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Nerve terminals in the brain carry out the primary form of

intercellular communication between neurons.

Neurotransmission, however, requires adequate supply of ATP

to support energetically demanding steps, including the

maintenance of ionic gradients, reversing changes in

intracellular Ca2+ that arise from opening voltage-gated Ca2+

channels, as well recycling synaptic vesicles. The energy

demands of the brain are primarily met by glucose which is

oxidized through glycolysis and oxidative phosphorylation to

produce ATP. The pathways of ATP production have to

respond rapidly to changes in energy demand at the synapse to

sustain neuronal activity. In this review, we discuss recent

progress in understanding the mechanisms regulating

glycolysis at nerve terminals, their contribution to synaptic

function, and how dysregulation of glycolysis may contribute to

neurodegeneration.
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Introduction
All tissues in the body rely on oxidation of a carbon-rich

source to generate the key high-energy intermediate,

ATP, to fuel biochemical processes. In the brain, this

is generally limited to the use of glucose, while other

tissues can also utilize oxidation of other fuels such as

fatty acids, hence glycolysis is of central importance to

brain function. Furthermore, the adult human brain con-

sumes 20% of the total energy in the body while it

comprises only 2% of the body weight [1]. Thus at the

whole organism level, much of the ‘metabolic wiring’ is

dedicated to ensure adequate glucose supply for the brain

as failure to do so can have drastic consequences. A rapid

decline in brain glucose levels for example, as experi-

enced during insulin-induced severe hypoglycemia, typi-

cally leads to cognitive dysfunction such as seizures and

coma. Interestingly, several tissues in the body have high
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energetic needs that must be met by appropriate delivery

of fuel to maintain function. For example, the heart is

continuously beating and at any one time at least some

neurons in the brain are firing, thus these tissues are never

in a truly resting state. Furthermore, both tissues undergo

rapid changes in function since cardiac workload can vary

significantly during exercise, and individual neurons un-

dergo rapid changes in action potential firing during

specific cognitive tasks. A critical question therefore is,

how is the production of ATP regulated rapidly enough to

match changes in neuronal function?

Questions about brain glycolysis
As glucose is the typical carbon source used to fuel brain

metabolic needs, there are a number of important ques-

tions that arise to understand its mechanistic basis and

significance: What cells in the brain carry out the com-

bustion of glucose, and how is it regulated? Does the full

combustion of glucose to CO2 and H2O, through oxida-

tive phosphorylation (OxPhos), occur in the same cells

where glycolysis occurs? Are there backup systems that

can maintain function when the supply of glucose is

interrupted? What happens when these backups are

depleted?

In this review, we will examine these problems with an

emphasis on recent progress in understanding the mech-

anisms regulating local energy production at the synapse

and their contribution to synaptic function. In addition,

we will address how dysregulation of energy metabolism

in distal axons contributes to neurodegeneration.

6 carbons or 3?

Glucose consumption is a signature of brain activity and is

used extensively in functional brain imaging techniques

such as positron emission tomography. However, the

exact identity of activity-dependent metabolic processes

as well as the cell types consuming glucose remain poorly

understood. In particular, it is not clear whether neurons

primarily utilize glucose or lactate during periods of

intense firing. In the astrocyte-neuron lactate shuttle

(ANLS) model put forward by Magistretti and colleagues

[2], the glutamate released from active neurons stimulates

astrocytes to take up glucose and glycolytically metabo-

lize it to lactate. Lactate is then exported to neurons,

where it is converted to pyruvate to fuel OxPhos. The

ANLS model thus suggests that lactate, not glucose,

provides energetic support for firing neurons. The model

also predicts that the majority of ATP production in active

neurons is met through mitochondrial oxidative phos-

phorylation (OxPhos) with glycolysis playing only a sec-

ondary role. The sharing of lactate between cell types has
www.sciencedirect.com
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been known for many decades and forms the basis of the

Cori cycle, whereby excess pyruvate produced in muscle

is recycled in the form of lactate back to the liver where it

is used in gluconeogenesis [3]. Although there are a

number of compelling reasons to think that such lactate

sharing occurs between astrocytes and neurons, we pres-

ent here several lines of evidence that neurons, and in

particular nerve terminals, likely rely on local glycolysis:

1. ATP supply is rapidly regulated to meet needs.

The vulnerability of the brain to metabolic defects,

even on very short time scales, indicates that even if

the brain can tap into backup sources of carbon to

produce ATP, it is either too slow or insufficient in

capacity to meet the ongoing needs of neuronal

function. We recently showed, for example, that

although completely blocking glycolysis leads to only a

slow decline in ATP levels in resting neurons, this

critical metabolite drops precipitously if glycolysis is

blocked during activity, leading to rapid inhibition of

presynaptic function [4��]. These results led us to

conclude that glycolysis is controlled by activity and

failure to do so quickly would be catastrophic for

synaptic transmission [4��]. The tightness of this

coupling also argues against a simple reliance on

astrocytic glycolysis and a lactate shuttle since it would

require buildup of lactate in the extracellular space

which would likely be too slow to support continuous

synaptic communication [5]. In contrast, glycolytic

ATP production is thought to be relatively fast [6].

These observations clarify the need to properly

understand how activity, which drives ATP consump-

tion, is coupled to the generation of ATP via glycolysis

in neurons.

2. Enrichment of the glycolytic machinery in presynaptic

compartments.

Biochemical purification of synaptosomes and synaptic

vesicles (SVs) has demonstrated that 5 of the 10 known

enzymes that convert glucose into pyruvate are

specifically enriched on SVs [7–9], several of which

are specifically associated with the energetic pay-off

steps in glycolysis. Such localization has led to the

speculation that locally produced ATP maybe handed

off directly to ATP consuming enzymes such as the V-

type ATPase on SVs that helps power neurotransmit-

ter filling. Glycolytic enzymes are also shown to be

physically associated with the Na+/K+ pump in

erythrocytes [10] (and possibly in neurons [11]), as

well as with axonal transport organelles [12], allowing

for rapid and local powering of energy-consuming

processes. Our own measurements demonstrate that if

presynaptic glycolysis is inhibited, endocytosis of SVs

is blocked, indicating that one of the molecular steps

associated with membrane fission is highly reliant on

rapid ATP generation [4].

3. Local glycolytic metabolon formation during energy

stress
www.sciencedirect.com 
More recently, a genetic screen aimed at identifying

the protein machinery essential for maintaining

presynaptic organization demonstrated that during

periods of energy stress a local metabolon is formed at

presynaptic boutons [13��] (Figure 2b). The metabo-

lon refers to a local increase in the concentration of a

number of glycolytic enzymes, specifically, phospho-

fructokinase, aldolase, glyceraldehyde-3-phosphate

dehydrogenase, pyruvate kinase, and this enzyme

clustering is essential for SV recycling [13��]
(Figure 2e).

4. Expression and regulation of neuronal glucose trans-

porters

Neurons have long been known to have high

expression of Glut3 [14] suggesting that glucose uptake

is primarily mediated through this transporter. Two

recent studies also shown that perfusion of extracellular

glutamate triggers surface accumulation of Glut3 in

soma and dendrites, potentially mitigating excitotoxic

effects by increasing glucose utilization [15,16]. A

different glucose transporter, Glut4, known for its

insulin-mediated glucose uptake in adipocytes and

muscle [17], is expressed in many brain regions [18,19],

however the functional role of Glut4 in brain

metabolism is not understood. We demonstrated that

Glut4 is recruited to the surface of presynaptic endings

in firing neurons to increase glucose uptake and

consequently upregulate glycolysis during activity

[20��] (Figures 1 and 2a). Functionally, Glut4-mediated

upregulation of glycolysis is essential for SV recycling

during neuronal activity (Figure 2e), thereby highlight-

ing the crucial role of glycolytic regulation in synaptic

function. Consistent with our Glut4 study, a new report

indicates that hippocampal Glut4 translocates to the

plasma membrane after memory training and is

involved in long-term memory formation [21�].

The data presented in each of the aforementioned points

strongly suggest that glycolytic enzymes are favorably

positioned in presynaptic endings to rapidly metabolize

glucose during activity to fuel key steps in synaptic

vesicle recycling.

Regulation of neuronal glycolysis
The increased rate of glycolysis driven by electrical activity

results in part from increased import of glucose, that in turn

is driven by the metabolic feedback regulator AMP kinase

[20]. At present, the relevant substrate(s) for AMP kinase

that mediate Glut4 translocation in axons are not known,

but in muscle AMP kinase controls the activity of a Rab

GAP [22]. Expression of the relevant muscle Rab GAP in

neurons where the serines that are substrates of AMP

kinase have been mutated to alanine, blunt the ability

of electrical activity to mobilize Glut4 [20], and thus it

seems likely that axons utilize a machinery similar to that in

exercising muscle to regulate glycolysis. One potentially

important but relatively poorly explored feature of
Current Opinion in Neurobiology 2017, 45:156–161
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Figure 1
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Glut4 vesicles rapidly insert into the presynaptic plasma membrane in response to neuronal firing. (a) Schematic drawing of the use of Glut4

tagged with pHluorin (pH) to visualize its trafficking in neurons. pHluorin is pH sensitive and its fluorescence is quenched in the acidic environment

of endosomes but not when exposed to extracellular space. (b) Glut4-pH fluorescence (pseudocolor) increases in presynaptic boutons

(arrowhead) after electrical stimulation with 600 action potentials (APs). (c) Average trace of Glut4-pH in response to stimulation.

(Adapted from [20��]). Gray lines are standard errors. Scale bar, 5 mm.
glycolysis is that it can only proceed if there is sufficient

supply of the essential electron acceptor nicotinamide

adenine dinucleotide (NAD+). The oxidation of each

glucose molecule requires two NAD+ molecules (that

are reduced to NADH) in a reaction catalyzed by glyceral-

dehyde 3-phosphate dehydrogenase (GAPDH). Therefore
Figure 2
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to sustain glycolysis, NAD+ needs to be continuously

replenished from one of three sources: First, NAD+ can

be synthesized though nicotinamide biosynthetic pathways

(see below); second, NAD+ can be regenerated with the

conversion of pyruvate to lactate by lactate dehydrogenase,

in turn diverting pyruvate away from OxPhos; third, NAD+
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Figure 3
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The central role of NAD+ shuttle systems in glucose metabolism. (a) The malate-aspartate (MA) shuttle uses cytoplasmic and mitochondrial malate

dehydrogenases to convert aspartate to malate and NADH to NAD+ in the cytosol, as well as the reverse in the mitochondrial matrix. Malate and

aspartate are exchanged between the two compartments by the malate/a-ketoglutarate and the aspartate/glutamate antiporters. (b) In the

glycerol-3-phosphate shuttle, cytosolic glycerol-3-phosphate dehydrogenase converts NADH to NAD+ and dihydroxyacetone phosphate to

glycerol-3-phosphate while the mitochondrial enzyme reverses the reaction releasing electrons to the electron transport chain. The cytosolic NAD+

produced by the shuttles serves as cofactor driving glycolysis, while (c) mitochondrial NADH produced by the shuttles and the TCA cycle drives

the formation of a proton gradient by the electron transport chain (d) which is then used by the F1F0-ATPase to synthesize ATP. Asp: aspartate;

Glu: glutamate; cMDH, mMDH: cytoplasmic and mitochondrial malate dehydrogenase; a-KG: a-ketoglutarate; G3P: glycerol-3-phosphate; DHAP:

dihydroxyacetone phosphate; cGPDH and mGPDH: cytoplasmic and mitochondrial glycerol-3-phosphate dehydrogenase; ETC: electron transport

chain. TCA cycle: tricarboxylic cycle.
can be replenished by 2 different shuttle systems in the

mitochondrial inner membrane (the malate-aspartate shut-

tle and the glycerol-3-phosphate shuttles) whereby elec-

trons from the cytosol are transferred to the mitochondrial

matrix [23] (Figure 3). Interestingly, both of these shuttles

appear to be upregulated by cytoplasmic Ca2+ [24,25],

providing a potential feed-forward regulation between

electrical activity and glycolysis, and they are required

for Ca2+-driven mitochondrial respiration in active neurons

[26]. Since the ability to transfer electrons into the electron

transport chain depends on the state of mitochondrial

respiration, these shuttles also potentially provide another

link coupling glycolysis and OxPhos [27] (Figure 3c,d).
www.sciencedirect.com 
Backup supplies?
Many tissues in the body rely on the ability to tap into

stored carbon sources (e.g. fatty acids, and glycogen) to

supplement energy needs during periods of compro-

mised carbon input. Neurons however do not express

key enzymes necessary for b-oxidation (the catabolism

of fatty acids to acetyl-coA) or glycogen formation or

use, although these enzymes are expressed in astrocytes

[28,29]. One might expect, therefore, that the ANLS

might be particularly important in allowing neurons

to signal to astrocytes to mobilize glycogen stores

and deliver lactate during periods of reduced carbon

supply.
Current Opinion in Neurobiology 2017, 45:156–161
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Glycolytic compromise and neuronal
dysfunction
It is interesting to note that certain drug-resistant forms of

epilepsy, particularly in children, can be effectively trea-

ted by switching to a highly ketogenic diet, where gly-

colysis would be bypassed in favor of OxPhos [30].

Although the mechanistic basis for this dietary remedy

is poorly understood, we speculate that compromise in

glycolytic throughput, given its tight coupling to SV

recycling, would potentially dampen sustained high-fre-

quency firing and seizure propagation [20,31].

The importance of sustaining NAD+ levels (and therefore

likely glycolysis and ultimately ATP levels) has also been

shown to be a central tenet of axon survival following

axotomy. NAD+ can be synthesized from various pre-

cursors, mediated by the enzymatic activity of nicotin-

amide mononucleotide adenylyl-transferase (Nmnat)

[32]. Similar to energy deprivation [33], loss of one of

the three mammalian Nmnat isoforms (Nmnat2) leads to

neuronal degeneration [34]. Furthermore, a chimeric

gene (WldS) containing the coding sequences of a ubiqui-

tin ligase and Nmnat-1 protects injured axons from Wal-

lerian degeneration, in which the distal portion of a

severed axon degenerates in a stereotyped manner

[32]. Similar to the WldS mutant, Nmnat overexpression

[35] or exogenous supplementation of nicotinamide [36]

are sufficient to rescue Wallerian degeneration, suggest-

ing that the protective effects of Nmnat can be attributed

to local NAD+ synthesis in axons. In degenerating axons,

NAD+ levels decline first, driven by unkown mechanisms

involving the protein SARM, followed by ATP levels

[36,37�], further relating NAD+ to energy metabolism and

neuronal survival. In fact, a recent study concluded that

Wallerian degeneration may specifically disrupts glycoly-

sis in axons [38�]. Taken together, these findings are

consistent with a model whereby Nmnat expression

rescues axon degeneration by preventing a decline in

NAD+ level, thereby sustaining ATP production through

glycolysis.

Collectively, the findings presented here indicate that

glycolysis plays a significant role in presynaptic and axo-

nal metabolism and is precisely regulated to meet ener-

getic demands of synaptic function. Understanding the

regulation of neuronal glucose metabolism is of particular

importance as there is mounting evidence linking dysre-

gulation of neuronal energetics to neurodegeneration.
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