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Abstract

Understanding how animals update their decision-making behavior over time is an important prob-
lem in neuroscience. Decision-making strategies evolve over the course of learning, and continue
to vary even in well-trained animals. However, the standard suite of behavioral analysis tools is
ill-equipped to capture the dynamics of these strategies. Here, we present a flexible method for
characterizing time-varying behavior during decision-making experiments. We show that it success-
fully captures trial-to-trial changes in an animal’s sensitivity to not only task-relevant stimuli, but
also task-irrelevant covariates such as choice, reward, and stimulus history. We use this method to
derive insights from training data collected in mice, rats, and human subjects performing auditory
discrimination and visual detection tasks. With this approach, we uncover the detailed evolution
of an animal’s strategy during learning, including adaptation to time-varying task statistics, sup-
pression of sub-optimal strategies, and shared behavioral dynamics between subjects within an
experimental population.
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Introduction

The decision-making behavior of animals in carefully designed tasks is the foundation on which
much neuroscience research is built (Carandini, 2012; Krakauer et al., 2017). Many results rely
on the accurate and stable decision-making of experimental subjects, whereas other conclusions
derive from quantifying specific deficits in choice behavior. For example, causal manipulations of
neural activity that result in impaired task accuracy can be traced back to specific disruptions
in the sensory processing of task stimuli (Licata et al., 2017; Pisupati et al., 2019). Conversely,
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manipulations which were found to selectively suppress the impact of task-irrelevant covariates lead
to improved accuracy (Akrami et al., 2018). Accurate quantification of decision-making behavior is
prerequisite to drawing conclusions from patterns, changes, or abnormalities found in that behavior.

This quantification of the strategies driving an animal’s choices is often challenging for two main
reasons. First, an accurate description of behavior needs to not only account for the impact of
task-relevant features (e.g., task stimuli), but also measure the influence of other, task-irrelevant
covariates (e.g., the animal’s choice on the previous trial). Detecting and disentangling the influence
of these variables on an animal’s choices is non-trivial. Is the subject effectively utilizing the task
stimuli? In what ways, and to what extent, is trial history affecting decisions?

Second, decision-making behavior is dynamic (Usher et al., 2013; Brunton et al., 2013; Piet et al.,
2018). An accurate description of an animal’s behavioral strategy during one session may be
inaccurate by the next session. Strategies may evolve significantly within a single session. If
decision-making is a product of the influence of many task covariates, as stated above, then the
goal of quantifying behavior is complicated by having those influences evolve over time. If task
accuracy suddenly drops, has the animal ceased attending to task stimuli, or is the emergence of
new, sub-optimal strategy to blame?

These challenges are particularly salient in animal training, especially when animals are first learn-
ing a new task (Carandini and Churchland, 2013). Learning necessitates changes in behavior,
frustrating conventional analyses that are better suited to the relatively stable behavior seen post-
training. Furthermore, behavior during early training is notoriously diverse: different subjects
within the same population may utilize entirely different strategies upon encountering a novel task
(Cohen and Schneidman, 2013). All research dependent upon animals consistently making accurate
decisions must endure the poorly understood and resource-hungry bottleneck of animal training.

Conventional tools for characterizing choice behavior include the psychometric curve and logis-
tic regression, in combination with coarse performance statistics (see, for example, Akrami et al.
(2018) and IBL et al. (2020), the sources of the mouse, rat, and human behavior analyzed below)
(Green and Swets, 1966). These approaches aggregate data from a range of trials, often spanning
many sessions. This collapse across time leaves these approaches ill-equipped to describe behavior
that is time-varying, as seen during learning. Although a sizeable literature has focused on the
theoretical principles (Sutton, 1988; Courville et al., 2006; Sutton and Barto, 2018) and the biolog-
ical substrates of learning in the brain (Schultz et al., 1997; Dayan and Balleine, 2002; O’Doherty
et al., 2003; Daw and Doya, 2006), there has been a comparative lack of methods for characterizing
the dynamics of behavior from experimental datasets.

Several previous studies have nevertheless addressed the topic of dynamic behavior. Smith et al.
(2004) introduced a dynamic analysis focused primarily on learning curves, in particular the prob-
lem of reliably identifying the time at which learning can be said to occur. While their state-space
smoothing algorithm improved over traditional trial-averaged learning curves, the work did not
provide a description of detailed changes in behavioral strategy (Suzuki and Brown, 2005; Prerau
et al., 2009). Other work from Kattner et al. (2017) extended the standard psychometric curve
to allow its parameters to vary continuously across trials. Bak et al. (2016) described a model
for defining smoothly evolving weights that could track changing sensitivities to specific behavioral
covariates. While the model could track behavioral dynamics in theory, the optimization procedure
strongly constrained both the complexity of the model and the size of the data to which it could
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be applied (Bak and Pillow, 2018).

Here we address these shortcomings by presenting a flexible and efficient method for inferring time-
varying behavioral policies in decision-making experiments, facilitated by the statistical innovations
presented in Roy et al. (2018a). Animal behavior is quantified at single-trial resolution, allowing
for intuitive visualization of learning dynamics and direct analysis of psychophysical weight tra-
jectories. We apply our model to behavioral data collected from throughout the training process
of two experimental paradigms, spanning three species (mouse, rat, and human). After validating
on simulated data, we leverage our model to analyze an example mouse that learns to synchronize
its choice behavior to the block structure of a visual detection task (IBL et al., 2020). We then
uncover the dominance of trial history information in rats, but not humans, during early training
on an auditory parametric working memory task (Akrami et al., 2018).

An implementation of the model is publicly available as the Python package PsyTrack (Roy et al.,
2018b). Furthermore, the Methods include a link to a Google Colab notebook which allows anyone
to precisely reproduce all figures directly from the publicly available raw data. We expect that
our method will provide immediate practical benefit to animal trainers, in addition to giving
unprecedented insight into the development of behavioral strategies.

Results

Our primary contribution is a method for characterizing the evolution of animal decision-making
behavior on a trial-to-trial basis. Our approach consists of a dynamic Bernoulli generalized lin-
ear model (GLM), defined by a set of smoothly evolving psychophysical weights. These weights
characterize the animal’s decision-making strategy at each trial in terms of a linear combination
of available task variables. The larger the magnitude of a particular weight, the more the ani-
mal’s decision relies on the corresponding task variable. Learning to perform a new task therefore
involves driving the weights on “relevant” variables (e.g., sensory stimuli) to large values, while
driving weights on irrelevant variables (e.g., bias, choice history) toward zero. However, classical
modeling approaches require that weights remain constant over long blocks of trials, which pre-
cludes tracking of trial-to-trial behavioral changes that arise during learning and in non-stationary
task environments. Below, we describe our modeling approach in more detail.

Dynamic Psychophysical Model for Decision-Making Tasks

Although our method is applicable to any binary decision-making task, for concreteness we intro-
duce our method in the context of the task used by the International Brain Lab (IBL) (illustrated
in Figure 1A) (IBL et al., 2020). In this visual detection task, a mouse is positioned in front of
a screen and a wheel. On each trial, a sinusoidal grating (with contrast values between 0 and
100%) appears on either the left or right side of the screen. The mouse must report the side of
the grating by turning the wheel (left or right) in order to receive a water reward (see Methods for
more details).

Our modeling approach assumes that on each trial the animal receives an input x; and makes a
binary decision y; € {0,1}. Here, x; is a K-element vector containing the task variables that may
affect an animal’s decision on trial ¢ € {1,...,T}, where X = [x1,...,xp|. For the IBL task, x;
could include the contrast values of left and right gratings, as well as stimulus history, a bias term,
and other covariates available to the animal during the current trial (Figure 1B). We model the
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Figure 1. Schematic of Binary Decision-Making Task and Dynamic Psychophysical Model

(A) A schematic of the IBL sensory decision-making task. On each trial, a sinusoidal grating (with contrast values
between 0 and 100%) appears on either the left or right side of the screen. Mice must report the side of the grating
by turning a wheel (left or right) in order to receive a water reward (see Methods for details) (IBL et al., 2020).
(B) An example table of the task variables X assumed to govern behavior for a subset of trials {t — 2,...,¢ + 2},
consisting here of a choice bias (a constant rightward bias, encoded as “+1” on each trial), the contrast value of the
left grating, and the contrast value of the right grating.

(C) Hypothetical time-course of a set of psychophysical weights W, which evolve smoothly over the course of training.
Each weight corresponds to one of the K = 3 variables comprising x;, such that a weight’s value at trial ¢ indicates
how strongly the corresponding variable is affecting choice behavior.

(D) Psychometric curves defined by the psychophysical weights w; on particular trials in early, middle, and late
training periods, as defined in (C). Initial behavior is highly biased and insensitive to stimuli (“early training”).
Over the course of training, behavior evolves toward unbiased, high-accuracy performance consistent with a steep
psychometric function (“late training”).

animal’s decision-making process with a Bernoulli generalized linear model (GLM), also known
as the logistic regression model. This model characterizes the animal’s strategy on each trial ¢
with a set of K linear weights w;, where W = [wy, ..., wr|. Each w; describes how the different
components of the K-element input vector x; affect the animal’s choice on trial ¢. The probability
of a rightward decision (y;=1) is given by

plyr = 1| x¢, W) = d(x¢ - W), (Equation 1)

where ¢(-) denotes the logistic function. Unlike standard psychophysical models, which assume that
weights are constant across time, we instead assume that the weights evolve gradually over time
(Figure 1C). Specifically, we model the weight change after each trial with a Gaussian distribution
(Bak et al., 2016; Roy et al., 2018a):

Wirl =W+, Nk ™~ N(O, U;%), (Equation 2)

where 7); is the vector of weight changes on trial ¢, and a,% denotes the variance of the changes in
the k™ weight. The rate of change of the K different weights in w; is thus governed by a vector of
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smoothness hyperparameters § = {o1,...,0x}. The larger the standard deviation oy, the larger
the trial-to-trial changes in the k' weight. Note that if o, = 0 for all k, the weights are constant,
and we recover the classic psychophysical model with a fixed set of weights for the entire dataset.

Learning to perform a new task can be formalized under this model by a dynamic trajectory in
weight space. Figure 1C-D shows a schematic example of such learning in the context of the IBL
task. Here, the hypothetical mouse’s behavior is governed by three weights: a Left Contrast weight,
a Right Contrast weight, and a (Choice) Bias weight. The first two weights capture how sensitive
the animal’s choice is to left and right gratings, respectively, whereas the bias weight captures a
fixed additional bias towards leftward or rightward choices.

In this hypothetical example, the weights evolve over the course of training as the animal learns
the task. Initially, during “early training”, the left and right contrast weights are close to zero and
the bias weight is large and positive, indicating that the animal pays little attention to the left
and right contrasts and exhibits a strong rightward choice bias. As training proceeds, the contrast
weights diverge from zero and separate, indicating that the animal learns to compute a difference
between right and left contrast. By the “late training” period, left and right contrast weights have
grown to equal and opposite values, while the bias weight has shrunk to nearly zero, indicating
unbiased, highly accurate performance of the task.

Although we have arbitrarily divided the data into three different periods—designated “early”,
“middle” and “late training”—the three weights change gradually after every trial, providing a
fully dynamic description of the animal’s decision-making strategy as it evolves during learning.
To visualize this strategy, we can compute an “instantaneous psychometric curve” from the weights
on any given trial (Figure 1D). These curves describe how the mouse converts the visual stimuli to a
probability over choice on any trial, and illustrate the gradual evolution from strongly right-biased
toward a high-accuracy strategy in this example. Of course, by incorporating weights on additional
task covariates (e.g. choice and reward history), the model can characterize time-varying strategies
that are more complex than those captured by the psychometric curve.

Inferring Weight Trajectories from Data

The goal of our method is to infer the full time-course of an animal’s decision-making strategy
from the observed sequence of stimuli and choices over the course of an experiment. To do so, we
estimate the animal’s time-varying weights W using the dynamic psychophysical model defined
above (Equation 1 and Equation 2), where T is the total number of trials in the dataset. Each
of the K rows of W represents the trajectory of a single weight across trials, while each column
provides the vector of weights governing decision-making on a single trial. Our method therefore
involves inferring K xT weights from only T binary decision variables.

To estimate W from data, we use a two-step procedure called empirical Bayes (Bishop, 2006). First,
we estimate 6, the hyperparameters governing the smoothness of the different weight trajectories,
by maximizing evidence, which is the probability of choice data given the inputs (with W integrated
out). Second, we compute the mazimum a posteriori (MAP) estimate for W given the choice data
and the estimated hyperparameters 6. Although this optimization problem is computationally
demanding, we have developed fast approximate methods that allow us to model datasets with
tens of thousands of trials within minutes on a desktop computer (see Methods for details; see also
Figure S1) (Roy et al., 2018a).
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Figure 2. Recovering Psychophysical Weights from Simulated Data

(A) To validate our model, we simulated a set of K =4 weights W that evolved for T=>5000 trials (solid lines). We
then use our method to recover weights W (dashed lines), surrounded with a shaded 95% credible interval. The full
optimization takes less than one minute on a laptop, see Figure S1 for more information.

(B) In addition to recovering the weights W in (A), we also recovered the smoothness hyperparameter oy, for each
weight, also plotted with a 95% credible interval. True values 6 are plotted as solid black lines.

(C) We again simulated a set of weights as in (A), except now session boundaries have been introduced at 500 trial
intervals (vertical black lines), breaking the 5000 trials into 10 sessions. The yellow weight is simulated with a gqay
hyperparameter much greater than its respective ¢ hyperparameter, allowing the weight to evolve trial-to-trial as
well as “jump” at session boundaries. The blue weight has only a 4.y and no o hyperparameter meaning the weight
evolves only at session boundaries. The red weight does not have a 04ay hyperparameter, and so evolves like the
weights in (A).

(D) We recovered the smoothness hyperparameters 6 for the weights in (C). Though the simulation only has four
hyperparameters, the model does not know this and so attempts to recover both a ¢ and a 04ay hyperparameter
for all three weights. The model appropriately assigns low values to the two non-existent hyperparameters (gray
shading).

To validate the method, we generated a dataset from a simulated observer with K =4 weights that
evolved according to a Gaussian random walk over 7'=5000 trials (Figure 2A). Each random walk
had a different standard deviation oy, (Equation 2), producing weight trajectories with differing
average rates of change. We sampled input vectors x; for each trial from a standard normal
distribution, then sampled the observer’s choices y according to Equation 1. We applied our method
to this simulated dataset, which provided estimates of the 4 hyperparameters 6 = {61,...,64} and
weight trajectories W. Figure 2A-B shows that our method accurately recovered both the weights
W and the hyperparameters 6.
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Augmented Model for Capturing Changes Between Sessions

One limitation of the model described above is that it does not take account of the fact that
experiments are typically organized into sessions, each containing tens to hundreds of consecutive
trials, with large gaps of time between them. Our basic model makes no allowance for the possibility
that weights might change much more between sessions than between other pairs of consecutive
trials. For example, if either forgetting or consolidation occurs overnight between sessions, the
weights governing the animal’s strategy might change much more dramatically than is typically
observed within sessions.

To overcome this limitation, we augmented the model to allow for larger weight changes between
sessions. The augmented model has K additional hyperparameters, denoted (0day,,- -, Odayy);
which specify the prior standard deviation over weight changes between sessions or “days”. A
large value for oq,y, means that the corresponding k’th weight can change by a large amount
between sessions, regardless of how much it changes between other pairs of consecutive trials. The
augmented model thus has 2K hyperparameters, with a pair of hyperparameters (o, 0day,) for
each of the K weights in wy.

We tested the performance of this augmented model using a second simulated dataset which in-
cludes session boundaries at 500 trial intervals (Figure 2C). We simulated K =3 weights for 7'= 5000
trials, with the input vector x; and choices y; on each trial sampled as in the first dataset. The red
weight was simulated like the red weight in Figure 2A, that is, using only the standard ¢ and no
Oday hyperparameter. Conversely, the blue weight was simulated using only a o4,y hyperparame-
ter, such that the weight is constant within each session, but can “jump” at session boundaries.
The yellow weight was simulated with both types of smoothness hyperparameter, allowing it to
smoothly evolve within a session as well as evolve more dramatically at session boundaries. Once
again, we can see that the recovered weights closely agree with the true weights.

Figure 2D shows the hyperparameters recovered from the second dataset. While the simulated
weights had only four hyperparameters (a o for the yellow and red weights, and a o4ay for the
yellow and blue weights), our method inferred both a ¢ and 4.y, hyperparameter for each of the
three weights. Thus two of the hyperparameters recovered by the model were not simulated, as
indicated by the gray shading. In practice, recovering a value for these unsimulated hyperparam-
eters that is low relative to other hyperparameters will result in an accurate recovery of weights.
Thus, the two unsimulated hyperparameters were accurately recovered, as were the four simu-
lated hyperparameters. All subsequent models are fit with 04,y hyperparameters unless otherwise
indicated.

Characterizing Learning Trajectories in the IBL Task

We now turn to real data, and show how our method can be used to characterize the detailed
trajectories of learning in a large cohort of animals. We examined a dataset from the International
Brain Lab (IBL) containing behavioral data from >100 mice on a standardized sensory decision-
making task (see task schematic in Figure 1A) (IBL et al., 2020).

We began by analyzing choice data from the earliest sessions of training. Figure 3A shows the
learning curve (defined as the fraction of correct choices per session) for an example mouse over
the first several weeks of training. Early training sessions used “easy” stimuli (100% and 50%
contrasts) only, with harder stimuli (25%, 12.5%, 6.25%, and 0% contrasts) introduced later as
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Figure 3. Visualization of Early Learning in IBL Mice

(A) The accuracy of an example mouse over the first 16 sessions of training on the IBL task. We calculated accuracy
only from “easy” high-contrast (50% and 100%) trials, since lower-contrast stimuli were only introduced later in
training. The first session above chance performance (50% accuracy) is marked with a dotted circle.

(B) Inferred weights for left (blue) and right (red) stimuli governing choice for the same example mouse and sessions
shown in (A). Grey vertical lines indicate session boundaries. The black dotted line marks the start of the tenth
session, when left and right weights first diverged, corresponding to the first rise in accuracy above chance performance
(shown in A). See Figure S2 for models using additional weights.

(C) Accuracy on easy trials for a random subset of individual IBL mice (gray), as well as the average accuracy of
the entire population (black).

(D) The psychophysical weights for left and right contrasts for the same subset of mice depicted in (C) (light red
and blue), as well as the average psychophysical weights of the entire population (dark red and blue) (04ay omitted
here for visual clarity).

task accuracy improved. To keep the metric consistent, we calculated accuracy only from easy-
contrast trials on all sessions.

Although traditional analyses stop at coarse performance statistics like accuracy-per-session, the
dynamic GLM provides a detailed characterization of the animal’s evolving behavioral strategy at
the timescale of single trials. In Figure 3B, we used it to extract time-varying sensory weights on left
contrast values (blue) and right-side contrast values (red). These two weights fluctuated together
during the first nine sessions, indicating a near-equal probability of making a rightward choice for
stimuli on the left and right side of the screen. Positive (negative) fluctuations corresponded to a
bias toward rightward (leftward) choices, indicating that the animal’s strategy was not constant
across these sessions, even though accuracy remained at chance-level performance. At the start of
the tenth session, the two weights began to diverge, corresponding to an increase in accuracy. This
separation continued throughout the subsequent six sessions, gradually increasing performance to
roughly 80% accuracy by the sixteenth session. The correlated fluctuations of the inferred weights
indicate that the animal’s bias changed on a faster timescale than single sessions.
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However, the learning trajectory of this example mouse was by no means characteristic of the entire
cohort. Figure 3C-D shows the empirical learning curves (above) and inferred weight trajectories
(below) from a dozen additional mice selected randomly from the IBL dataset. The light red and
blue lines are the right and left contrast weights for individual mice, whereas the dark red and blue
lines are the average weights calculated across the entire population. While there is great diversity
in the dynamics of the contrast weights of individual mice, we see a smooth and gradual separation
of the contrast weights on average.

Adaptive Bias Modulation in a Non-Stationary Task

Once training has progressed to include contrast levels of all difficulties, the IBL task introduces
a final modification to the task. Instead of left and right contrasts appearing randomly with an
equal 50:50 probability on each trial, trials are now grouped into alternating “left blocks” and
“right blocks”. Within a left block, the ratio of left contrasts to right contrasts is 80:20, whereas
the ratio is 20:80 within right blocks. The blocks are of variable length, and sessions sometimes
begin with a 50:50 block for calibration purposes.

Using the same example mouse from Figure 3, we extend our view of its task accuracy (on “easy”
high-contrast trials) to include the first fifty sessions of training in Figure 4A. The initial gray
shaded region indicates training prior to the introduction of bias blocks. The pink outline designates
a period of three sessions as “Early Bias Blocks” which includes the last session without blocks
and the first two sessions with blocks. The purple outline looks at two arbitrary sessions several
weeks of training later, a period designated as “Late Bias Blocks”.

In Figure 4B, we apply our method to three “Early Bias Blocks” sessions. Our left and right
contrast weights are the same as in Figure 3B (though they now also characterize sensitivity to
“hard” as well as “easy” contrast values). We also introduce a third psychophysical weight, in
yellow, that tracks sensitivity to choice bias: when this weight is positive (negative), the animal
prefers to choose right (left) independent of any other input variable. While task accuracy improves
as the right contrast weight grows more positive and the left contrast weight grows more negative,
the “optimal” value of the bias weight is naively 0 (no a priori preference for either side). However,
this is only true when contrasts are presented with a 50:50 ratio and the two contrast weights are
of equal and opposite size.

For this mouse, we see that on the last session before the introduction of bias blocks, the bias
weight tends to drift around zero and the contrast weights have continued to grow in magnitude
from Figure 3B. When the bias blocks commence on the next session, the bias weight does not
seem to immediately reflect any change in the stimulus ratio. In Figure 4C, however, we see a
clear adaptation of behavior after several weeks of training with the bias block structure. Here the
bias weight not only fluctuates more dramatically in magnitude, but is also synchronized with the
block structure of the trials.

We examine this phenomenon more precisely in Figure 4D-F, which leverages the results of our
method for further analysis. To better examine how our mouse’s choice behavior is changing within
a bias block, we can chunk our bias weight according to the start and end of each block. Plotting
the resulting chunk (normalized to start at 0) shows how the bias weight changes within a single
block. In Figure 4D, we plot all the bias weight chunks from the first three sessions of bias blocks.
Chunks of the bias weight that occurred during a left block are colored blue, while chunks occurring
during a right block are colored red.
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Figure 4. Adaptation to Bias Blocks in an Example IBL Mouse

(A) An extension of Figure 3A to include the first months of training (accuracy is calculated only on “easy” high-
contrast trials). Starting on session 17, our example mouse was introduced to alternating blocks of 80% right contrast
trials (right blocks) and 80% left contrasts (left blocks). The sessions where these bias blocks were first introduced
are outlined (pink), as are two sessions in later training where the mouse has adapted to the block structure (purple).
(B) Three psychophysical weights evolving during the transition to bias blocks, with right (left) blocks in red (blue)
shading. Weights correspond to contrasts presented on the left (blue) and right (red), as well as a weight on choice
bias (yellow). See Figure S3 for models that parametrize contrast values differently.

(C) After several weeks of training on the bias blocks, the mouse learns to quickly adapt its behavior to the alternating
block structure, as can be seen in the dramatic oscillations of the bias weight in sync with the blocks.

(D) The bias weight of our example mouse during the first three sessions of bias block, where the bias weight is
chunked by block and each chunk is normalized to start at 0. Even during the initial sessions of bias blocks, the red
(blue) lines show that a mild rightward (leftward) bias tended to evolve during right (left) blocks.

(E) Same as (D) for three sessions during the “Late Bias Blocks” period. Changes in bias weight became more
dramatic, tracking stimulus statistics more rapidly, and indicating that the mouse had adapted its behavior to the
block structure of the task.

(F) For the second session from the “Late Bias Blocks” shown in (C), we calculated the optimal bias weight (black)
given the block transition times and the animal’s sensory stimulus weights. This optimal bias closely matches the
empirical bias weight recovered using our model (yellow), indicating that the animal’s strategy was approximately
optimal for maximizing reward under the task structure.
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Viewed in this way, we can see that there is some adaptation to the bias blocks even within the
first few sessions. Within only a few dozen trials, the mouse’s choice bias tends to slowly drift
rightward during right blocks and leftward during left blocks. If we run the same analysis on three
sessions near the “Late Bias Blocks” period, we see that this adaptation becomes more dramatic
after training (Figure 4E).

We can further analyze the animal’s choice bias in response to the bias blocks by returning to
the notion of an “optimal” bias weight. As mentioned before, the naive “optimal” value of a bias
weight is zero. However, a non-zero choice bias could improve accuracy if, say, the contrast weights
are asymmetric (i.e., a left choice bias is useful if the animal is disproportionately sensitive to right
contrasts). The introduction of bias blocks further increases the potential benefit of a non-zero
bias weight. Suppose that the values of the two contrast weights are so great that the animal can
perfectly detect and respond correctly to all contrasts. Even in this scenario, one-in-nine contrasts
are 0% contrasts, meaning that (with a bias weight of zero) the animal’s accuracy maxes out at
94.4% (100% accuracy on 8/9 trials, 50% on 1/9). If instead the bias weight adapted perfectly with
the bias blocks, the mouse could get the 0% contrasts trials correct with 80% accuracy instead of
50%, increasing its overall accuracy to 97.8%.

Whereas normative models might derive a notion of optimal behavior (Tajima et al., 2019), we
can use our descriptive model to calculate what the “optimal” bias weight would be for each trial
and compare it to the bias weight recovered from the data. Here we define an “optimal” bias
weight on each trial as the value of the weight that maximizes expected accuracy given that (a)
the left and right contrasts weights recovered from the data are considered fixed, (b) the precise
timings of the block transitions are known, and (c) the distribution of contrast values within each
block are known. Under those assumptions, we take the second session of data depicted in Figure
4C and re-plot the psychophysical weights in Figure 4F with the calculated optimal bias weight
superimposed in black. Note that the optimal bias weight jumps precisely at each block transition,
but also adjusts subtly within a block to account for changes in the contrast weights. We see that,
in most blocks, the empirical bias weight (in yellow) matches the optimal bias weight closely. In
fact, we can calculate that the mouse would only increase its expected accuracy from 86.1% to
89.3% with the optimal bias weight instead of the empirical bias weight.

Trial History Dominates Early Behavior in Akrami Rats

To further explore the capabilities of our model, we analyzed behavioral data from another binary
decision-making task previously reported in Akrami et al. (2018), where both rats and human
subjects were trained on versions of the task (referred to hereafter as “Akrami Rats” and “Akrami
Humans”). This auditory parametric working memory task requires a rat to listen to two white
noise tones, Tone A then Tone B, of different amplitude and separated by a delay (Figure 5A).
If Tone A is louder than Tone B, than the rat must nose poke right to receive a reward, and
vice-versa.

In Figure 5B, we apply our method to the first 12,500 trials of behavior from our example rat.
Despite the new task and species, there are several similarities to the results from the IBL mice in
Figure 3 and Figure 4. Tones A and B are the task-relevant weights (red and blue, respectively)
treated similarly to the left and right contrast variables, while the bias weight (yellow) is the same
weight used by the IBL mice. While at most one of the left or right contrast weights was activated
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Figure 5. Visualization of Learning in an Example Akrami Rat

(A) For this data from Akrami et al. (2018), a delayed response auditory discrimination task was used in which a rat
experiences an auditory white noise stimulus of a particular amplitude (Tone A), a delay period, a second stimulus
of a different amplitude (Tone B), and finally the choice to go either left or right. If Tone A was louder than Tone
B, then a rightward choice triggers a reward, and vice-versa.

(B) The psychophysical weights recovered from the first 12,500 trials of an example rat. “Prev. Tones” is the average
amplitude of Tones A and B presented on the previous trial; “Prev. Answer” is the rewarded (correct) side on the
previous trial; “Prev. Choice” is the animal’s choice on the previous trial. Black vertical lines are session boundaries.
(C) The empirical accuracy of the example rat is plotted in pink, with a 95% confidence interval indicated by the
shaded region. We use a cross-validation procedure to calculate the accuracy predicted by the model (black line).
Both lines are Gaussian smoothed with ¢ = 50.

(D) The empirical bias of the example rat is plotted in purple, with a 95% confidence interval indicated by the
shaded region. We use a cross-validation procedure to calculate the bias predicted by the model (black line). Both
lines are Gaussian smoothed with o = 50. See the Methods for more details about the task, rat subjects, calculation
of predicted accuracy and bias, and the cross-validation procedure.

on a single trial in the IBL task, however, both the Tone A and B weights are activated on every
205 trial in the Akrami task (the inputs are also parametrized differently, see Methods).
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The biggest difference in our application of the method to the Akrami rats is the inclusion of
“history regressor” weights; that is, weights which carry information about the previous trial. The
Previous Tones variable is the average of Tones A and B from the previous trial (green weight).
The Previous (Correct) Answer variable indexes the rewarded side on the previous trial, tracking a
categorical variable where {-1,0,41} = {Left, N/A, Right} (purple weight). The Previous Choice
variable indexes the chosen side on the previous trial, also a categorical variable where {-1,0,+1}
= {Left, N/A, Right} (cyan weight). History regressor weights are always irrelevant in this task.
Despite this, the information of previous trials often influences animal choice behavior, especially
early in training (for the impact of history regressors during early learning in an IBL mouse, see
Figure S2A).

As can be seen clearly from our example rat, the set of task-irrelevant weights (the three history
regressor weights plus the bias weight) dominate behavior early in training. In contrast, the
task-relevant weights (on Tones A and B) initialize at zero. However, as training progresses, the
task-irrelevant weights shrink while the Tone A and B weights grow to be equal and opposite. Note
that the weight on Tone B begins to evolve away from zero very early in training, while the weight
on Tone A does not become positive until after tens of sessions. In context of the task, this makes
intuitive sense: the association between a louder Tone B and reward on the left is comparatively
easy since Tone B occurs immediately prior to the choice. Making the association between a louder
Tone A and reward on the right is much more difficult to establish due to the delay period.

Furthermore, the positive value of all three history regressor weights matches our intuitions. The
positive value of the Previous (Correct) Answer weight indicates that the animal prefers to go
right (left) when the correct answer on the previous trial was also right (left). This is a commonly
observed behavior known as a “win-stay/lose-switch” strategy, where an animal will repeat its
choice from the previous trial if it was rewarded and will otherwise switch sides. The positive
value of the Previous Choice weight indicates that the animal prefers to go right (left) when it also
went right (left) on the previous trial. This is known as a “perseverance” behavior: the animal
prefers to simply repeat the same choice it made on the previous trial, independent of reward or
task stimuli. The slight positive value of the Previous Tones weight indicates that the animal is
biased toward the right when the tones on the previous trial were louder than average, the same
effect produced by Tone A. This corroborates an important finding from the original paper: the
biases seen in choice behavior are consistent with the mouse’s memory of Tone A being corrupted
by recent sensory history (Akrami et al. (2018), though note that the analysis there was done on
post-training behavior and uses the 20-50 most recent trials to calculate an average previous tones
term; see also Papadimitriou et al. (2015); Lu et al. (1992)).

While our simulated datasets in Figure 2 validated our method’s ability to recover weights from
data generated by our own model, we would like to confirm that the weights recovered by our
method accurately characterize behavior in real data. To accomplish this, we use the weights
recovered from our model to predict the values of more conventional behavioral metrics. Figure
5C shows the empirical accuracy of our example rat (pink) with a 95% confidence interval (shaded
pink). Combining the task variable with our weights from Figure 5B according to Equation 1,
we can calculate P(Correct Answer) for each trial to infer the model’s predicted accuracy. This
predicted accuracy is overlaid in black in Figure 5C, and we see that our model’s prediction largely
agrees with the empirical measure.
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Figure 6. Population Psychophysical Weights from Akrami Rats

The psychophysical weights during the first 7'=20000 trials of training, plotted for all rats in the population (light
lines), plus the average weight (dark line): (A) Tone A and Tone B, (B) Bias, (C) Previous Tones, (D) Previous
(Correct) Answer, and (E) Previous Choice.

This validation of the model is repeated in Figure 5D, here calculating empirical and predicted
choice bias. Again we see a close agreement between the empirical predicted measure. Note that
this measure of bias is distinct from the specific bias weight (Figure 5B, yellow), as it is calculated
using all the weights of the model. When only taking into consideration the task stimuli and the
animal’s choice, there are many strategies that can masquerade as a choice bias. For example,
a “perseverance” behavior where the animal repeats it’s choice from the previous trial could also
look like a preference for a particular side in the short-term. The bias weight in our model captures
choice bias independent of the other behaviors.

In calculating the predicted accuracy and bias, it is not appropriate to evaluate on data the model
used for optimization. To avoid this, we use a 10-fold cross-validation procedure where the model
is fit using only 90% of trials and predictive metrics are calculated using the remaining 10% of
trials. For more details regarding this cross-validation procedure as well as the precise calculation
of accuracy and bias, see the Methods.

Behavioral Trends Are Shared Across the Population of Akrami Rats

By applying our method to the entire population of Akrami rats, we can uncover trends and
points of variation in training. Figure 6 looks at the same set of weights used in Figure 5B. Here,
trajectories are calculated for the first 20,000 trials of training for each rat. Each plot consists of the
individual weight trajectories from the whole population of rats as well as the average trajectory.
Figure 6A shows the weights for both Tone A and Tone B. The observation from our example rat
that Tone B grows before the Tone A weight appears to hold uniformly across the population.
There is more extensive variation in the bias weights of the population as seen in Figure 6B,
though the variation is greatest early in training and at all points averages out to approximately
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Figure 7. Population Psychophysical Weights from Akrami Human Subjects

(A) The same task used by the Akrami rats in Figure 5A, adapted for human subjects.

(B) The weights for an example human subject. Human behavior is not sensitive to the previous correct answer or
previous choice, so corresponding weights are not included in the model (see Figure S4 for a model which includes
these weights).

(C) The weights for the entire population of human subjects. Human behavior was evaluated in a single session of
variable length.

0. The slight positive value of the Previous Tones weight is highly consistent across all rats and
constant across training, seen in Figure 6C. The prevalence of both “win-stay/lose-switch” and
“perseverance” behaviors across the population can be clearly seen in the positive values of the
Previous (Correct) Answer and Choice weights in Figure 6D and E, though there is substantial
variation in the dynamics of these history regressors.

In Contrast to Rats, Human Behavior is Stable

In addition to training rats on a sensory discrimination task, Akrami et al. (2018) also adapted the
same task for human subjects. The modified task also requires a human subject to discriminate
two tones, though the human chooses with a button instead of a nose-poke and is rewarded with
money (Figure 7TA). The weights from an example human subject are shown in Figure 7B, whereas
the weights from all the human subjects are shown together in Figure 7C.

It is useful to contrast the weights recovered from the Akrami human subjects to the weights recov-
ered from the Akrami rats. Since the rules of the task are explained to human subjects, one would
intuitively expect that human weights would initialize at “correct” values corresponding to high
performance and would remain constant throughout training. These, however, are assumptions.
An advantage of our method is that no such assumptions need to be made: the initial values and
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Figure 8. History Regressors Improve Model Accuracy for an Example Akrami Rat

(A) Using a model of our example rat that omits history regressors, we plot the empirical accuracy of the model’s
choice predictions against the model’s cross-validated predicted accuracy. The black dashed line is the identity, where
the predicted accuracy of the model exactly matches the empirical accuracy (i.e., points below the line are overcon-
fident predictions). The animal’s choice is predicted with 61.9% confidence on the average trial, precisely matching
the model’s empirical accuracy of 61.9% (black star). Each point represents data from the corresponding bin of trials
seen in (B). Empirical accuracy is plotted with a 95% confidence interval. See Methods for more information on the
cross-validation procedure.

(B) A histogram of trials binned according to the model’s predicted accuracy.

(C) Same as (A) but for a model that also includes three additional weights on history regressors: Previous Tones,
Previous (Correct) Answer, and Previous Choice. We see that data for this model extends into regions of higher
predicted and empirical accuracy, as the inclusion of history regressors allows the model to make stronger predic-
tions. The animal’s choice is predicted with 68.4% confidence on the average trial, slightly overshooting the model’s
empirically accuracy of 67.6% (black star).

(D) Same as (B), but for the model including history regressors.

stability of the weights is determined entirely from the data. From Figure 7C, we see that the
model does indeed confirm our intuitions without the need for us to impose them a priori. All
four weights remain relatively stable throughout training, though choice bias does oscillate near
zero for some subjects. Two of the history regressor weights that dominated early behavior in
rats, Previous (Correct) Answer and Choice, are not used by humans in the population and so are
omitted here (see Figure S4). The slight positive weight on Previous Tones remains for all subjects,
however, and there is a slight asymmetry in the magnitudes of the Tone A and Tone B weights in
many subjects.
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Including History Regressors Boosts Predictive Power

Just as we were able to leverage the results of our analysis of the IBL mice to examine the impact
of the bias block structure on the choice bias of an example mouse in Figure 4, we can also extend
our analysis of the Akrami rats to quantify the importance of history regressors in characterizing
behavior. Using our example rat from Figure 5, we wish to quantify the difference between a model
that includes the three history regressors and another model without them (one with weights for
only Tone A, Tone B, and Bias). To do this, we calculate the model’s predicted accuracy at each
trial. The predicted accuracy on a trial ¢ can be defined as max(P(Right), P(Left)), calculated
using Equation 1. Note that for the predictions to be valid, we determine predicted accuracy using
weights produced from a cross-validation procedure (Methods).

In Figure 8A, we refit a model to the same data shown in Figure 5B using only Bias, Tone A, and
Tone B weights. Next, we bin the trials according to the model’s predicted accuracy, as defined
above. Finally, for the trials within each bin, we plot the average predicted accuracy on the x-axis
and the empirical accuracy of the model (the fraction of trials in a bin where the prediction of the
model matched the choice the animal made) on the y-axis. Points that lie below the dotted identity
line represent over-confident predictions from the model, whereas points above the line indicate
under-confidence. The fact that points (shown with 95% confidence intervals on their empirical
accuracy) lie along the dotted line further validates the accuracy of the model.

The histogram in Figure 8B shows the number of trials in each of the bins used in Figure 8A.
We can see that almost no choices are predicted with greater than 80% certainty. The black star
in Figure 8A shows the average predictive accuracy for this model (61.9%) and corresponding
empirical accuracy (also 61.9%).

Adding back the three history regressor weights, we first check if our model is still making valid
predictions. Figure 8C shows that most of our data points still lie along the dotted identity line,
meaning that the model’s predictions remain well-calibrated. The data points also extend further
along the diagonal—accounting for the impact of the previous trial on choice behavior allows the
model to make stronger predictions. Examining Figure 8D, we see that a significant fraction of
trials now have a predicted accuracy greater than the strongest predictions made by the model
without history regressors. In fact, choices on some trials can be predicted with near certainty,
with over 95% confidence. As the black star in Figure 8C indicates, the inclusion of history
regressors improves the predicted accuracy of the model to 68.4% (slightly overconfident relative
to the average empirical accuracy of 67.6%).

Discussion

Training experimental subjects to achieve stable, interpretable behavior is the practical first step in
addressing many neuroscientific questions. The motivation is clear: to make sense of neural activity,
we must first make sense of the behavior that activity produces (Carandini, 2012). Despite the
current excitement surrounding new neural analysis techniques (Williams et al., 2020; Duncker and
Sahani, 2018; Meshulam et al., 2019; Semedo et al., 2019; Kobak et al., 2016; Gao et al., 2016),
however, analysis of the behavior facilitating those techniques has received comparatively little
attention. The standard suite of behavioral analysis tools is ill-equipped to capture dynamic and
complex behavioral strategies. To address this burgeoning research bottleneck, we have presented
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a model of time-varying psychophysical weights that captures the evolution of complex decision-
making strategies. Across two tasks and three species, we demonstrated that our method not only
characterizes complex behavior at a trial-by-trial resolution, but also serves as a foundation for
more targeted analyses.

The tools typically used to quantify decision-making behavior, such as learning curves (Figure 3A)
and psychometric functions (Figure 1D), provide a limited and static view of behavior. Decision-
making is a dynamic process that often entails the use of many different behavioral strategies to
achieve task proficiency. These dynamics are especially important in a time-varying task envi-
ronment, often with a continual learning to account for a potentially dynamic environment (Piet
et al., 2018). Research geared to study the learning process in the context of neural recordings
has received steady attention (Schultz et al., 1997; Dayan and Balleine, 2002; O’Doherty et al.,
2003; Daw and Doya, 2006). On the other hand, general methods for characterizing the learning
process of animals purely from choice behavior are less common, despite their broad applicability
and potential practical applications. Our work highlights the richness of information that can be
inferred from the trial-to-trial dynamics of decision-making behavior.

Our method provides a highly informative, as well as efficient, way of characterizing behavioral dy-
namics, highlighting the richness of information that can be inferred from the trial-to-trial dynam-
ics of decision-making behavior. Our work offers significant improvement from previous methods.
Work from Smith et al. (2004) used choice behavior to estimate learning curves, but stopped short
of linking changes in performance to specific behavioral strategies. Past work from Frund et al.
(2014) introduced an explicit model of inter-trial dependence in decision-making, but was limited
to the paradigm of assuming a single, true psychometric function. Our approach builds upon a
state-space approach for dynamic tracking of behavior (Bak et al., 2016), utilizing the decoupled
Laplace method (Wu et al., 2017) to scale up analysis and make it practical for modern behavioral
datasets (Methods). In particular, the efficiency of our algorithm allows for routine analysis of
large behavior datasets, with tens of thousands of trials, within minutes on a laptop (see Figure

S1).

The breadth of opportunities indicated by the range of analyses presented here leads us to anticipate
several use cases for our model. First, experimenters training animals on binary decision-making
tasks can use the model to better understand the diverse range of behavioral strategies seen in early
training. This should facilitate the design and validation of new training strategies, which could
ultimately open the door to more complex tasks and faster training times. Second, investigations
into the learning process itself are made more accessible as datasets of training data, typically left
unanalyzed, can now be easily explored and mined for insight into the learning process. Third, the
psychophysical weights of our model lend themselves easily to downstream analyses. Our general
method can enable more targeted investigations, acting as one step in a larger analysis pipeline (as
in Figure 4 and Figure 8). To facilitate these uses, we have released our method as PsyTrack, a
publicly available Python package (Roy et al., 2018b). The Google Colab notebook accompanying
this work provides many flexible examples and can serve as a template for adaptation to new
datasets (Methods).

The two assumptions of our model, that (i) decision-making behavior can be described by a set of
GLM weights, and (ii) that these weights evolve smoothly over training, are well-validated in the
datasets explored here. However, these assumptions may not be true for all datasets. Behaviors
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which change suddenly may not be well described by the smoothly evolving weights in our model,
though allowing for weights to evolve more dramatically between sessions can mitigate this model
mismatch. Determining which input variables to include and how they ought to be parameterized
can also be challenging. For example, task-irrelevant covariates of decision-making typically include
the history of previous trials (Akrami et al., 2018; Frund et al., 2014; Corrado et al., 2005), which is
not always clearly defined; depending on the task, the task-relevant feature may also be a pattern
of multiple stimulus units (Murphy et al., 2008). However, this flexibility gives our model the
potential to account for a wide variety of behavioral strategies. In the face of these potential
pitfalls, it is important to validate the results of our model. Thus, we have provided comparisons
to more conventional measures of behavior to help assess the accuracy of our model (see Figure
5 and Figure 8). Furthermore, the Bayesian setting of our modeling approach provides posterior
credible intervals for both weights and hyperparameters, allowing for uncertainty in our inferences
about behavior to be quantified.

The ability to quantify complex and dynamic behavior at a trial-by-trial resolution enables exciting
future opportunities for animal training. As suggested in Bak et al. (2016), the descriptive model
of behavior we build here could be extended to an explicit model of learning that makes predictions
as to how behavior would change in response to particular stimuli and choices. Ultimately, this
could guide the creation of automated optimal training paradigms that can present the specific
stimuli to maximize learning. There are also opportunities to extend the application of the method
beyond binary decision-making tasks to the multinomial setting where additional choices (or non-
choices, e.g. error trials) could also be included in the model (Churchland et al., 2008; Bak and
Pillow, 2018). Our work opens up the path toward a more rigorous understanding of the behavioral
dynamics at play as animals learn. As researchers continue to ask challenging questions, new animal
training tasks will grow in number and complexity. We expect our method to guide those looking
to better understand the dynamic behavior of their experimental subjects.
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KEY RESOURCES TABLE

REAGENT
or RESOURCE SOURCE IDENTIFIER

Deposited Data

Human subject . ) .
behavior dataset Akrami et al., 2018 | https://doi.org/10.6084/m9.figshare.12213671.v1
Mouse

behavior dataset IBL et al., 2020 https://doi.org/10.6084/m9.figshare.11636748.v7

Rat behavior dataset | Akrami et al., 2018 | https://doi.org/10.6084/m9.figshare.12213671.v1

Software and Algorithms

IBL Python Library /

ONE Light Bonacchi et al., 2019 | https://github.com/int-brain-lab/ibllib

PsyTrack Roy et al., 2018 https://github.com /nicholas-roy/psytrack

Jones et al., 2001

SciPy ecosystem https://www.scipy.org/

Hunter, 2007

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the
Lead Contact, Nicholas A. Roy (nroy@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Subjects

101 experimental subjects were C57BL/6J mice obtained from Jackson Laboratory or Charles
River. All procedures and experiments were carried out in accordance with the local laws and
following approval by the relevant institutions such as the Animal Welfare Ethical Review Body
in the UK and the Institutional Animal Care and Use Committee in the US. This data was first
reported in IBL et al. (2020).

Rat Subjects

19 experimental subjects were Long—Evans rats (Rattus norvegicus) between the ages of 6 and
24 months. Animal use procedures were approved by the Princeton University Institutional An-
imal Care and Use Committee and carried out in accordance with National Institutes of Health
standards. This data was first reported in Akrami et al. (2018).

Human Subjects

11 human subjects (8 males and 3 females, aged 22-40) were tested and all gave their informed
consent. Participants were paid to be part of the study. The consent procedure and the rest of the
protocol were approved by the Princeton University Institutional Review Board. This data was
first reported in Akrami et al. (2018).

METHOD DETAILS

Optimization: Psychophysical Weights

Our method requires that weight trajectories be inferred from the response data collected over the
course of an experiment. This amounts to a very high-dimensional optimization problem when we
consider models with several weights and datasets with tens of thousands of trials. Moreover, we
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wish to learn the smoothness hyperparameters § = {01, ...,0x} in order to determine how quickly
each weight evolves across trials. The theoretical framework of our approach was first introduced
in Bak et al. (2016). The statistical innovations facilitating application to large datasets, as well as
the initial release of our Python implementation PsyTrack (Roy et al., 2018b), were first presented
in Roy et al. (2018a).

We describe our full inference procedure in two steps. The first is optimizing for a weight trajecto-
ries W given a fixed set of hyperparameters, while the second step optimizes for the hyperparam-
eters 0 given a fixed set of weights. The full procedure involves alternating between the two steps
until both weights and hyperparameters converge.

For now, let W denote the massive weight vector formed by concatenating all of the K individual
length-T trajectory vectors, where 7' is the total number of trials. We then define n = Dw, where
D is a block-diagonal matrix of K identical T x T difference matrices (i.e., 1 on the diagonal and
—1 on the lower off-diagonal), such that n; = w; — wy_; for each trial . Because the prior on n
is simply 7(0, ), where ¥ has each of the O'l% stacked T times along the diagonal, the prior for w
is 7(0,C) with C~' = DTY~!D. The log-likelihood is simply a sum of the log probability of the
animal’s choice on each trial, L = Zthl log p(ye|x¢, w).

The log-posterior is then given by

log p(w|D) = S(log |C7} - w'C™'w) + ST log p(ye|x¢, wy) + const, (Equation 3)

where D = {(x¢,y:)}/_, is the set of user-defined input features (including the stimuli) and the
animal’s choices, and const is independent of w.

Our goal is to find the w that maximizes this log-posterior; we refer to this maximum a posteriori
(MAP) vector as wyap. With TK total parameters (potentially 100’s of thousands) in w, most
procedures that perform a global optimization of all parameters at once (as done in Bak et al.
(2016)) are not feasible; for example, related work has calculated trajectories by maximizing the
likelihood using local approximations (Smith et al., 2004). Whereas the use of the Hessian matrix
for second-order methods often provides dramatic speed-ups, a Hessian of (T'K)? parameters is
usually too large to fit in memory (let alone invert) for 7' > 1000 trials.

On the other hand, we observe that the Hessian of our log-posterior is sparse:

H o logp(w|D) = C~ 1 + L (Equation 4)

= — logp(w|D) = — uation
w2 8P ow? d

where C~! is a sparse (banded) matrix, and 9?L/0w? is a block-diagonal matrix. The block

diagonal structure arises because the log-likelihood is additive over trials, and weights at one trial

t do not affect the log-likelihood component from another trial ¢'.

We take advantage of this sparsity, using a variant of conjugate gradient optimization that only
requires a function for computing the product of the Hessian matrix with an arbitrary vector
(Nocedal and Wright, 2006). Since we can compute such a product using only sparse terms and
sparse operations, we can utilize quasi-Newton optimization methods in SciPy to find a global
optimum for wyap, even for very large T' (Jones et al., 2001).
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Algorithm 1 Optimizing hyperparameters with the decoupled Laplace approximation

Require: inputs x, choices y
Require: initial hyperparameters 0y, subset of hyperparameters to be optimized fopr
1: repeat
2 Optimize for w given current # — wyap, Hessian of log-posterior Hy, log-evidence F
3: Determine Gaussian prior N'(0,Cy) and Laplace appx. posterior N (wyap, —H, D)
4 Calculate Gaussian approximation to likelihood N (wp,T') using product identity, where
r-t= —(Hy + Ca_l) and wj, = —I'Hpwpnap
5: Optimize E w.r.t. fopr using closed form update (with sparse operations)
WMAP = —H0_1F_1WL
6: Update best 6 and corresponding best E
7: until 6 converges
8: return wyap and 0 with best E

Optimization: Smoothness Hyperparameters

So far we have addressed the problem of finding a global optimum for w, wyap, given a specific
hyperparameter setting ; now we must also find the optimal hyperparameters. A common ap-
proach for selecting hyperparameters would be to optimize for cross-validated log-likelihood. Given
the potential number of different smoothness hyperparameters and the computational expense of
calculating wyiap, this is not feasible. We turn instead to an optimization of the (approximate)
marginal likelihood, or model evidence, called empirical Bayes (Bishop, 2006).

To select between models optimized with different 0, we use a Laplace approximation to the
posterior, p(w|D, ) ~ N (w|wyap, —H '), to approximate the marginal likelihood as in (Sahani
and Linden, 2003):

ply[x, w)p(w|0) _ exp(L) - N(wl|0,C)
p(w|D,0) N(wlwyap, —H™1)’

p(ylx,0) = (Equation 5)

Naive optimization of € requires a re-optimization of w for every change in 6, strongly restricting
the dimensionality of tractable . Under such a constraint, the simplest approach is to reduce all
oy to a single o, thus assuming that all weights have the same smoothness (as done in Bak et al.
(2016)).

Here we use the decoupled Laplace method (Wu et al., 2017) to avoid the need to re-optimize for our
weight parameters after every update to our hyperparameters by making a Gaussian approximation
to the likelihood of our model. This optimization is given in Algorithm 1. By circumventing the
nested optimizations of 8 and w, we can consider larger sets of hyperparameters and more complex
priors over our weights (e.g. 04ay) Within minutes on a laptop (see Figure S1). In practice, we also
parametrize 6 by fixing 0}, ;,—¢ = 16, an arbitrary large value that allows the likelihood to determine
w( rather than forcing the weights to initialize near some predetermined value via the prior.

Selection of Input Variables

The variables that make up the model input x are entirely user-defined. The decision as to what
variables to include when modeling a particular dataset can be determined using the approximate
log-evidence (log of Equation 5). The model with the highest approximate log-evidence would be
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considered best, though this comparison could also be swapped for a more expensive comparison
of cross-validated log-likelihood (using the cross-validation procedure discussed below).

Non-identifiability is another issue that should be taken into account when selecting the variables
in the model. A non-identifiability in the model occurs if one variable in x is a linear combination
of some subset of other variables, in which case there are infinite weight values that all correspond
to a single identical model. Fortunately, the posterior credible intervals on the weights will help
indicate that a model is in a non-identifiable regime — since the weights can take a wide range of
values to represent the same model, the credible intervals will be extremely large on the weights
contributing to the non-identifiability. See Figure S2B for an example and further explanation.

Parameterization of Input Variables

It is important that the variables used in x are standardized such that the magnitudes of different
weights are comparable. For categorical variables, we constrain values to be {—1,0,+1}. For
example, the Previous Choice variable is coded as a —1 if the choice on the previous trial was left,
+1 if right, and 0 if there was no choice on the previous trial (e.g. on the first trial of a session).
Additionally, variables depending on the previous trial can be set to 0 if the previous trial was a
mistrial. Mistrials (instances where the animal did not complete a trial, e.g., by violating a “go”
cue) are otherwise omitted from the analysis. The choice bias is fixed to be a constant +1.

Continuous variables can be more difficult to parameterize appropriately. In the Akrami task, each
of the variables for Tone A, Tone B, and Previous Tones are standardized such that the mean
is 0 and the standard deviation is 1. The left and right contrast values used in the IBL task
present a more difficult normalization problem. Suppose the contrast values were used directly.
This would imply that a mouse should be twice as sensitive to a 100% contrast than to a 50%
contrast. Empirically, however, this is not the case: mice tend to have little difficulty distinguishing
either and perform comparably on these “easy” contrast levels. Nonetheless, both contrast values
are used as input to the same contrast weight and so the model will always predict a significant
difference in behavior between 50% and 100% contrasts.

Rather than use the raw contrast values as input, our model can be improved by reparameterizing
contrasts to better reflect the perceived relative differences between contrast values. For example,
Busse et al. (2011) used similar visual contrasts to investigate the contrast response function from
activity in the visual cortex of anesthetized mice. In this paper, we use a constant transformation
of the contrast values for all mice at all points in training (though this could be tuned for each
model to maximize the log-evidence). The following tanh transformation of the contrasts x has a
free parameter p which we set as p=>5 throughout the paper: &, = tanh (px)/ tanh (p). Specifically,
this maps the contrast values from [0, 0.0625, 0.125, 0.25, 0.5, 1] to [0, 0.302, 0.555, 0.848, 0.987,
1]. See Figure S3 for a worked example of why this parametrization is necessary.

IBL Task
Here we review the relevant features of the task and mouse training protocol from the International
Brain Lab task (IBL task). Please refer to IBL et al. (2020) for further details.

Mice are trained to detect of a static visual grating of varying contrast (a Gabor patch) in either
the left or right visual field (Figure 1A). The visual stimulus is coupled with the movements of a
response wheel, and animals indicate their choices by turning the wheel left or right to bring the
grating to the center of the screen (Burgess et al., 2017). The visual stimulus appears on the screen
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after an auditory “go cue” indicates the start of the trial and only if the animal holds the wheel
for 0.2-0.5 sec. Correct decisions are rewarded with sweetened water (10% sucrose solution, Guo
et al. (2014)), while incorrect decisions are indicated by a noise burst and are followed by a longer
inter-trial interval (2 seconds).

Mice begin training on a “basic” version of the task, where the probability of a stimulus appearing
on the left or the right is 50:50. Training begins with a set of “easy” contrasts (100% and 50%), and
harder contrasts (25%, 12.5%, 6.25%, and 0%) are introduced progressively according to predefined
performance criteria. After a mouse achieves a predefined performance criteria, a “biased” version
of the task is introduced where probability switches in blocks of trials between 20:80 favoring the
right and 80:20 favoring the left.

Akrami Task
Here we review the relevant features of the task, as well as the rat and human subject training
protocols from the Akrami task. Please refer to Akrami et al. (2018) for further details.

Rats were trained on an auditory delayed comparison task, adapted from a tactile version (Fassihi
et al., 2014). Training occurred within three-port operant conditioning chambers, in which ports
are arranged side-by-side along one wall, with two speakers placed above the left and right nose
ports. Figure 5A shows the task structure. Rat subjects initiate a trial by inserting their nose
into the centre port, and must keep their nose there (fixation period), until an auditory “go” cue
plays. The subject can then withdraw and orient to one of the side ports in order to receive a
reward of water. During the fixation period, two auditory stimuli, Tones A and B, separated by a
variable delay, are played for 400 ms, with short delay periods of 250 ms inserted before Tone A
and after Tone B. The stimuli consist of broadband noise (2,000-20,000 Hz), generated as a series
of sound pressure level (SPL) values sampled from a zero-mean normal distribution. The overall
mean intensity of sounds varies from 60-92 dB. Rats should judge which out of the two stimuli,
Tones A and B, had the greater SPL standard deviation. If Tone A > B, the correct action is to
poke the nose into the right-hand nose port in order to collect the reward, and if Tone A < B, rats
should orient to the left-hand nose port.

Trial durations are independently varied on a trial-by-trial basis, by varying the delay interval
between the two stimuli, which can be as short as 2s or as long as 12s. Rats progressed through
a series of shaping stages before the final version of the delayed comparison task, in which they
learned to: associate light in the centre poke with the availability of trials; associate special sounds
from the side pokes with reward; maintain their nose in the centre poke until they hear an auditory
“g0” signal; and compare the Tone A and B stimuli. Training began when rats were two months
old, and typically required three to four months for rats to display stable performance on the
complete version of the task.

In the human version of the task, similar auditory stimuli to those used for rats were used (see Figure
7TA). Subjects received, in each trial, a pair of sounds played from ear-surrounding noise-cancelling
headphones. The subject self-initiated each trial by pressing the space bar on the keyboard. Tone
A was then presented together with a green square on the left side of a computer monitor in front
of the subject. This was followed by a delay period, indicated by “WAIT!” on the screen, then
Tone B was presented together with a red square on the right side of the screen. At the end of the
second stimulus and after the go cue, subjects were required to compare the two sounds and decide
which one was louder, then indicate their choice by pressing the “k” key with their right hand
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(Tone B was louder) or the “s” key with their left hand (Tone A was louder). Written feedback
about the correctness of their response was provided on the screen, for individual trials as well as
the average performance updated every ten trials.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cross-validation Procedure

When making predictions about specific trials, the model should not be trained using those trials.
We implement a 10-fold cross-validation procedure where the model is fit using a training set
composed of a random 90% of trials at a time, and the remaining 10% is used for predicting and
testing. We modify the prior ¥ such that the gaps created by removing the 10% of test set trials
are taken into account. For example, if trial ¢ is in the test set and trials ¢—1 and ¢+1 are in the
training set, then we modify the value on the diagonal of ¥ corresponding to trial t—1 from o2 to
202 to account for the missing entry in ¥ created by omitting trial ¢ from the training set.

To predict the animal’s choice at a test trial ¢, we first infer the weights for a training set of trials
that excludes t, as described above. Then we approximate w; by interpolating from the nearest
adjacent trials in the training set. We repeat this to obtain a set of predicted weights for each
trial. Using the predicted weights w; and the input vector x; for that trial, we can calculate a
predicted choice probability P(Go Right) (as in Figure 5), and compare this to the actual choice y;
to calculate the predicted accuracy (as in Figure 8; see below for more details). Using the predicted
weights to calculate a cross-validated log-likelihood L can be used to choose between models in
lieu of approximate log-evidence.

Calculation of Posterior Credible Intervals

In order to estimate the extent to which our recovered weights w are constrained by the data, we
calculate a posterior credible interval over the time-varying weight trajectories (e.g., the shaded
regions shown in Figure 5B). Specifically, we approximate the 95% posterior credible interval by
using 1.96 standard deviations. The standard deviation is calculated by taking the square-root of
the diagonal of the covariance matrix at wyiap.

The covariance matrix can be approximated by the inverse Hessian, but inversion of a large matrix
can be challenging. Here we adapt a fast method for inverting block-tridiagonal matrices (Rybicki
and Hummer, 1991), taking advantage of the fact that our Hessian (while extremely large) has a
block-tridiagonal structure, and that we only need the diagonal of the inverse Hessian. If H is
the Hessian matrix of our weights at the posterior peak wyiap (also with the highest log-evidence,
according to the optimization procedure in Algorithm 1), this method calculates a diagonal matrix,

A = diag(H ™), (Equation 6)

such that we can take /A to estimate one standard deviation for each weight on each trial. The
algorithm requires order TK? scalar operations for calculating the central blocks of our inverse
Hessian (for T trials and K weights).

To calculate the posterior credible intervals for our hyperparameters 6, we take the same approach
of inverting the K x K hyperparameter Hessian matrix (or 2K x2K if 04,y is used). The difficulty
here is not in inverting this Hessian matrix, since it is much smaller, but in calculating the Hessian
in the first place. We calculate each entry in our Hessian manually, numerically determining
each of the K (K + 1)/2 unique entries. Once we have determined the Hessian matrix for the
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hyperparameters, it is straightforward to calculate the 95% posterior credible intervals for each
hyperparameter, using the same procedure as in the case for the weights.

Calculation of Predicted and Empirical Measures

Here we explain how the accuracy and bias measures (Figure 5C and D) were calculated. Accuracy
is empirically calculated by constructing a vector of length T' where the i entry is a 0 if the animal
answered incorrectly on the i*" trial and a 1 if answered correctly. This vector is then smoothed
(we use a Gaussian kernel of o = 50) to get the empirical accuracy plotted in pink in Figure
5C, with a 95% credible interval in shaded pink. To calculate the predicted accuracy, we use the
cross-validation procedure detailed above to calculate P(Correct Answer) for each trial which we
then smooth with the same Gaussian kernel to get the black line in Figure 5C.

As a simple way of characterizing only the task-irrelevant tendency to make a specific choice as
the bias, here we define empirical bias as a preference for left or right only on incorrect trials.
Specifically, we construct a vector of length T where the i entry is the animal’s choice minus
the correct answer in the i*! trial, where both choice and answer are coded such that “left” is 0
and “right” is 1. Thus, the empirical bias on each trial is one of {—1,0,+1}. This vector is then
smoothed (again using a Gaussian kernel of o = 50) to get the empirical bias plotted in purple
in Figure 5D, with a 95% credible interval in shaded purple. We calculate the predicted bias in a
similar manner to the predicted accuracy, using cross-validated weights to calculate P(Right) for
each trial and substituting that value in for the animal’s choice — thus for each trial we get a value
from a continuous interval (—1,+1) which we then smooth with the same Gaussian kernel to get
the black line in Figure 5C.

DATA AND CODE AVAILABILITY

Our code for fitting psychophysical weights to behavioral data is distributed as a GitHub repository
(under a MIT license): https://github.com/nicholas-roy/psytrack. This code is also made easily
accessible as a Python package, PsyTrack (installed via pip install psytrack). Our Python
package relies on the standard SciPy scientific computing libraries as well as the Open Neurophys-
iology Environment produced by the IBL (Jones et al., 2001; Hunter, 2007; Bonacchi et al., 2019).
All the data analyzed from IBL et al. (2020) and Akrami et al. (2018) is also publicly available
(see the Key Resources Table for links).

We have assembled a Google Colab notebook that will automatically download the raw data and
allow precise reproduction of all figures from the paper. Our analyses can be easily extended to
additional experimental subjects and hopefully act as a template for application of PsyTrack to
new datasets.
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Figure S1. Related to Figure 2, Compute time and model accuracy

(A) The model fitting time as a function of the number of weights K = {2,4,6} and the number of trials T =
{1000, 200, 4000, 8000, 16000}. Weights are simulated as in Figure 2A. For each pair of K weights and T trials, 20
sets of weights are randomly simulated (with each log, (o) ~ U(—7.5, —3.5); no o4ay was used), and recovered by the
model (the calculation of credible intervals on the weights was omitted). We plot the average recovery time across
the 20 iterations, +1 standard deviation. We can see that even a reasonably complex model (6 weights and 16000
trials) only takes around 5 minutes to fit on average. All models were fit on a 2012 MacBook Pro with a 2.3 GHz
Quad-Core Intel i7 processor.

(B) The mean-squared error (MSE) calculated across all weights across all trials, as a function of the total number
of weights and total number of trials in the model. Calculations used the same models run in (A). The average MSE
across the 20 iterations of each model is plotted, +1 standard deviation. We can see that the recovery of the weights
is relatively independent of the number of weights (color coded as in (A)) and number of trials.
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Figure S2. Related to Figure 3, Adding weights to early training sessions in IBL mice

(A) Here we refit the data first presented in Figure 3B, but now adding two additional weights: a Previous (Correct)
Answer and Previous Choice weight. While these history regressor weights massively impact choice behavior during
early training in all the Akrami Rats (see Figure 6D and E), they have negligible impact on the behavior of our
example IBL mouse.

(B) Here we refit the data first presented in Figure 3B, but now adding a bias weight. While a bias weight is very
useful for describing the behavior of IBL mice later in training (see Figure 4), we omit the bias weight during early
training due to an issue of non-identifiability. During the initial sessions of training, IBL mice are only presented
with “easy” contrast values of 50% and 100%. These contrasts are perceptually very similar (i.e. a 100% contrast
is not twice as difficult as a 50% contrast), which we account for with a tanh transformation of the contrasts (see
Figure S3). Thus, the task in the earliest stages of training has effectively only two types of trials: ~ 100% left
contrast trials and ~100% right contrast trials. With a task this simple, behavior is over-parameterized by having
a bias weight and two contrast weights, introducing the non-identifiability. Explicitly, a model with hypothetical
weight values of [bias, left, right] = [0, -1, +1] is nearly identical to a model with values [-1, 0, 2]; in fact, there are
an infinite number of weight values for these three weights that would all describe behavior on this simplified task in
approximately the same way. Fortunately, the posterior credible intervals on the weights can indicate that a model
is in a non-identifiable regime. Because there are so many settings of possible weight value, the intervals become
abnormally large and overlapping, as shown here. See the Methods for more details about model non-identifiability.
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Figure S3. Related to Figure 4, The impact of the tanh transformation of IBL contrasts on model weights

(A) The effect of the tanh transformation on the IBL contrast values for several settings of the free parameter
p. A tanh transformation is applied to the contrast values, ¢, in the IBL task such that the relative values of the
transformed contrasts, ¢, = tanh(pc)/ tanh(p), better aligns with their relative perceptual difficulty. In this work,
we use p = 5 to transform the contrasts (purple line), such that ¢ = {0,0.0625,0.125,0.25,0.5,1} are transformed
to é = {0,0.303,0.555,0.848,0.987,1} (left contrasts are coded as having negative value here). This value was
anecdotally observed to work well across a large variety of mice and sessions, but it could be optimized for each
model.

(B) Here we refit the data first presented in Figure 4B, forgoing the tanh transformation and using the original
contrast values c instead. We see that the right contrast weight grows to massive values and fluctuates wildly. Using
Equation 1, we can calculate that with a weight of 15, the model predicts that a 100% right contrast would result
in a P(Go Right) of over 99.9999% (disregarding the impact of the much smaller bias weight, for simplicity). This
is an absurdly confident prediction, even for the best trained mouse, but it represents a compromise the model was
forced to make. We can calculate that the predicted P(Go Right) on the most difficult right contrast value, a 6.25%
contrast, is a much more reasonable 71.9%. A well-trained mouse could certainly be performing better than this on
the hardest contrast. However, in order to reflect a higher P(Go Right) on this hard contrast, the right contrast
weight would need to become even greater, resulting in even more absurdly confident predictions on the 100% contrast
trials. All right contrast values share the same weight, forcing a single compromise weight value between them. By
using the raw contrast value, the model assumes that a 100% right contrast is 16 times more salient to the mouse
than a 6.25% contrast, which is empirically untrue (Busse et al., 2011). Applying the tanh transformation brings the
relative value of the two contrasts into a much more reasonable regime. With p = 5, a 6.25% contrast is encoded as
0.303 while the 100% contrast remains at 1.0, making the 100% contrast only 3 time more salient than the 6.25%
contrast. See the Methods for more details about the parametrization of input variables.
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Figure S4. Related to Figure 7, Modeling the Akrami human subjects with the Previous Choice and Previous Answer
weights

(A) Here we refit the data presented in Figure 7B, but now we add both a Previous Choice and a Previous (Correct)
Answer weight. Since human subjects are given task instructions before starting, we would not expect their behavior
to be affected by either their choice or the correct answer on the previous trial. Indeed, we see that both new history
regressor weights are always approximately 0 for our example subject.

(B) Here we refit the data presented in Figure 7C, but now we add both a Previous Choice and a Previous (Correct)
Answer weight for all the human subjects. We plot only the two new weights from each refit model, for clarity. We
see that, in general, both the choice and the correct answer on the previous trial have a negligible impact on human
choice behavior.
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