhythms24,25. These variations are genu‑
ine and meaningful; however, as we will argue below,  
they can often be distinguished from type-specific 
canonical properties.

Another problem is that a unifying definition  
of neuronal type should involve all three categories of 
properties, namely, physiological, morphological and 
molecular, which implies that they co‑vary. Although 
such a satisfying correspondence has been shown for 
some types (see below), it seems unlikely that this will 
always be the case. When discrepancies between prop‑
erties arise, we suggest that molecular criteria should 
be given interim precedence. This recommendation 
is mainly for practical reasons: as discussed above, for 
many purposes, molecular markers are currently the 
most useful. In addition, it is known that some molecu‑
lar characteristics are enduring lifelong features of cells, 
whereas commonly measured physiological properties 
can vary depending on factors ranging from temperature 
to mood to sensory input. Cell non-autonomy also limits 
the utility of neuronal connectivity as a criterion: the loss 
of synaptic inputs or targets can alter a neuron’s place 
in a circuit without causing any direct change to the 
neuron itself. Conversely, not all molecular properties 
are cell autonomous or static. For example, genes defin‑
ing some stable properties (such as morphology) may 
be expressed only transiently during development, and 
the relevant molecular signatures may be undetectable 
in maturity. Nonetheless, it is reasonable to believe that 
there are permanent molecular features that maintain 
a cell’s identity throughout an animal’s life4,26,27 and can 
thus serve as the basis for classification.

Neuronal types as species
In thinking about how to address the complexity of neu‑
ronal types, it may be useful to consult a field that groups 
individuals into types as its main preoccupation. In 
the field known as taxonomy, systematics or cladistics, 

the smallest discrete unit is the species. Although 
debates continue about how to define species and  
even whether they exist, systematics has nonetheless 
been a successful enterprise. The problems of defin‑
ing species and neuronal cell types are similar in many 
ways28–30, suggesting that there may be lessons to learn 
from the systematists.

There are three general schemes for defining species. 
The ‘biological species concept’ defines species bounda‑
ries in terms of reproductive isolation, which is not appli‑
cable to cell-type classification. Moreover, reproductive 
isolation in species is seldom tested experimentally and 
is therefore of far greater importance conceptually than 
practically, even within the field of systematics.

The second scheme for defining species is based on 
their phylogenetic relationships. Some attempts have 
been made to apply a similar method to neuronal cell 
types, substituting ontogeny for phylogeny. However, 
although it seems reasonable that related types of neu‑
rons would tend to descend from the same progenitors 
in a ‘physical lineage tree’, this is often not the case. In 
C. elegans, numerous sublineages generate motor neu‑
rons and a neuron’s ‘sibling’ (that is, the other product 
of the terminal cell division that produced the neuron) 
is not particularly likely to be another cell of the same 
type31. In the vertebrate spinal cord, a motor neuron’s 
sibling can be an astrocyte, an interneuron or another 
motor neuron32. In the retina, the same progenitor gives 
rise to all major classes of neuron; therefore, one type  
of ganglion cell is generally not a close relative of another 
ganglion cell type by lineage, although they are close rel‑
atives in terms of morphology, physiology and molecular 
architecture33. In short, the sorts of dendrograms of sim‑
ilarity that predict phylogenetic relationships for species 
do not predict lineage relationships for neuronal types.

An alternative instantiation of the phylogenetic 
parallel proposes a classification based on evolution‑
ary conservation. For example, it has been proposed  
that a cell type should be defined as “a set of cells… that 
change in evolution together… and are evolutionarily 
more closely related to each other than to other cells” 
(REF. 16). In practice, however, there are few cases in 
which data are available to make this judgement. It may 
be more realistic to find ways to classify types within 
a species and then use that classification to launch an 
evolutionary inquiry.

Perhaps most useful is a third school of systematics, 
known as typological, taxonomic or phenetic system‑
atics, which groups individuals into species according 
to their similarity of genotype and/or phenotype. There 
are several key principles that this approach advocates, 
which may provide lessons for cell-type classifica‑
tion28–30. First, group (that is, ‘type’) membership should 
be based on multiple criteria rather than on a single 
so‑called ‘essential’ feature that the investigator favours. 
Second, the criteria for group membership should be 
rule-based, explicit and quantitative. Third, groupings 
should be hierarchical rather than flat to acknowl‑
edge the validity of both coarse and fine divisions (see 
below). Fourth, groupings generated by this approach 
should be viewed as hypotheses to be tested rather than 

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE	  VOLUME 18 | SEPTEMBER 2017 | 533

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



inflexible rules. Finally, classification should focus on 
discontinuities between groups and ignore parameters 
that vary continuously within what would otherwise be 
viewed as a group. Below, we will return to these con‑
cepts after considering the methods available to acquire 
the needed data.

High-throughput classification methods
Cell-type classification requires large data sets so that rare 
cell types can be found, and variation within cell types can  
be distinguished from differences between cell types.  
Past methods for comprehensive data collection were 
limited. In the past ten years, however, new methods 
have emerged that enable the collection of morpho‑
logical, physiological and molecular data from large 
numbers of neurons (FIGS 2,3). Moreover, many of these 
methods are less biased than their predecessors, that is, 
they sample neurons in rough proportion to their actual 
frequency in the population.

Light microscopy. New methods for genetic sparse label‑
ling and high-throughput light-microscopic imaging 
have fuelled efforts to assess neuronal morphologies, 
including entire axonal and dendritic arbours, in both 
fruitflies and mice. A key advance has been the genera‑
tion of many cell type-specific transgenic lines driven by 
cis-regulatory elements in isolation or in a genomic con‑
text34–43. These and other tools are being used to collect 
whole-brain catalogues of morphologies40,44–48 (FIG. 2a). 
In addition, recordings from and morphological recon‑
structions of thousands of neurons from cortical brain 
slices have been used to classify them into hundreds of 
morpho-electrical types49. The image data sets from both 
of these approaches can be used by specialized infor‑
matics pipelines to perform comparison and classifica‑
tion50–52, although the low speed of reconstruction still 
poses a formidable bottleneck for neurons with intricate 
morphologies. Curation of these data in repositories, 
such as NeuroMorpho.Org (see Further Information), 
is also advancing53.

Electron microscopy. Historically, electron micro
scopy was a powerful but laborious technique and the 
reconstruction of large tissue volumes was prohibitively 
time-consuming. Indeed, the ‘nearly’ complete connec‑
tome of C. elegans54, reported in 1986, remained the 
only full reconstruction of more than a handful of cells 
for 25 years. However, advances in the field have sys‑
tematically addressed each step in the process (FIG. 2b). 
Sectioning has been automated by block-face imag‑
ing55,56 (in which the microtome used to section the 
tissue resides within the chamber of the microscope) 
and through the use of a tape-collecting microtome57,58 
(in which thousands of sections are collected automat‑
ically on a spool of tape). Imaging has been sped up by 
the use of multiple cameras that record separate parts 
of a large field simultaneously59 and by the introduc‑
tion of multi-beam scanning electron microscopes60. 
Reconstruction is benefiting from advances in machine 
learning that can segment images with less and less need 
for manual curation61. Conversely, the application of 

crowd-sourcing distributes the work among thousands 
of individuals62,63. Taking advantage of these innovations, 
reconstructions have been made to map the connectivity 
in the Drosophila optic and antennal lobes64,65 and the 
mouse retina, thalamus and cortex59,62,63,66–69.

Optical imaging of electrical activity. Classical 
electrode-based physiological methods collected data 
from one or, at most, a few dozen cells (using tetrodes) at 
a time. These methods are now being scaled up, allowing 
recording from hundreds of cells, with further increases 
foreseeable70. At present, however, optical imaging is 
the most effective approach for recording the activity of 
large numbers of neurons in vivo at the level of single 
cells (FIG. 2c). Molecular indicators of both voltage and 
calcium levels are available. In principle, voltage indi‑
cators are preferable because they measure neuronal 
activity more directly than calcium indicators and can 
detect subthreshold (synaptic) potentials71. In practice, 
however, only calcium indicators currently possess the 
sensitivity required for large-scale recordings in vivo72. 
Large-scale in vivo multi-photon calcium imaging has 
enabled the collection of functional information from 
hundreds to thousands of neurons simultaneously73,74. 
Imaging capability continues to grow rapidly to enable 
measurement from multiple areas75,76 or areas deeper 
into the brain77–81. Compared with small and relatively 
transparent organisms (such as zebrafish82,83), multi-
photon imaging is still restricted mostly to superficial 
structures (such as the cortex) of larger, mammalian 
brains. However, calcium imaging can be performed on 
cells 1 mm or deeper beneath the surface via gradient-
index (GRIN) lenses or microendoscopes84,85, which are 
beginning to be capable of resolving single cells.

Molecular profiling. A series of important advances in 
single-cell genome-wide molecular profiling techniques 
that have occurred over the past decade are benefiting 
cell-type classification efforts25,86,87. These advances 
include improvements in methods used to assess the 
genome, transcriptome, proteome and epigenome of sin‑
gle cells. All the indicated methods demonstrate vastly 
improved sensitivity compared with the previous gen‑
eration of techniques. Single-cell profiling reveals diver‑
sity that is masked by averaging across populations, and 
genome-wide methods provide the unbiased coverage 
that was lacking in previous single-cell methods, such 
as quantitative PCR, immunohistochemistry or RNA 
in situ hybridization.

At this time, the most mature, scalable and useful 
technique for molecular profiling of cell type diversity 
is single-cell RNA sequencing (scRNA-seq) (FIG. 3a). This 
method is easily amenable to automation and, if applied 
at a sufficiently large scale, could drive a first ‘complete’ 
cell-type classification. To perform scRNA-seq, investi‑
gators dissociate cells from tissues and isolate them by 
manual picking, microfluidics or fluorescence-activated 
cell sorting. Subsequently, RNA is converted to cDNA, 
which is amplified and sequenced. A number of studies 
have used this approach to identify and classify cell types 
in a collection of neural tissues25,88,89 (TABLE 1).
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Figure 2 | Imaging methods for profiling neuronal properties. Large-scale 
imaging captures the structural and functional properties of populations of 
individual cells in great detail. a | High-throughput fluorescence light 
microscopy enables imaging of large tissue volumes (such as whole mouse 
brains) at high resolution, allowing visualization of complete neuronal 
morphologies. Shown here is a single intratelencephalic neuron 
reconstructed using the MouseLight system, a high-speed two-photon 
microscope that is integrated with a tissue vibratome46. The axons of this 
neuron project to multiple cortical and subcortical regions, as shown. Axonal 
arbours originating from common branch points are shown in the same 
shade of red. b | High-throughput electron microscopy combines methods 
for automated sectioning, imaging and reconstruction (segmentation) to 
reveal details of neuronal morphology and synaptic connectivity. The 
example shown illustrates multi-scale electron microscopy imaging of brain 
sections collected using the automated tape-collecting ultramicrotome58. 

The multi-scale imaging facilitates stitching and cross-registration and 
connects nanometre-range images with the larger tissue context. 
c | Large-scale fluorescence imaging methods enable the monitoring of the 
activity of hundreds or thousands of neurons through the use of organic dyes 
or genetically encoded indicators that report voltage or calcium levels. The 
image shows an example of results obtained using the Crystal Skull prep for 
long-term imaging75. In this preparation, a curved glass window replaces the 
mouse dorsal cranium, providing optical access to an estimated one million 
individual neurons across the dorsal surface of the neocortex for imaging of 
neuronal dynamics in behaving mice. The image is a mosaic of tiled 
two-photon images of a genetically encoded calcium indicator, GCaMP6f, 
in individual cells from the right hemisphere of a mouse. Inset images are 
magnified views of the corresponding boxed areas in the main panel. Part a 
is adapted with permission from REF. 46. Part b is adapted with permission 
from REF. 58. Part c is reproduced with permission from REF. 75.
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Figure 3 | Molecular methods for profiling neuronal properties. Single-cell genome-wide molecular profiling 
techniques provide unbiased and high-dimensional descriptions of molecular diversity. a | Large-scale single-cell 
RNA-sequencing (scRNA-seq) generates thousands of single-cell transcriptomic profiles. Shown here as an example is  
a schematic representing the Drop-seq method97. In this and related approaches (including InDrop98 and Gemcode99), 
microfluidic devices pair individual cells with ‘capture’ reagents (beads that are ‘barcoded’ with oligonucleotides) that 
collect and barcode the cell’s mRNAs in nanolitre-sized droplets. The droplets are then broken and reverse transcription, 
amplification and sequencing occurs in a pool of thousands of cells. b | Patch-seq methods extract mRNA from cells for 
scRNA-seq following electrophysiological recording, enabling direct correlation of molecular and physiological 
properties107,108. In addition to performing RNA-seq of extracted RNA, these methods compare the firing pattern of the cell 
to a ‘trained classifier’ (which summarizes the relationship between various firing patterns and morphological types) to 
infer the putative morphology of the recorded cell. c | Multiplexed fluorescence in situ hybridization (FISH) builds on 
single- and double-label methods to allow tens to hundreds of mRNAs to be co‑assayed in individual cells within tissue 
sections. Multiplexed FISH can be applied to tissues following other types of profiling, allowing correlation of molecular 
profiles with morphological, physiological or functional properties. Shown here as an example is the multiplexed 
error-robust FISH (MERFISH) method112, which uses combinatorial labelling and sequential imaging together with 
encoding schemes capable of detecting and/or correcting errors. Each RNA species is bound to oligonucleotide 
‘encoding’ probes that label the RNA with a unique combination of N different ‘readout sequences’. During each round of 
imaging, hybridization with a particular fluorescent ‘readout’ probe generates a signal (indicated by a yellow dot in the 
image) only in the subset of RNAs carrying the corresponding readout sequence, resulting in a binary code that reads ‘on’ 
(or ‘1’) for probe binding and ‘off’ (or ‘0’) for no binding. N rounds of imaging therefore generate a specific on/off (1/0) 
pattern for each RNA molecule, which is used to identify the RNA’s localization and abundance. Such an encoding scheme 
allows highly multiplexed profiling of hundreds of genes. Importantly, an error correction method allows any error in 
detection (indicated by red shading) to be detected and, in many cases, corrected (indicated by blue shading).  
Part a is adapted with permission from REF. 97. Part b is adapted with permission from REF. 107. Part c is from Chen, K. H., 
Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. 
Science 348, aaa6090 (2015). Reprinted/Adapted with permission from AAAS.
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The methods currently in use fall into two main 
groups. In one group, the cells are dispersed in multi-
well plates (one cell per well) and lysed. Poly(A) RNA 
is then reverse-transcribed to generate cDNA, which is 
amplified and used to generate a library that is even‑
tually sequenced. The methods in this group include 
Smart-seq90,91 (in which the full-length cDNA is frag‑
mented for sequencing), single-cell tagged reverse tran‑
scription (Strt; in which only the 5ʹ end of the cDNA 
is barcoded and sequenced)92,93 and cell expression 
by linear amplification and sequencing (CEL-seq; in 
which the cDNA is amplified linearly without PCR 
amplification, and only the 3ʹ end of the transcript is 
barcoded and sequenced)94,95. In a related approach, a 
microfluidic device called Fluidigm C1 sorts cells into 
micro-compartments, after which they are processed by 
Smart-seq or other protocols96.

A second set of methods uses a microfluidic appa‑
ratus to pair single cells with oligonucleotide-bearing 
microspheres in nanolitre-sized aqueous droplets that 
are suspended in oil, generating an emulsion (FIG. 3a). 
Three current versions of the apparatus are known as 
Drop-seq97, inDrop98 and GemCode99. The cell is lysed 
within the droplet, and the mRNA is captured and 
reverse-transcribed. The emulsion is broken either 
before (Drop-seq) or after (inDrop and GemCode) 
reverse transcription, and amplification and library 
preparation occur in a single reaction for thousands 
of cells. The oligonucleotides are barcoded so that all 
mRNAs that arose from a single cell are indelibly marked 

and can be grouped after amplification. The advantage of 
this approach is the huge savings in cost and labour com‑
pared with generating libraries in thousands of individ‑
ual wells. Conversely, the sequencing depth is generally 
low, ranging between 10K and 50K sequencing reads per 
cell for the droplet-based methods (although this is not a 
fixed limit) compared with millions of reads per cell for 
the plate-based methods.

Despite these differences, the methods share several 
features. For example, they all target poly(A)-tailed RNA 
species, thereby selectively capturing mRNAs and long 
non-coding RNAs. However, a new method, multiple 
annealing and dC‑tailing-based quantitative single-
cell RNA-seq (MATQ-seq), which is able to amplify all 
RNA species, has been developed100. Similarly, nearly 
all methods (except for Smart-seq) incorporate unique 
molecular identifiers that give each transcript a unique 
identity and thus allow for in silico correction of poten‑
tial biases that may arise during PCR amplification. 
Conversely, Smart-seq and MATQ-seq preserve full-
length transcript information and can therefore be used 
to identify alternative isoforms.

An exciting advance involves scRNA-seq from sin‑
gle nuclei101–104. Nuclei contain substantially less mRNA 
(mostly in the form of pre-mRNA) than somata, but the 
two compartments are similar with regards to gene rep‑
resentation; a main difference is that nuclei are biased 
towards recently transcribed genes and some specific 
types of mRNA. A main advantage of using nuclei is that 
they can be isolated from frozen or lightly fixed tissue by 

Table 1 | Studies using single-cell RNA-sequencing to classify cell types in the nervous system

Region or cell type Number of cells sequenced Number of cell types identified Refs

Studies using single-cell tagged reverse transcription (Strt)

Mouse DRG 799 11 (neuronal types) 152

Mouse S1 and CA1 3,005 47 153

Studies using Fluidigm C1 followed by Smart-seq

Adult and fetal human cortex 466 10 classes and 7 neuronal types 154

Human cortex in development 393 NA (identified oRG-enriched genes) 155

Six human cortical areas 3,227 16 104

Juvenile mouse hypothalamus 898 62 156

Studies using Smart-seq

Mouse DRG 203 10 types and 14 subtypes 157

Mouse V1 1,679 49 136

Studies using Smart‑seq2

Mouse midbrain LMX1A+ neural progenitors 550 NA (identified 2 lineages) 158

Studies using Drop-seq

Mouse retina 44,808 39 97

Mouse retinal bipolar cells ~25,000 15 105

Mouse Arc‑ME 20,921 50 159

Mouse EP 9,058 3 (neuronal types) 160

Human brain organoids 82,291 NA (identified diverse cortical and retinal cell types) 161

Arc‑ME, hypothalamic arcuate-median eminence complex; DRG, dorsal root ganglion; EP, entopeduncular nucleus; NA, not applicable; oRG, outer radial glia; S1, 
primary somatosensory cortex; V1, primary visual cortex.

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE	  VOLUME 18 | SEPTEMBER 2017 | 537

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



gentle homogenization. This provides a means of obtain‑
ing single-cell data from tissues that cannot be freshly 
obtained (such as autopsy samples) or readily dissociated 
(such as heavily myelinated adult brain tissue).

In all these methods, a key question, given fixed 
resources, is whether to sequence more cells shallowly 
or fewer cells more deeply. One study105 suggested that 
distributing a given number of reads over many cells 
may lead to a better resolution of cell types. However, 
obtaining large numbers of cells is sometimes infeasi‑
ble. Thus, optimal methods depend on the situation 
and need: for example, shallow sequencing may be used  
for broad classification, and deeper sequencing used for 
sparser sampling or targeted populations. The task of  
systematically comparing scRNA-seq methods has 
begun89,106, and it will be critical to conduct parallel stud‑
ies to assess whether different methods arrive at the same 
cell types (also known as ‘clusters’). Computational tools 
that can integrate data obtained with different methods 
are also needed.

Combining methods. Satisfactory cell-type classification 
requires the harmonization of morphological, physio‑
logical, molecular and possibly connectional categories. 
This is best accomplished by collecting two or more data 
types from the same cells. This was common in earlier 
generations of studies: for example, dye filling of neu‑
rons was performed following intracellular recording, 
and immunohistochemistry was performed on green 
fluorescent protein (GFP)-labelled cells. More recently, 
in Patch-seq (FIG. 3b), cellular contents are extracted fol‑
lowing patch clamp recordings and subjected to scR‑
NA-seq107,108. This combination provides rich data but is 
restricted to small numbers of cells. A related strategy 
is to ‘spot-check’ high-throughput data with a second 
method. Examples include imaging neurons by light 
or electron microscopy following calcium imaging109 
(physiology plus morphology) or in situ hybridization of 
sparsely labelled tissue based on scRNA-seq105 (molecules 
plus morphology).

Scaling up to enable high-throughput analysis by 
multiple modalities presents greater challenges. Exciting 
developments in this area include multiplexed fluores‑
cence in situ hybridization (FISH) and in situ sequencing 
methods that can be applied to tissue. The multiplexed 
FISH methods (FIG. 3c) that have been applied to brain 
sections include seqFISH110,111, which was used to exam‑
ine cell-type distribution patterns in the hippocampus, 
and multiplexed error-robust FISH (MERFISH), which 
can detect 140 genes at a low error rate and >1000 genes 
at a moderate error rate112. Newer versions of MERFISH 
incorporate modifications for high-throughput data 
generation113 and background reduction114. Both 
seqFISH and MERFISH currently work on thin brain 
sections, whereas an expansion microscopy based FISH 
method, expansion FISH (ExFISH)115, promises to detect 
gene expression in much thicker tissue blocks. In situ 
sequencing methods include fluorescent in situ sequenc‑
ing (FISSEQ)116 and padlock-probe-based rolling-circle 
amplification methods117,118. The multiplexed FISH 
and in situ sequencing approaches can simultaneously 

examine all the cells in a tissue sample for the expression 
of a set of preselected genes, acquiring essential infor‑
mation about the precise anatomical location and num‑
ber and density of each investigated cell type that could 
not be obtained by scRNA-seq of cells from crudely  
dissected tissues.

Classification case studies
We next focus on the two parts of the mouse CNS to 
which these new high-throughput methods have been 
most intensively applied, the retina and cortex.

Retina. The neural retina contains five ‘classes’ of neurons, 
arranged in three layers, separated by two synaptic layers, 
as well as several classes of glia. The outer neuronal layer 
contains photoreceptors, which sense light. The middle 
layer contains three classes of interneurons, namely, hori‑
zontal cells, bipolar cells (BCs), and amacrine cells, which 
process the information and deliver it to retinal ganglion 
cells (RGCs) in the innermost layer. Axons of RGCs travel 
through the optic nerve, sending visual information to the 
brain. Studies have shown that each class of cells can be 
divided into multiple ‘types’. The current estimate is that 
there are 100–150 retinal neuronal types19,119,120.

Several features of the retina simplify the task of 
neuronal classification in this tissue. The retina has a 
clear laminar pattern, enabling neuronal classes to be 
identified based on position, and a relatively ‘hard-wired’ 
activity independent pattern of development. Moreover, 
the retina contains a complete circuit, enabling it to con‑
vert information from a precisely controllable sensory 
(visual) input to a single output with few (if any) retro‑
grade connections. Of particular importance, most ret‑
inal neurons are arranged in a ‘mosaic’ pattern in which 
neurons of a single type are less closely spaced than 
would be expected by chance. Because neurons of a sin‑
gle type are randomly spaced relative to neurons of other 
types121,122, statistical analysis of mosaic spacing provides 
a criterion for grouping neurons into types, independent 
of conventional structural, physiological and molecular 
properties. These features are not present in the cerebral 
cortex, accounting in part for the relative difficulty of 
categorizing cells in that tissue (see below).

Although cell-type categorization for all retinal neu‑
ronal classes is well underway, mouse BCs provide a 
particularly informative example of cells that have been 
successfully classified. BCs receive synapses from photo
receptors and horizontal cells on their dendrites and form 
synapses on RGCs and amacrine cells with their axons. 
Some receive inputs from rod photoreceptors and some 
from cone photoreceptors (rod and cone BCs, respec‑
tively). Cone BCs include cells that signal increases in 
light intensity and other cells that signal decreases in light; 
these cells are called ON and OFF BCs, respectively120,123. 
Three groups have classified BCs into types using some of 
the high-throughput methods described above: calcium 
imaging124, crowd-sourced reconstruction of electron 
microscopy serial sections62,63 and scRNA-seq by Drop-
seq105. All the referenced studies used rigorous, quantita‑
tive criteria to group the cells into 14 or 15 types (FIG. 4a,b). 
Most importantly, light microscopic validation of the 
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physiologically and molecularly defined types provided 
strong evidence indicating that all the criteria converged 
on the same set of types (FIG. 4c). It therefore seems likely 
that all mouse BC types constituting more than ~1% of 
this class have now been identified.

These studies have yielded several insights. First, it 
was possible to assign virtually every cell to a single type, 
meaning that there was scant evidence for the existence 
of ‘intermediate’ forms of cells that could be assigned to 
two or more types equally well. Although this level of 
assignment may not generalize to other neuronal classes, 
it is comforting to know that discrete types can be iden‑
tified through unbiased searches using multiple criteria. 
Second, the identified transcriptomic relationships par‑
alleled the similarities that had been documented mor‑
phologically. For example, ON cone BCs are more closely 
related to each other than they are to OFF cone BCs, and 
vice versa, and cone BCs are more closely related to each 
other than they are to rod BCs (FIG. 4b). Third, the classi‑
fication studies discovered new types. A previous author‑
itative study using morphological criteria and molecular 
markers described 11 BC types in mice125. In retrospect, 
three were missed because the available markers were lim‑
ited; the authors suspected that additional types existed 

but were unable to demonstrate their existence. The final 
type, called 1B, was missed because it is actually unipo‑
lar (FIG. 4c) and was likely mistaken for an amacrine cell. 
However, this type has the molecular profile of a BC and 
lacks amacrine markers. Indeed, an independent study 
shows that its physiology and axonal ultrastructure are 
characteristic of BCs126. Moreover, with markers identified 
from scRNA-seq, it was possible to show that 1B cells are 
initially bipolar and then transform by late withdrawal of 
their dendritic processes.

Classification of other retinal classes is also proceed‑
ing, with discoveries as striking as those for BCs. For 
example, the number of mouse RGC types was estimated 
to be ~12 in 2004 (REF. 7); this number had increased to 
~30 by 2015 (REF. 19) and has increased further to over 50 
based on newer physiological studies109, as well as prelimi‑
nary data from ongoing electron microscopic reconstruc‑
tions generated by crowdsourcing, such as those at http://
museum.eyewire.org (Sebastian Seung, personal commu‑
nication; see Further Information), and transcriptomic 
studies (J.R.S., unpublished observations). Some 20 types 
of amacrine cells have been characterized to date, and 
there is fragmentary evidence indicating that many more 
types exist (for example, 45 were reported in REF. 67).  

Figure 4 | Classification of retinal bipolar cells. Retinal bipolar cells (BCs) 
have been classified by three converging sets of high-throughput data, 
namely, morphological (electron microscopic reconstruction62,63), 
physiological (calcium imaging124) and molecular (Drop-seq105) data, into the 
following 15 types: one type of rod BC (RBC) and 14 types of cone BCs. The 
cone BCs are further subdivided into 8 ON types and 6 OFF types105.  
a |  A t‑distributed stochastic neighbour embedding (tSNE) plot showing 
clustering of ~20,000 BCs that were isolated by fluorescence-activated cell 
sorting from a visual system homeobox 2 gene promoter-driven green 

fluorescent protein (GFP)-expressing (Vsx2‑GFP) transgenic mouse line, in 
which GFP is expressed in all BCs and Muller glial (MG) cells and profiled by 
Drop-seq. The tSNE plot provides a convenient way to display cell clusters, 
as defined by a high-dimensional analysis of correlations in gene expression, 
in two dimensions. b | Relationships among the BC types are shown in the 
form of a dendrogram that was created based on their transcriptomic 
similarity c | Sketches of the 15 BC types, whose terminal branches of axons 
are located in different sublaminae (S1‑S5) of the inner plexiform layer in 
the retina. Parts a‑c are adapted with permission from REF. 105.
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Nonetheless, a complete classification of this region 
of the CNS is within sight, and based on the work dis‑
cussed above, we predict that 100–150 types of cells will 
be identified.

Cerebral cortex. The cortex contains multiple sensory 
and motor areas as well as higher-order associational 
areas; the current number of different areas in humans, 
defined by cytoarchitecture and inferred connectivity 
(from neuroimaging), is estimated to be ~180 (REF. 127). 
Although all cortical areas have a laminar structure, the 
number and thickness of the layers vary across areas, and 
some cell types may be unique to specific areas. Most 
studies of neuronal types have focused on the rodent 
primary somatosensory and visual cortices.

In general, cortical neurons are divided into two 
classes, namely, glutamatergic excitatory neurons and 
GABAergic inhibitory neurons, with multiple ‘subclasses’ 
within each class (FIGS 5,6). The following five excitatory 
neuron subclasses are known to exist: locally projecting 
layer 4 neurons, cortico-cortical projection neurons (also 
called callosal projection neurons or intratelencephalic 
neurons), subcerebral projection neurons (also called 
pyramidal tract neurons), cortico-thalamic projection 
neurons, and layer 6b subplate neurons128–131. The layer 
4 neurons, which are the major postsynaptic targets of 
thalamic sensory nuclei, can be subdivided further into 
spiny stellate cells and star pyramidal cells, depending 
on whether they have an apical dendrite. Their axons 
and those of the layer 6b subplate neurons project locally 
or to nearby regions. The intratelencephalic neurons, 
which feature thin-tufted dendrites, are concentrated in 
layer 2/3 and upper layer 5 (often called layer 5a) but are 
also present in deeper layer 5 and layer 6. They project 
to multiple other cortical areas both ipsilaterally and 
contralaterally and to the striatum. The pyramidal tract 
neurons, which are located in relatively deeper layer 5 
(layer 5b) and feature thick-tufted dendrites, project to 
multiple subcortical areas in the striatum, thalamus, mid‑
brain, hindbrain and, sometimes, even down to the spinal 
cord. The cortico-thalamic neurons are located in layer 6,  
and they primarily provide feedback projections to the 
input thalamic nuclei. Many of the long-range projection 
neurons mentioned here also have local axonal collaterals 
that connect with other neurons in the same area, thus 
contributing to both local and global circuits.

It is unclear how many types of neurons constitute 
each of these five subclasses. The limited studies in 
which types have been defined by projection targets 
suggest that great variations exist with respect to projec‑
tion specificity between different neurons46,132–135, which 
is not surprising given the numerous combinations of 
targets from which an axon can choose. Conversely, the 
intrinsic electrophysiological properties of the excitatory 
cortical neurons exhibit relatively less variation than the 
properties of the other neurons. In a comprehensive 
morpho-electrical study of juvenile rat somatosensory 
cortical neurons, all excitatory neurons were assigned to 
a single ‘e‑type’ (REF. 49). Single-cell transcriptomics has 
the potential to provide an exhaustive survey if enough 
cells are profiled. In fact, Smart-seq profiling of 1679 cells 

from adult mouse visual cortex revealed 19 excitatory 
neuronal types136 (FIG. 5). It will be important to determine 
how these types are correlated with those determined by 
projection target specificity.

Within the GABAergic inhibitory class, there are 
four main subclasses, which are named for the neuro‑
chemical markers they express: parvalbumin-expressing 
(PVALB+) cells, somatostatin-expressing (SST+) cells, 
vasoactive intestinal peptide-expressing (VIP+) cells and  
cells that express 5‑hydroxytryptamine receptor 3A 
but lack VIP (HTR3A+VIP-)137–140. Each of these sub‑
classes can be subdivided into types. For example, the 
PVALB+ subclass can be split into basket cells and chan‑
delier cells; the SST+ subclass into Martinotti cells and 
non-Martinotti cells; the VIP+ subclass into bipolar  
and multipolar cells; and the HTR3A+VIP- subclass 
into neurogliaform cells and single bouquet cells. As 
indicated by their names, these interneuron types are 
defined by their axonal and dendritic morphologies, and 
each contains additional variations (similar to the hippo
campus, wherein interneurons have been divided into 
at least 21 morphological types)11,141. In the past decade, 
the generation of many interneuron-specific GFP- or 
Cre recombinase-expressing transgenic mouse lines has 
dramatically increased our knowledge of the properties, 
connectivity and function of these interneuron types140.

Nonetheless, it is still unclear exactly how many cell 
types constitute each inhibitory subclass. Studies in which 
cortical neurons were analysed physiologically (by patch 
clamp recording) and morphologically (by biocytin fill‑
ing following recording) reported up to 194 interneuron 
types49,142. In the abovementioned scRNA-seq study of the 
adult mouse visual cortex, 23 interneuron types under 
the four main subclasses were identified and there was  
found to be some degree of correlation between these 
types and morpho-electrical types identified on the basis 
of known marker genes136 (FIG. 5).

Our current understanding of the cell types in the cortex 
is similar to our understanding of the cell types in the ret‑
ina in some ways but differs in others. Similar to studies of  
the retina, preliminary comprehensive scRNA-seq studies 
(with more neurons and more cortical areas than previ‑
ously published)136 of the cortex suggest that the number 
of cell types found therein is currently in the 100–200 
range (H.Z., unpublished observations). However, in the 
cortex, no clear patterns of arrangement corresponding to 
the mosaicism or tiling seen in the retina have been iden‑
tified. Cells intermediate between transcriptomic types136, 
as well as orthogonality between cell types defined by elec‑
trophysiology and those defined morphologically49, have 
been observed in cortex. Further studies will be needed to 
determine to what extent their prevalence varies between 
different regions. It is hoped that the arsenal of new 
high-throughput methods mentioned above will eventu‑
ally make it possible to reach a census regarding the clas‑
sification of all cortical cell types, in much the same way 
as is being done for retina. As explained below, we expect 
that a hierarchical taxonomy will be the most appropriate 
way to encapsulate the various degrees of distinction and 
relatedness between cortical cell types and to assess the 
relationships between cortical areas.
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Principles of cell-type classification
Above, we noted the parallels between the classifica‑
tion of individual organisms into species and the clas‑
sification of neurons into types. Studies on the retina, 
cortex and other regions suggest that neuronal classifi‑
cation would benefit from the application of taxonomic  
principles in the following three specific ways:

Figure 5 | Neuronal classes and types found in the 
cerebral cortex. Cell types defined by single-cell 
transcriptomics (centre) are annotated with neuronal 
subclasses and types previously identified using 
morphological, connectional and neurochemical 
properties (left). The transcriptomic taxonomy ‘tree’ (right) 
was established by iterative clustering analysis of the 
single-cell RNA-sequencing data from 1679 primary visual 
cortical cells136. Each coloured box in the transcriptomic 
taxonomy represents one transcriptomic type, named after 
the typical marker genes shown in the box. This study 
identified 49 transcriptomic types, including 23 inhibitory 
interneuron types, 19 excitatory neuron types and  
7 non-neuronal types. The neuronal types correspond to 
four inhibitory and seven excitatory subclasses that were 
previously known. The boxed labels on the left show 
examples of special or new cell types that may correspond 
to specific transcriptomic types based on their branch 
location on the taxonomy tree and thus reveal new marker 
genes for these unique neuronal types. For example, 
somatostatin-expressing (SST+) cells with long-range axonal 
projections may correspond to the Sst chondrolectin 
(Chodl) type, chandelier cells may correspond to the 
parvalbumin (Pvalb) copine 5 (Cpne5) type, and the layer 5b 
(L5b) cholinergic receptor nicotinic alpha 6 subunit 
(Chrna6) type may represent a new type of excitatory 
neuron. 96*Rik, 9630013A20Rik; Aqp4, aquaporin 4; Arf5, 
ADP ribosylation factor 5; Astro, astrocyte; Car4, carbonic 
anhydrase 4; Cbln4, cerebellin 4 precursor; Cdh13,  
cadherin 13; Cdk6, cyclin-dependent kinase 6; Chat, choline 
O‑acetyltransferase; CT, cortico-thalamic; Ctss, cathepsin S; 
Ctxn3, cortexin‑3; Cxcl14, C‑X‑C motif chemokine  
ligand 14; Endo, endothelial cell; Gpc3, glypican‑3; Gpx3, 
glutathione peroxidase 3; Hsd11b1, hydroxysteroid 11‑beta 
dehydrogenase 1; Igtp, interferon gamma-induced GTPase; 
IT, intratelencephalic; Mgp, matrix Gla protein; Micro, 
microglia; Mybpc1, myosin-binding protein C, slow type; 
Myh8, myosin heavy chain 8; Myl9, myosin light chain 9; Ngb, 
neuroglobin; Oligo, oligodendrocyte; OPC, 
oligodendrocyte progenitor cell; Parm1, prostate 
androgen-regulated mucin-like protein 1; Pde1c, 
phosphodiesterase 1c; Pdgfra, platelet derived growth 
factor receptor alpha; PT, pyramidal tract; Ptgs2, prostaglan-
din-endoperoxide synthase 2; Rgs12, regulator of G protein 
signalling 12; Rspo2, R‑spondin 2; Scnn1a, sodium channel 
epithelial 1 alpha subunit; Sla, Src like adaptor; SMC, 
smooth muscle cell; Sncg, synuclein gamma; Syt17, 
synaptotagmin 17; Tacr3, tachykinin receptor 3; Tacstd2, 
tumour-associated calcium signal transducer 2; Tcerg1l, 
transcription elongation regulator 1 like; Th, tyrosine 
hydroxylase; Tpbg, trophoblast glycoprotein; Tph2, 
tryptophan hydroxylase 2; Ucma, upper zone of growth 
plate and cartilage matrix associated; Vip, vasoactive 
intestinal peptide; Wt1, Wilms tumour 1; Xdh, xanthine 
dehydrogenase. Figure adapted with permission  
from REF. 136.
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Criteria. Taxonomists stress that group membership 
should be based on multiple criteria rather than a single 
‘essential’ feature. A corollary is that groups should not 
be named for the supposedly essential feature, as this 
will often end up being misleading. Indeed, there may 
be no single characteristic that is possessed by every 
group member. As noted by Tyner, a pioneer in applying 
insights from systematics to neuroscience, “A biological 
population can be described in terms of a substantial list 
of features such that (a) each member of the group pos‑
sesses a large… number of the features; (b) each feature 
is possessed by a large… number of individuals in the 
group; and (c) no feature is necessarily possessed by every 
member of the group” (REF. 30).

It is also important that the criteria for defining types 
be quantitative. Historically, qualitative descriptions were 
deemed to suffice. These included morphological descrip‑
tions based on Golgi staining, physiological divisions 
based on slowly and rapidly adapting electrophysiological 
responses and molecular divisions into cells that express 
high or low levels of a marker. Fortunately, many newer high- 
throughput methods are intrinsically quantitative, facili‑
tating the use of robust clustering algorithms to place indi‑
viduals into groups. This switch may dispel some of the 
scepticism about the feasibility of drawing clear distinctions 
between types.

Continuous and discontinuous variations. Variation in 
most quantifiable features used to classify organisms or 
neurons is inevitable. As noted above, continuous varia‑
tion can arise from genetic, environmental or stochastic 
sources. We suggest that continuous and discontinuous 
variation should be treated differently and that the latter 
is decisive in defining neuronal types.

This point can be illustrated at least conceptually 
by considering the t‑distributed stochastic neighbour 
embedding (tSNE) plot, which demonstrates the results 
of a transcriptomic analysis of retinal BCs (FIG. 4a). In this 
type of plot, each dot represents one cell, and the distance 
between two cells is related to their gene-expression sim‑
ilarity in a multidimensional, nonlinear space. There is 
considerable heterogeneity with respect to gene expres‑
sion between the cells in each cluster, and this hetero
geneity arises from both biological and technical factors; 
however, no studies to date have been able to further 
subdivide even the most numerous type, namely, rod 
BCs. The important point is that the extensive, contin‑
uous transcriptional variation among rod BCs does not 
lead to further subdivision of its cluster or preclude clear 
separation from neighbouring clusters, which comprise 
cone BC types. One cannot interpret distances within a 
cluster in an intuitive way because they are influenced 
by cell number. The lesson, however, is that focusing on 
discontinuous variations results in meaningful categori‑
zation, whereas focusing on continuous variation is more 
problematic.

Another example is the direction and/or orientation 
selectivity that is exhibited by RGCs and visual cortical 
neurons. Many visual cortical neurons selectively respond 
to a specific orientation of visual stimuli; at the popula‑
tion level, such selectivity varies continuously between 

individual cells such that, collectively, they represent all 
directions143. By contrast, each retinal direction-selective 
RGC responds to one of four discrete directions: dorsal, 
ventral, nasal or temporal144,145. As such, according to our 
working definition, the preferred orientation or direction 
would be a criterion for classifying RGC types but is not 
useful for classifying cortical neuron types. Indeed, this 
distinction corresponds well with RGC or cortical neu‑
ron types defined by other (molecular or morphological) 
parameters19,143,146.

An ancillary benefit of stressing discontinuous vari‑
ation is that it may provide a way to take into account 
many (although certainly not all) of the ‘state’ properties of 
neurons – properties altered by activity, hormonal milieu, 
circadian rhythms and a host of other factors. Many of 
these properties vary continuously and can thus be distin‑
guished from the more permanent, canonical properties 
that can be used to define types. Although some features 
also vary continuously in a way that spans multiple types 
and may be useful for classification109, they currently 
remain a second choice for classification if discontinuous 
variables are available.

Hierarchical classification. Use of hierarchical (multi-
level) rather than flat (single-level) classification systems 
has the following two advantages: it includes relationships 
between types as an intrinsic feature of the classification, 
and it provides a flexible way to update the system in 
light of new information. FIGURE 6 shows the hierarchical 
schemes that we propose for the retina and cortex, and 
they are consistent with previous definitions. We suggest 
that groups should be defined within specific anatomical 
brain regions. The smallest discrete groups (which notion‑
ally serve a specific function) should be called types, and 
the largest aggregates of types that share common func‑
tional features should be called classes. In between types 
and classes are subclasses, which can have one or more 
levels. According to this scheme, a cell can be assigned to 
multiple groups but with only one group at each level. The 
function of many of these cell types is elusive, but the retina 
provides some instructive examples in which a type can be 
correlated with a particular function. For instance, the BC 
class is tasked with the broad function of collecting input 
from photoreceptors and delivering it to RGCs, whereas 
each individual BC type has the more specific function 
of carrying input from rods or cones and converting light 
signals into sustained or transient excitation or inhibition.

In the future, as additional classes are defined and com‑
pared, higher levels may emerge, for example, sensory, 
interneuron and projection classes, as well as groupings 
that span multiple regions. Finer distinctions within types 
can be accommodated as subtypes, just as species are now 
divided into strains. Subtypes may also provide a useful 
way to categorize cells in which some properties are fixed 
while others vary between distinct states, for example, 
owing to transcriptional alterations147 or neurotransmitter 
switching148. In many cases, we expect that subtypes will 
prove to be provisional categories: in some cases, enough 
distinctions will emerge for these to be viewed as authen‑
tic types, whereas in other cases, as larger numbers of 
cells are profiled, subtypes will merge.
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Figure 6 | Hierarchical classification of neurons. The figure shows a 
proposed hierarchical classification of cells in the retina (a) and cerebral 
cortex (b). In both areas, individual cell types can be grouped into classes, 
and intermediate levels of subclasses can be determined based on distinct 
morphological, physiological and molecular features. Higher-order 
groupings (such as those shown in part a, including sensory neurons, 
interneurons and projection neurons) may emerge once enough areas have 
been provided and compared. Types are the commonly recognized 
(‘validated’) terminal branches in the current hierarchical arrangement of 
cell types. Lower-order groupings into subtypes may largely be provisional 
until additional data are collected that could determine if they could form 
new types or should be merged into other types. Dashed lines indicate the 

presence of additional types that cannot be labelled due to lack of space. 
The question marks in part a indicate that the hierarchical relationship 
among the indicated cell types remains unclear. The question mark in part 
b indicates that the status of the cortical cell groups indicated may be either 
subclasses, types or subtypes. CT, cortico-thalamic neurons; DS, direction-
selective retinal ganglion cells (RGCs); F, forkhead box P2 (Foxp2)-expressing 
RGCs; HTR3A, 5‑hydroxytryptamine receptor 3A; ipRGC, intrinsically 
photosensitive RGCs; IT, intratelencephalic neurons; L4, layer 4; L6b, layer 
6b subplate neurons; nGnG, non-GABAergic-non-glycinergic amacrine 
cells; ooDSGC, ON‑OFF direction-selective RGCs; PT, pyramidal tract 
neurons; PVALB, parvalbumin; SST, somatostatin; VIP, vasoactive intestinal 
peptide.
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A path forward
Classification requires us to describe and establish corre‑
spondence between molecular composition, morphology, 
connectivity, physiology and function. It is clear, however, 
that these properties are too complex and variable to 
address them all at once. From a practical point of view, 
we envision classifying neuronal cells into five overlapping 
stages, which can be completed within the next decade.

The first stage will involve quantitatively classifying 
neurons in individual regions of the nervous system by 
molecular and morphological criteria and attempting to 
establish correspondence between the two. The retinal 
and cortical studies described above will serve as a model 
for these endeavours. Molecular classification will rely 
on increasingly affordable high-throughput single-cell 
transcriptomics. Likewise, high-throughput technolo‑
gies in light and electron microscopy can be deployed to 
generate large-scale data sets for the latter. Correlations 
between morphology and molecular identity may 
be best established by multiplexed FISH or in  situ 
sequencing. Such correlations, if established, would 
facilitate the attainment of a baseline understanding  
of neuronal types.

In the second stage, connectivity (inputs and outputs) 
and physiology will be incorporated into the classifica‑
tion scheme. Current technologies are limited in their 
ability to collect comprehensive connectional and phys‑
iological data for large populations of neurons, but cal‑
cium imaging and virus-mediated tracing methods are 
improving rapidly. Continued development of these and 
other technologies and their unbiased application will 
enable systematic connectional, physiological and func‑
tional characterization of individual cells. Ultimately, 
this will be informative and useful not only in refining 
the cell-type classification but also in understanding the 
relationship between a cell’s variable states and its core 
cell-type identity.

Third, as classifications within regions become 
authoritative, it will be possible to make comparisons 
across areas. This will enable researchers to determine, 
for example, whether the cell types in the auditory cortex 
are slight variants of those in visual cortex or whether 
there are fundamental differences between the two cell 
types. Likewise, researchers will be able to determine 
whether or not the excitatory neurons in the cortical 
and subcortical regions are close relatives. These com‑
parisons will also be useful in designing intersectional 
strategies to access specific types in specific regions. 
Furthermore, a complete cell-type inventory needs 
to include a description of the types, proportions and 

spatial distributions of cells in different regions. Such 
information will help us understand the larger-scale 
organization of the nervous system.

Fourth, classification schemes derived from healthy 
adult animals will be used as a foundation for investigat‑
ing development, evolution and disease. These compar‑
isons will help us understand how cell types emerge in 
development and the extent to which they are conserved 
phylogenetically. We will be able to answer questions 
about how immature neurons diversify to acquire their 
adult fates and how cell-type identity is determined and 
maintained. We may be able to determine which neu‑
ronal types are evolutionarily conserved and which are 
unique to individual families or species. Comparisons 
can be extended further to diseases and disease models 
to understand to what extent disease-related alterations 
are confined to specific neuronal types and how animal 
models are related to human conditions.

Finally, it will be important to develop a unified 
nomenclature for neural cell types. Optimally, this 
nomenclature should be applicable across brain regions 
and species and should incorporate molecular, morpho‑
logical, physiological and, perhaps, connectional crite‑
ria. If this nomenclature is to be useful, it will need to be 
widely adopted by the community. These are all difficult 
challenges, and it may be several years until enough data 
are available to formulate a proposal. In the meantime, 
we make some modest suggestions. Classification should 
be based on a hierarchical scheme (as described above) 
so that additional groupings can be added or interpo‑
lated as new information becomes available. The names 
of classes and types should avoid reference to putative 
functions to facilitate integration across regions and spe‑
cies. Finally, any proposal should be made by a group of 
neuroscientists whose expertise spans multiple regions, 
species and technologies. Models are provided by com‑
mittees that propose nomenclature for genes, enzymes 
and receptors149–151. Their success encourages us to believe 
that a similar mechanism could eventually be employed 
to design a cell-type nomenclature that would be both 
generally useful and widely adopted.

Overall, the enterprise of cell-type classification has 
the potential to transform our view of nervous system 
function and malfunction. Many problems remain, and, 
as is the case for species taxonomy, cell-type classification 
schemes need to be regarded as hypotheses to be tested 
and refined as we move through these stages. Nonetheless, 
the pace of progress is rapid, and some of the conceptual 
and technical challenges that seem formidable today are 
likely to be surmounted over the next decade.
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