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Abstract Animals use olfactory cues for navigating complex environments. Food odors in

particular provide crucial information regarding potential foraging sites. Many behaviors occur at

food sites, yet how food odors regulate such behaviors at these sites is unclear. Using Drosophila

melanogaster as an animal model, we found that males deposit the pheromone 9-tricosene upon

stimulation with the food-odor apple cider vinegar. This pheromone acts as a potent aggregation

pheromone and as an oviposition guidance cue for females. We use genetic, molecular,

electrophysiological, and behavioral approaches to show that 9-tricosene activates antennal

basiconic Or7a receptors, a receptor activated by many alcohols and aldehydes such as the green

leaf volatile E2-hexenal. We demonstrate that loss of Or7a positive neurons or the Or7a receptor

abolishes aggregation behavior and oviposition site-selection towards 9-tricosene and E2-hexenal.

9-Tricosene thus functions via Or7a to link food-odor perception with aggregation and egg-laying

decisions.

DOI: 10.7554/eLife.08688.001

Introduction
Animals must navigate a complex and changing environment for survival and reproduction. Odorants

function as molecular cues for objects in the environment, and the olfactory system translates these

cues into appropriate behaviors (Suh et al., 2004; Laissue and Vosshall, 2008; Semmelhack and

Wang, 2009; Stensmyr et al., 2012). Living organisms are also a source of odorants, broadly termed

pheromones, which play important roles in olfactory communications between different organisms of

the same species (Wilson, 1970). Despite a wealth of knowledge of pheromone identities and their

physiological functions, how environmental cues interact with pheromone signaling is not well

understood.

A behavior largely mediated through pheromone signaling is population aggregation, which is

hypothesized to ensure efficient use of resources (Wyatt, 2014). Aggregation behavior may reduce

interspecific competition and also be important for finding mates (Hedlund et al., 1996). However,

how aggregation pheromones are induced or deposited to mark certain geographical location and

modulate animal behaviors remains largely unknown. In Drosophila melanogaster, aggregation

behavior has been observed at locations that contain male flies and food substrates. The male specific

pheromone cis-vaccenyl acetate (cVA) has been implicated as the key aggregation pheromone that

attracts both males and females (Bartelt et al., 1985; Xu et al., 2005). cVA is manufactured and
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stored in an internal male organ (ejaculatory bulb) and transferred to females during copulation

(Brieger and Butterworth, 1970; Everaerts et al., 2010), where it plays a role in inhibiting male

courtship of previously mated females (Ejima et al., 2007). Low levels of cVA may be present on males

prior to mating (Bartelt et al., 1985; Farine et al., 2012). Interestingly, flies defective in sensing cVA

exhibit residual aggregation behavior, suggesting the existence of an aggregation compound besides

cVA from male flies (Xu et al., 2005).

Drosophila pheromones are typically cuticular hydrocarbons that are produced by specialized cells

(oenocytes) in the fly abdomen and form a waxy layer on the body surface (Ferveur, 2005; Billeter

et al., 2009; Wyatt, 2014). Given the chemical nature of long chain hydrocarbons, most cuticular

hydrocarbons are not volatile and are instead detected by gustatory contact (Ferveur et al., 1997).

For instance, 7-tricosene, an abundant male cuticular hydrocarbon, functions as an aphrodisiac for

females and anti-aphrodisiac for males and is sensed via the gustatory system (Lu et al., 2012; Thistle

et al., 2012). Nonetheless, recent solid-phase micro-extraction gas chromatography experiments

indicated the presence of volatile cuticular hydrocarbon pheromones, suggesting pheromone

detection might be medicated through the olfactory system (Ferveur et al., 1997; Farine et al.,

2012). All together, these studies suggest an uncharacterized cuticular hydrocarbon might function as

an aggregation pheromone and possibly signal via the olfactory system.

Understanding how volatile pheromones may affect animal behavior is aided by identifying the

odorant receptors activated by that pheromone. Studies using cuticular extracts or flies as odor

sources identified neurons within trichoid sensilla as responding most robustly to Drosophila

pheromones (van der Goes van Naters and Carlson, 2007). The pheromones activating each of the

four pheromone receptors (Or67d, Or65a, Or88a, Or47b) have now been identified: cVA robustly

activates Or67d (Benton et al., 2007; Ejima et al., 2007; Kurtovic et al., 2007; Laughlin et al., 2008)

and, to a lesser degree, Or65a (Ejima et al., 2007; Liu et al., 2011); and fatty acid methyl ethers

methyl laurate, methyl myristate, and methyl palmitate activate Or88a (Dweck et al., 2015a), whereas

only methyl laurate activates Or47b (Dweck et al., 2015b). In each case, the pheromone receptor is

specifically tuned to respond only to the identified pheromones, and exhibit little response to a large

eLife digest Animals rely on their sense of smell to navigate their environments; for example, the

smell of food attracts animals to particular locations. These food-rich sites are also popular places for

meeting, mating, and rearing offspring. Scent molecules emitted by animals can also attract others to

a particular location or affect their behaviour. These molecules are known as pheromones.

Little is understood about how cues from food and pheromones interact to influence animal

behavior. Studies of the Drosophila species of fruit fly have been conducted to tease out these

interactions. Fruit flies are attracted to the smell of food—particularly overripe or rotting fruit—and

often congregate at a food source to mate and lay their eggs. But whether it is the food itself or

other cues that trigger these behaviors is not clear.

Now, Lin et al. reveal that male fruit flies emit a pheromone in response to the smell of food. This

pheromone attracts females to the food to mate and encourages the females to lay their eggs at the

food-rich site. This allows the male fly to have some say as to where his offspring will be laid and also

increases the chances that his offspring will survive.

Using genetic and other experiments, Lin et al. found that the pheromone is detected by a

receptor on the antennae of the female flies. This stimulates a specific type of brain cell that causes

the female to lay her eggs at the site where the pheromone has been deposited. A chemical released

by rotting fruit also stimulates these receptors and encourages the females to congregate and lay

eggs.

The body of a male fly is coated by many different pheromones, yet he deposits only a select few

upon smelling a food odor. How this occurs remains to be determined, but suggests that different

pheromones might be localized to different body parts. By rubbing just those parts onto their

surroundings, the male might be able to deposit a specific pheromone. How food odors specifically

trigger this response, or if other flying insects also deposit pheromones in response to food odors,

remains to be determined.

DOI: 10.7554/eLife.08688.002
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panel of other odorants (Hallem and Carlson, 2006; Dweck et al., 2015a). In addition, the

pheromones activate only the identified pheromone receptors, and show little effect on other

olfactory receptors.

Here, we report the finding that male flies deposit an aggregation pheromone onto their

surroundings upon apple cider vinegar odor and food odor stimulation. The pheromone, 9-tricosene,

is a volatile male-specific cuticular hydrocarbon and requires the olfactory, but not gustatory, system

for detection. By electrophysiological and behavior studies, we identify the Or7a olfactory neurons

housed in basiconic sensilla as being necessary and sufficient for 9-tricosene pheromone detection.

This is surprising as Or7a, in contrast to previously characterized pheromone receptors, can be

classified as a ‘generalist’ odorant receptor as it can respond to many aldehydes and alcohols (Hallem

and Carlson, 2006). Behaviorally, 9-tricosene promotes aggregation and modulates female

oviposition site selection- a behavior that was previously considered a female exclusive decision

(Yang et al., 2008; Joseph et al., 2009). The green leaf volatile E2-hexenal, a previously characterized

robust Or7a agonist (Hallem et al., 2004; Hallem and Carlson, 2006), can also guide Or7a-

dependent attraction and egg-laying decisions. Three additional Or7a odor agonists could also guide

positive oviposition site selection, suggesting that Or7a neuron activation might directly influence this

behavior. Indeed, selective optogenetic stimulation of Or7a neurons was also sufficient to guide egg-

laying site selection. Our study provides important insights into biological communication by

identifying an olfactory mechanism that links together food-odor perception, male pheromone

deposition, species aggregation, and female oviposition decision-making.

Results

A novel chemosensory assay identifies a post-stimulus aggregation
behavior
Traditional olfactory assays monitor either single flies (Semmelhack and Wang, 2009) or multiple flies

in small spaces (Quinn et al., 1974) and might overlook important aggregation behaviors. We

modified a four-field olfactory arena and fly tracking system (Semmelhack and Wang, 2009;

Ronderos et al., 2014) to monitor large fly populations responding to odors over a large arena space.

Flies are contained in a star-shaped arena between two glass plates (See Materials and methods for

details), tracked in a dark chamber using infrared illumination (which is invisible to flies), and detected

by an infrared camera (Figure 1A). We validated our experimental design by monitoring attraction to

apple cider vinegar, repulsion to citronellal, and neutral responses to clean air (Figure 1—figure

supplements 1–3). Flies mutant for orco, a necessary co-receptor for most olfactory receptor neurons

(Larsson et al., 2004), showed reduced responses to control odorants, confirming the experimental

design accurately assesses olfactory behaviors (Figure 1—figure supplement 4).

During investigations with the food-odor apple cider vinegar, we identified a novel olfactory

behavior in which flies showed robust aggregation to the original odor quadrant for substantial time

periods subsequent to odor application (Figure 1B,C,G). In these experiments, flies were stimulated

with apple cider vinegar for 5 min, apple cider vinegar odor was switched to clean air for 10 min, and

flies tracked in an arena that had been rotated 90˚ to rule out contamination in the odor delivery

system (Figure 1B, Videos 1 and 2). Interestingly, this aggregation behavior in the absence of

exogenous odor-stimulation persisted for >25 min (Figure 1—figure supplement 5). We called this

behavior ‘post-stimulus aggregation’. Perfusion of apple cider vinegar into the empty arena for

5 min in the absence of flies, and introduction of naı̈ve flies into the arena, did not produce post-

stimulus aggregation to the original quadrant (Figure 1D), suggesting the post-stimulus aggregation

behavior is not due to residual apple cider vinegar on the glass plates.

Post-stimulus aggregation involves pheromone deposition
Fly bodies are coated with cuticular hydrocarbons that can function as chemosensory pheromones

(Ferveur et al., 1997; Amrein, 2004; Ferveur, 2005; van der Goes van Naters and Carlson, 2007).

To rule out the possibility of passive pheromone deposition onto the glass plates due to crowding of

many flies into a small space, flies were corralled into the odor quadrant by attraction to humidified air

and monitored for post-stimulus aggregation behavior. Under these conditions, there was no

detectable post-stimulus aggregation (Figure 1E,F, Figure 1—source data 1). All together, these

data suggest that flies may deposit pheromone(s) in a specific response to the food-odor apple cider
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Figure 1. Identification of an apple cider vinegar odor induced post-stimulus aggregation behavior mediated by males. (A, B) Schematic of behavior

setup and experimental design. (C) Fly tracking for 5-min of 25 male and 25 female wild-type flies. Flies are highly attracted to apple cider vinegar food

odor, which gives rise to a post-stimulus aggregation behavior in the absence of exogenous odorants (right). (D) The lack of flies with apple cider vinegar

stimulation (left) led to a lack of a post-stimulus aggregation (right). (E) Humidified air vs dry air is attractive (left), but does not lead to a post-stimulus

aggregation (right). (F) Post-stimulus response summary (p = 0.0002 and 0.00001 for apple cider vinegar only and humidified air + WT, respectively; t-test,

n = 3–6 per trial) (G) Definition of attraction index, A.I. Error bars indicate ±s.e.m. throughout. (H) Schematic of 4-quadrant arena using different

Figure 1. continued on next page
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vinegar. Different concentrations of apple cider vinegar generated post-stimulus aggregation

responses of different potencies (Figure 1—figure supplement 6).

Post-stimulus aggregation behaviors are stimulated by food-odors
To determine if post-stimulus aggregation could be induced by other food odors, we tested the food

odors banana and yeast paste (Figure 1—figure supplement 7). These stimuli were highly attractive

to flies and also induced post-stimulus aggregation. As a further test, we examined stimulus attraction

by a prominent attractive monomolecular odorant of apple cider vinegar: ethyl acetate. Although this

odorant was highly attractive, it failed to generate post-stimulus aggregation behaviors

(Figure 1—figure supplement 7). Together, these data suggest that post-stimulus aggregation

behaviors may be guided specifically by food odors, and possibly by food odor perceptions. Future

studies will be aimed at characterizing how food-odor perceptions might be encoded by a fly’s

olfactory system to direct pheromone

deposition.

Males are the source of the
aggregation pheromone
Intra-species communications via pheromones

are often sex-specific. We used different combi-

nations of flies (mixed genders, virgin females, or

males) as potential pheromone depositors upon

apple cider vinegar stimulation, and new naı̈ve

mixed genders as detectors for the presence of

the pheromone (Figure 1H). Only in the pres-

ence of male depositor flies did detector flies

show post-stimulus aggregation (Figure 1I). This

indicates that male flies are the source of the

pheromone. The aggregation pheromone was

equally attractive to both virgin and mated males

and females (Figure 1—figure supplement 8).

Figure 1. Continued

populations of depositor and detector flies. (I) Different depositor fly populations (females + males, females only, males only) were used as pheromone

sources and assayed for post-stimulation aggregation by female + male detector flies (p = 0.003; t-test, n = 3–5 per combination).

DOI: 10.7554/eLife.08688.003

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for bar graphs shown in Figure 1.

DOI: 10.7554/eLife.08688.004

Figure supplement 1. Basic characterization of the four-field olfactometer.

DOI: 10.7554/eLife.08688.005

Figure supplement 2. Colormap of all fly trajectories from 0 min to 7 min.

DOI: 10.7554/eLife.08688.006

Figure supplement 3. Four-field behavioral control experiments.

DOI: 10.7554/eLife.08688.007

Figure supplement 4. Summary of four-field olfactometer controls.

DOI: 10.7554/eLife.08688.008

Figure supplement 5. Time-course of aggregation pheromone responses.

DOI: 10.7554/eLife.08688.009

Figure supplement 6. Post-stimulus aggregation induced by various concentrations of apple cider vinegar.

DOI: 10.7554/eLife.08688.010

Figure supplement 7. Post-stimulus aggregation induced by additional food odors, but not by an attractive odorant.

DOI: 10.7554/eLife.08688.011

Figure supplement 8. The aggregation pheromone is similarly attractive to virgin or mated males and females.

DOI: 10.7554/eLife.08688.012

Video 1. Tracking flies stimulated with apple cider

vinegar in four-quadrant behavior assay. Odor is

supplied to the bottom right quadrant at time 30 s. The

graph at the bottom reflects the attraction index over

time. Related to Figure 1.

DOI: 10.7554/eLife.08688.013
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Detection of the aggregation
pheromone requires Orco
Pheromones are detected by the olfactory and

gustatory systems (Amrein, 2004; Lu et al.,

2012; Thistle et al., 2012; Wyatt, 2014). Since

the pheromone is deposited onto the glass

plates, it might be detected by either chemo-

sensory system. We utilized genetic mutants that

are defective in specific modes of chemosensory

signaling as detectors (Figure 2A). Poxnmutants,

which exhibit no functional gustatory receptor

neurons (Awasaki and Kimura, 2001), were as

attracted as wild-type animals (Figure 2B,

Figure 2—source data 1), suggesting that the

gustatory system is not necessary for post-stimulus

aggregation. Pickpocket channel 23 (ppk23), a

Degenerin/epithelial sodium channel, is neces-

sary for the detection of a male-predominant

cuticular hydrocarbon, 7-tricosene (Lu et al.,

2012; Thistle et al., 2012). ppk23 mutants exhibited similar post-stimulus aggregation compared

to wild-type animals (Figure 2B), suggesting Ppk23 function is not necessary for aggregation and that

7-tricosene is unlikely to be the aggregation pheromone. Most insect olfactory receptors require a

coreceptor(s) for normal olfactory responses: Orco for Odorant Receptors (Larsson et al., 2004) and

Ir8a or Ir25a for ionotropic receptors (Benton et al., 2009; Abuin et al., 2011). The Ir8a and Ir25a

double mutant flies exhibited normal post-stimulus aggregation, showing that most ionotropic

receptors are not required for the pheromone attraction (Figure 2C). Interestingly, in orco mutant

flies, attraction behavior to the pheromone was completely abolished and instead repelled by the

apple cider vinegar quadrant (Figure 2C). This repulsion is likely due to acid sensing of minimal

residual acetic acid on the quadrant mediated by the Ir8a/Ir64a complex (Ai et al., 2010)

(Figure 2—figure supplement 1). Indeed, the orco, Ir8a double mutant was no longer repelled by

the odor quadrant (Figure 2C), and the use of neutralized apple cider vinegar as the stimulus

eliminated the post-stimulus repulsion demonstrated by orcomutants (Figure 2—figure supplement 2).

We further tested if acidity of the apple cider vinegar was necessary for triggering wild-type post-

stimulation behavior by neutralizing apple cider vinegar to pH = 7.0. No phenotypic difference was

found compared to non-neutralized apple cider vinegar (pH = 3.2) (Figure 2—figure supplement 3).

In sum, these data suggest that detection of the food-odor-induced pheromone is mediated through

the orco-dependent olfactory system.

cVA has been suggested to be a male-derived aggregation pheromone in D. melanogaster

(Bartelt et al., 1985). cVA induces conformational changes in the odorant binding protein LUSH,

which enhances activation of Or67d/Orco complexes (Xu et al., 2005; Laughlin et al., 2008).

Furthermore, the Drosophila CD36 homologue, sensory neuron member protein (Snmp), is essential

for optimal Or67d neuronal activation (Benton et al., 2007). cVA can also activate Or67d/Orco

complexes directly (Gomez-Diaz et al., 2013). Mutations of the key components in the signaling

pathway (Or67d, lush, snmp) do not alter the post-stimulus aggregation behavior (Figure 2—figure

supplement 4), suggesting that cVA is not the food-odor induced aggregation pheromone.

9-Tricosene is a food-odor induced aggregation pheromone
Since most insect pheromones are lipophilic carbohydrates dissolvable in hexane (van der Goes van

Naters and Carlson, 2007), we reasoned that hexane might extract the active pheromone off the

glass surface in the food-odor-induced quadrant. We induced wild-type flies to deposit the food-odor

induced pheromone onto the glass plate and dissolved the deposited molecules into hexane. We then

painted the hexane extract onto a new glass plate in a letter ‘E’ pattern. Naı̈ve new flies were able to

trace and follow the E pattern but do not follow control hexane extracts of flies stimulated by

humidified air painted in the same pattern (Figure 3A, B, Figure 3—figure supplement 1 and Video 3).

These experiments demonstrated that an active pheromone component(s) was successfully preserved

Video 2. Tracking flies responding to post-stimulus

aggregation pheromone in four-quadrant behavior

assay. The arena has been rotated 90˚ counter-clockwise

with the aggregation pheromone deposits located at

the top right quadrant. The graph at the bottom reflects

the attraction index over time. Related to Figure 1.

DOI: 10.7554/eLife.08688.014
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during the pheromone extraction. Behavioral results suggested the pheromone was volatile because:

1) it required the olfactory system for detection (Figure 2C); 2) constant air flushing reduced

behavioral attraction after ∼25 min (Figure 1—figure supplement 5); and 3) heating the pheromone-

containing arena to 32˚C to increase odor volatility eliminated post-stimulus behaviors

(Figure 3—figure supplement 2). Recently, four cuticular hydrocarbons were identified as male-

specific volatile pheromones: 7-docosene, 5-tricosene, 23-methyldocosane, and 9-tricosene (Farine

et al., 2012). To identify the nature of the pheromone(s), we performed gas chromatography-mass

spectrometry (GC–MS) analyses of hexane extracts from quadrants stimulated with apple cider

vinegar alone, with humidified air + flies, and with apple cider vinegar + flies. Consistent with

behavioral results that cVA is unlikely to be the food-odor induced pheromone (Figure 2—figure

supplement 4), cVA was not detected in pheromone extracts from the glass plates (Supplementary

file 1). 7-docosene and 23-methyldocosane were also not detected, while 5-tricosene was detected at

trace amounts (Figure 3C and Supplementary file 1). The levels of 7-tricosene were increased in the

experimental conditions. However, our behavioral results excluded 7-tricosene as the food-odor-

induced pheromone (Figure 2B; also see below and Figure 5—figure supplement 3). Interestingly,

only one other peak was significantly enriched in the experimental but not humidified air + flies

control group: (Z) 9-tricosene (9-T) (Figure 3C, Supplementary file 1). Little is known regarding the

function of 9-tricosene in D. melanogaster besides its presence as a male-specific volatile pheromone

(Everaerts et al., 2010; Farine et al., 2012). To determine if 9-tricosene was attractive to Drosophila,

as would be predicted for the food-odor induced aggregation pheromone, we used 9-tricosene as the

Figure 2. Post-stimulus aggregation requires Orco-dependent olfactory signaling. (A) Diagram indicating the different genetic components required for

gustatory or olfactory-based pheromone detection. (B) Post-stimulus aggregation responses by gustatory receptor (Poxn; p = 0.2258; t-test) and ppk-23

mutants (p = 0.0951; t-test, n = 4–5 per trail). (C) Post-stimulus aggregation responses by olfactory receptor (orco), and Ionotropic receptor (Ir8, Ir25a)

mutants (Ir8a−/−;Ir25a−/−: p = 0.1524; orco−/− : p < 0.001; Ir8a−/−;;orco−/−: p = 0.004; t-test, n = 4–6 per genotype). Wild-type flies were used as pheromone

depositors.

DOI: 10.7554/eLife.08688.015

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for bar graphs shown in Figure 2.

DOI: 10.7554/eLife.08688.016

Figure supplement 1. Ablation of the Ir64a + acid-sensing neurons increases post-stimulus attraction.

DOI: 10.7554/eLife.08688.017

Figure supplement 2. Repulsion of orco mutant flies to the aggregation pheromone is likely mediated by acid sensing of residual apple cider vinegar.

DOI: 10.7554/eLife.08688.018

Figure supplement 3. Acidity of apple cider vinegar is not required for post-stimulus responses.

DOI: 10.7554/eLife.08688.019

Figure supplement 4. Mutating components of the cis-vaccenyl acetate pheromone pathway does not disrupt post-stimulus responses.

DOI: 10.7554/eLife.08688.020
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Figure 3. 9-Tricosene is a food-odor induced pheromone. (A) Schematic of pheromone extract paint experiment. (B) Hexane extracts of the pheromone

quadrant were used to paint the letter ‘E’ onto the glass plate. Shown are traces of naı̈ve new flies in the painted arenas by deposited pheromone extract

(apple cider vinegar + flies) or control (humidified air + flies). The blue to red color trace indicates a single fly track from start to end of tracking. (C) GC–MS

results of hexane extracts from quadrants stimulated by apple cider vinegar-only, humidified air and flies, and apple cider vinegar with flies. Peak #2 is

Figure 3. continued on next page
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stimulus in the 4-field olfactory assay. Indeed, 9-tricosene elicits attraction behaviors (Figure 3D-E,

Figure 3—source data 1). To determine if 9-tricosene could direct aggregation behaviors, we

repeated the ‘E’ experiment using 9-tricosene alone (Figure 3F). Naı̈ve flies did trace and follow the

9-tricosene pattern, paying particular attention to the odor border (Figure 3—figure supplement 3).

Nonetheless, the aggregation response was not identical to the full hexane extract. In particular, flies

appeared to be repelled by the center of a concentrated 9-tricosene odor trail. The sensory cause of

this repulsion remains to be identified, but may arise from high concentrations of 9-tricosene

mediating olfactory or gustatory contact repulsion. Such highly concentrated 9-tricosene deposits are

unlikely to be found after food-odor-induced pheromone deposition in the four-field olfactory assay.

Overall, these data suggest that 9-tricosene under certain conditions can function as an aggregation

pheromone, although additional pheromone components may contribute to the full aggregation

phenotype.

9-Tricosene is a member of cuticular hydrocarbons produced by oenocytes on the fly abdominal wall

(Billeter et al., 2009; Everaerts et al., 2010). 9-Tricosene and other cuticular hydrocarbon components,

but not cVA or methyl ethers pheromones, can be genetically eliminated by specifically ablating

oenocytes (Billeter et al., 2009; Dweck et al., 2015a). Oenocyte-less males mixed with wild-type

females no longer produced a post-stimulus aggregation behavior, suggesting that an oenocyte-derived

cuticular hydrocarbon is essential for post-stimulus aggregation (Figure 3—figure supplement 4).

Although other oenocyte-derived cuticular hydro-

carbons may contribute to the aggregation

phenotype, this is consistent with the identifica-

tion of 9-tricosene as a food-odor induced

pheromone.

The Or7a receptor is necessary and
sufficient for 9-tricosene activation
The olfactory sensory neurons in Drosophila can be

classified as those that require either orco (odorant

receptors expressed in basiconic, intermediate,

trichoid and ac3 sensilla) (Larsson et al., 2004;

Couto et al., 2005) or those that are orco-

independent (ionotropic receptors expressed in

coeloconic sensilla and gustatory receptors

expressed in the ab1C neuron) (Suh et al., 2004;

Benton et al., 2009; Abuin et al., 2011).

Figure 3. Continued

(Z)9-tricosene. 9-Tricosene exhibited a 2.8 fold enrichment on the glass plates upon food-odor stimulation. (D) Olfactory behavioral response of flies to

0.1% 9-tricosene. (E) Dose-response curve of 9-tricosene for mediating attraction. (F) Traces of flies in response to 9-tricosene deposited in an ‘E’ pattern

on the glass plate. In this context, flies appear to be repelled by a concentrated 9-tricosene pattern and prefer to trail the 9-tricosene pheromone border.

The behavioral differences between (B) and (F) maybe modulated by additional pheromone components present in the hexane extracts, or reflect that

9-tricosene trailing occurs only over a narrow odor range.

DOI: 10.7554/eLife.08688.021

The following source data and figure supplements are available for figure 3:

Source data 1. Source data for Figure 3E.

DOI: 10.7554/eLife.08688.022

Figure supplement 1. Single fly trajectories of painted ‘E’ experiment.

DOI: 10.7554/eLife.08688.023

Figure supplement 2. The aggregation pheromone is heat-sensitive.

DOI: 10.7554/eLife.08688.024

Figure supplement 3. Additional examples of flies responding to a 9-tricosene ‘E’ pattern.

DOI: 10.7554/eLife.08688.025

Figure supplement 4. Apple cider vinegar stimulation of oenocyte-less males leads to a reduction in post-stimulus aggregation responses.

DOI: 10.7554/eLife.08688.026

Video 3. Tracking flies responding to hexane extract of

the post-stimulus aggregation pheromone painted as

an ‘E’ pattern. Related to Figure 3.

DOI: 10.7554/eLife.08688.027
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To determine which odorant receptors are required for 9-tricosene responses, we performed

electroantennogram (EAG) recordings, which measure global detection of odor-induced antennal

responses, in WT and orco mutants (Figure 4A). The orco mutants completely lacked responses to 9-

tricosene (Figure 4A,B, Figure 4—source data 1). This suggests that 9-tricosene activates an orco-

dependent odorant receptor, and does not require signaling from Ir or Gr receptors.

We next identified the orco-positive olfactory receptor neurons (ORNs) that respond to

9-tricosene, by using Fluorescence-guided Single Sensillum Recording (FgSSR) (Lin and Potter,

2015), which detects the activity of olfactory neurons within single sensory sensilla. Previously

characterized volatile pheromones typically activate trichoid sensillar neurons (van der Goes van

Naters and Carlson, 2007), and kairomones (odorants released by other animals or plants) typically

activate intermediate sensillar neurons (Stensmyr et al., 2012; Dweck et al., 2013; Ronderos

et al., 2014; Dweck et al., 2015b; Lin and Potter, 2015). Surprisingly, 9-tricosene did not stimulate

these sensillar neurons (Figure 4C). We found that 9-tricosene elicits rapid and robust firing

patterns in the antennal basiconic ab4 sensillum, which houses two neurons (ab4A and ab4B) that

express Or7a (ab4A) or Or56a receptors (ab4B) (Figure 4C) (Couto et al., 2005; Fishilevich and

Vosshall, 2005; Stensmyr et al., 2012). 9-Tricosene stimulates spiking of the larger amplitude

neuron indicating the 9-tricosene-responsive ORNs are ab4A, which express Or7a receptors.

Stimulation of ab4 sensilla by flies housed in a glass vial pre-stimulated with apple cider vinegar,

compared to flies pre-stimulated with dry air alone, also led to significant increases in ab4A (Or7a)

activation (Figure 4—figure supplement 1). The identification of Or7a as a 9-tricosene pheromone

receptor was surprising as, unlike previously identified pheromone receptors, it had been shown to

respond to a broad range of odors, including many aldehydes and alcohols (Hallem et al., 2004;

Hallem and Carlson, 2006). To determine if the Or7a receptor is sufficient for 9-tricosene

responses, we misexpressed Or7a in an olfactory neuron that lacks an odorant receptor in ab3A

sensillar neurons (Dobritsa et al., 2003). Expression of Or7a endowed ab3A neurons the ability to

respond to 9-tricosene comparable to the 9-tricosene activation pattern detected in endogenous

Or7a-positive ab4 sensillum (Figure 4D,E). These data indicate that the Or7a receptor responds to

9-tricosene. This is unexpected since basiconic sensilla were traditionally considered food odor

detectors (Larsson et al., 2004; Suh et al., 2004; Fishilevich and Vosshall, 2005; Jones et al.,

2007; Laissue and Vosshall, 2008). Both male and female ab4A/Or7a neurons responded

equally to 9-tricosene (Figure 4E), consistent with 9-tricosene being attractive to both males and

females (Figure 1—figure supplement 8). Or7a neurons did not respond to cVA (Figure 4—figure

supplement 2).

To further verify that Or7a was responsible for the 9-tricosene responses of ab4A neurons, we

generated Or7a mutants using homologous recombination (Figure 4—figure supplement 3). Ab4

sensilla in Or7a mutants were identified based on their shape and the specific response of the ab4B

neuron to geosmin (Stensmyr et al., 2012). No spontaneous or 9-tricosene stimulated ab4A spiking

activity was observed in Or7a mutant flies (Figure 4F,G), indicating that Or7a is necessary for

9-tricosene activation in ab4 sensilla. All together, these data suggest that 9-tricosene specifically

activates the ‘generalist’ Or7a receptor.

The Or7a receptor is necessary for pheromone and 9-tricosene induced
aggregation
To identify the full expression pattern of Or7a, we genetically converted our Or7a mutant to an Or7a-

GAL4 knock-in, in which GAL4 is under control of the endogenous Or7a promoter (Baena-Lopez

et al., 2013). Or7a-GAL4 specifically drives effector expression only in olfactory neurons that target

the DL5 antennal lobe glomerulus (Figure 5A) (Couto et al., 2005). We did not detect expression

outside the antennae (Figure 5—figure supplement 1). We thus could use the Or7a-GAL4 line to

specifically ablate Or7a+ antennal neurons and test for changes in behavior. Aggregation responses to

both the naturally deposited food-odor induced pheromone (Figure 5B,C, Figure 5—source data 1)

and to 9-tricosene (Figure 5D,E) were completely abolished in Or7a neuron-ablated flies obtained

using Or7a-Gal4+UAS-hid (Figure 5) or Or7a-Gal4+UAS-DTI (Figure 5—figure supplement 2).

Ablation of other odorant receptors (OrX-Gal4+UAS-hid) did not affect aggregation (Figure 5C).

Similarly, Or7a mutants completely lacked attraction to the naturally deposited food-odor-induced

pheromone and to 9-tricosene (Figure 5B-E). To verify that aggregation behavior is specific to
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Figure 4. Electrophysiological results identify Or7a as the receptor for 9-tricosene. (A) Electroantennography (EAG) traces of wild-type and orco−/− flies

stimulated with 100% 9-tricosene. (B) EAG response summaries of different 9-tricosene concentrations in different sexes of wild-type and orco−/− flies

(n = 5–7 per stimulation). (C) Single sensillum recording (SSR) in all orco-positive antennal and maxillary palp sensilla. n = 3–6 per sensillum. (D) SSR traces

showing responses to 9-tricosene stimulation in ab4 (9-tricosene responsive), ab3 empty neuron (halo/halo;Or22a-Gal4), and ab3 rescue (halo/halo;

Figure 4. continued on next page
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9-tricosene, we repeated the experiments using the 9-tricosene pheromone isomer 7-tricosene (7-T),

which contains an identical carbon chain length to 9-tricosene but a double bond at an alternate

location. Interestingly, 7-tricosene induced a neutral to slightly repulsive behavior in WT flies

(AI = −0.07 ± 0.026, Figure 5—figure supplement 3). These data suggest that aggregation

behavior to the naturally deposited food-odor-induced pheromone depends on 9-tricosene and

proper function of the Or7a receptor.

9-Tricosene guides oviposition site selection via Or7a neurons
Many behaviors occur at food sources, including courtship and egg-laying, but the molecular signals

that help guide these behaviors remain poorly characterized (Wyatt, 2014). Since 9-tricosene may

aggregate flies to sites of food-odor perception, we asked whether 9-tricosene could be an olfactory

mechanism for catalyzing such behaviors.

Drosophila preferentially lay their eggs in food sources so as to increase survival of their progeny

(Joseph et al., 2009; Schwartz et al., 2012; Dweck et al., 2013). Since 9-tricosene acts as a

geographical marker for food, it could function as a male-generated guide for female egg-laying

decisions. We modified our 4-field arena by spreading a thin layer of 1% agarose onto one of the glass

plates to serve as a substrate for the deposited pheromone and an appropriate medium for female

egg-laying (Figure 6A, Figure 6—source data 1). In order to rule out potentially confounding roles of

males in this behavior, only previously mated females were assayed. Under conditions in which the

food-odor-stimulated pheromone was deposited onto the agarose (Figure 6A′), females laid five-fold

more eggs in the pheromone quadrant. This suggests that a deposited pheromone could guide

female egg-laying site selection decisions. We next generated an arena in which one quadrant

contained 9-tricosene (Figure 6—figure supplement 1). Female flies also laid significantly more eggs

in locations containing only 9-tricosene (Figure 6B′). The 9-tricosene egg-laying preference was

abolished when Or7a neurons were ablated (Or7a-Gal4/UAS-hid or Or7a-Gal4/UAS-DTI) (Figure 6C′
and Figure 6—figure supplement 2). The 9-tricosene guided egg laying preference was also

abolished in Or7a mutant flies (Figure 6D). The oviposition preference for the 9-tricosene quadrant

was not due to the innate attraction to 9-tricosene because females spent similar time in the four

quadrants over the course of the 23 hr egg-laying assay (Figure 6E).

Hydrocarbons could be potential food sources for larvae and female flies might thus preferentially

lay eggs in locations containing cuticular hydrocarbons. To verify that oviposition guidance is specific

to 9-tricosene, we repeated the oviposition experiments using the 9-tricosene pheromone isomer

7-tricosene (7-T), the most abundant cuticular hydrocarbon in male flies (Everaerts et al., 2010).

Female flies did not preferentially oviposit in the 7-T quadrant (Figure 6F). Interestingly, total egg

numbers laid were significant higher in Or7a mutant and Or7a neuron ablated flies, implying a

potential connection of oviposition site selection and egg deposition number (Figure 6G). The female

ovipositor can be involved in the detection and guidance to egg-laying cues (Yang et al., 2008).

However, since Or7a is expressed only in the antennae and not in the female ovipositor

(Figure 5—figure supplement 1), this implicates Or7a signaling in the antennae as the main driver

Figure 4. Continued

Or22a-Gal4/UAS-Or7a) sensilla. (E) SSR response summary to 9-tricosene of native ab4 and rescued ab3 sensilla in different sexes. n = 7–8 per sensillum.

(F, G) SSR trace responses and quantitative summary of ab4 sensillum of Or7a mutant flies stimulated with 100% 9-tricosene and geosmin (n = 4). Error

bars indicate ±s.e.m. throughout.

DOI: 10.7554/eLife.08688.028

The following source data and figure supplements are available for figure 4:

Source data 1. Source data for line and bar graphs in Figure 4.

DOI: 10.7554/eLife.08688.029

Figure supplement 1. Fly odors can stimulate ab4A neurons.

DOI: 10.7554/eLife.08688.030

Figure supplement 2. Response of ab4 sensillum to cVA.

DOI: 10.7554/eLife.08688.031

Figure supplement 3. Generation of Or7a mutant.

DOI: 10.7554/eLife.08688.032
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Figure 5. Or7a neurons are necessary for the behavioral response to naturally deposited aggregation pheromone and 9-tricosene. (A) Immunostaining of

Or7a-expressing neurons innervating the DL5 glomerulus in the antennal lobe (Or7a-Gal4/UAS-mCD8GFP). (B, C) Four-field behavior responses of WT,

Or7a mutant, Or7a-neuron ablated, and control OrX-neuron ablated flies (Or83c, Or43a and Or88a-Gal4 x UAS-hid) to naturally deposited pheromone

Figure 5. continued on next page
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of Or7a-directed oviposition guidance. All together, these data suggest that male derived 9-tricosene

can guide female egg-laying preferences, and this decision-making process requires proper antennal

Or7a neuronal function.

E2-hexenal activation of Or7a mimics 9-tricosene guided behaviors
Comprehensive SSR surveys of odorant–receptor activities identified multiple ligands for the Or7a

receptor (Hallem and Carlson, 2006). E2-hexenal, a leafy green volatile released upon fruit or leaf

damage (Myung et al., 2006), was identified as the most potent ligand for Or7a (Hallem and Carlson,

2006). E2-hexenal could thus be an abundant odorant for Or7a at damaged or rotting fruits and might

contribute towards Or7a-mediated behaviors. We thus examined if E2-hexenal could direct similar

behaviors as those triggered by 9-tricosene (Figure 7, Figure 7—source data 1). Indeed, we found

that E2-hexenal, like 9-tricosene, directed Or7a-dependent egg-laying site selection (Figure 7A-D)

and attraction (Figure 7E).

The presence of E2-hexenal, as a potentially abundant Or7a activator, might confound localized

9-tricosene guided behaviors. The concentration of E2-hexenal at a foraging site will vary depending on

the fruit source, the stage of ripening (Baldwin et al., 1991), and the extent of fruit or leaf damage.

Most undamaged plants emit undetectable levels of E2-hexenal (Hatanaka and Harada, 1973; Bate

and Rothstein, 1998; Farag and Pare, 2002q; Myung et al., 2006). However, a single cut on an

Arabidopsis leaf can produce ∼28 parts per trillion of E2-hexenal (∼3x10−11 E2-hexenal) (Shiojiri et al.,
2012). As an upper limit of E2-hexenal concentrations at a foraging site, a fully disrupted source (e.g, a

blended apple, tomato, or Arabidopsis leaf) can produce approximately 5–10 parts per million of

E2-hexenal (∼10−5 -10−6 E2-hexenal) (Baldwin et al., 1991; Farag and Pare, 2002q;Myung et al., 2006;

Chen et al., 2008; Shiojiri et al., 2012). To determine if 9-tricosene pheromone cues remained

recognizable in a surrounding of E2-hexenal, we repeated the 9-tricosene (10−4 concentration) 3-choice

oviposition-selection assays in the presence of high (10−6, 10−7), middle (10−8) or low (10−9,10−10)

E2-hexenal concentrations (Figure 7—figure supplement 1). 9-tricosene functioned as an oviposition

guidance cue in the presence of low and middle, but not high, E2-hexenal concentrations. These results

suggest that 9-tricosene can effectively guide oviposition in the surrounding presence of E2-hexenal.

The ability of both 9-tricosene and E2-hexenal to guide oviposition-site selection suggested that

Or7a activation might be a key signal for this behavior. We therefore tested the oviposition-site

selection guidance to 3 additional Or7a-agonists (benzaldeyde, 1-butanol, 1-propanol) as well as 3

odorants that do not activate Or7a (hexyl butyrate, pentanoic acid, ethyl lactate) (Hallem and Carlson,

2006). Interestingly, all odorants that activated Or7a directed positive oviposition-site selection to some

degree, whereas all odorants not activating Or7a showed mainly neutral or negative oviposition-site

selection effects (Figure 8). The exception is pentanoic acid at high concentrations. This high

concentration may recruit additional odorant receptors to positively influence site selection. Egg-laying

site selection was associated with the specificity of the odorant for Or7a: those odorants (e.g.,

benzaldehyde or 1-butanol) that activated many additional odorant receptors exhibited decreased

oviposition towards that odorant whereas more specific Or7a agonists (e.g., 9-tricosene and 1-propanol)

demonstrated the highest positive oviposition site selection (Figure 8—figure supplement 1).

Figure 5. Continued

(p = 0.0012 and 0.006 comparing WT to Or7a neurons ablated and Or7a−/− flies; t-test, n = 4–6 per experiment). (D, E) Behavioral response of WT, Or7a

mutant, and Or7a neuron ablated flies to 9-tricosene (0.1%) (p < 0.001; t-test; n = 4–5 per trial). Error bars indicate ±s.e.m. throughout.

DOI: 10.7554/eLife.08688.033

The following source data and figure supplements are available for figure 5:

Source data 1. Source data for bar graphs in Figure 5.

DOI: 10.7554/eLife.08688.034

Figure supplement 1. Whole-animal Or7a expression pattern.

DOI: 10.7554/eLife.08688.035

Figure supplement 2. Or7a-ablation experiments for the deposited pheromone and 9-tricosene.

DOI: 10.7554/eLife.08688.036

Figure supplement 3. Olfactory assays for 7-tricosene.

DOI: 10.7554/eLife.08688.037

Lin et al. eLife 2015;4:e08688. DOI: 10.7554/eLife.08688 14 of 26

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.08688.033
http://dx.doi.org/10.7554/eLife.08688.034
http://dx.doi.org/10.7554/eLife.08688.035
http://dx.doi.org/10.7554/eLife.08688.036
http://dx.doi.org/10.7554/eLife.08688.037
http://dx.doi.org/10.7554/eLife.08688


Figure 6. 9-Tricosene modulates female oviposition site selection. (A) Quantification and positions of eggs laid over ∼23 hr in the 1% agarose arena with

apple cider vinegar-only control or naturally deposited aggregation pheromone (A: p = 0.4836; n = 10; A′: p < 0.001; n = 9; one-way ANOVA test) (B)

Quantification and positions of eggs laid over ∼23 hr in the agarose arena in blank control or with 9-tricosene (yellow, 0.001%) (B: p = 0.9499; n = 11;

p < 0.001; t-test, n = 9 per trial, One-way ANOVA test). (C) The effect of 9-tricosene on female oviposition site selection was assayed in Or7a neuron

Figure 6. continued on next page
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To further examine the sufficiency of Or7a neuron activation in guiding oviposition-site preference

behaviors we utilized an optogenetics approach to specifically activate Or7a neurons with red light

confined to one of the egg-laying wells (Figure 8—figure supplement 2). Since flies require feeding

of all-trans-retinal for efficient light-induced activation of Channel Rhodopsin, we compared the

behavioral responses elicited by red light to the same genotype of flies that were, or were not, fed all-

trans-retinal (genotype: Or7a-GAL4, UAS-CsChrimson) (Klapoetke et al., 2014). Flies fed all-trans-

retinal exhibited significantly increased egg-laying preference for the red light quadrant

(Figure 8—figure supplement 2). These results support the findings that Or7a neuron activity can

influence egg-laying decisions.

Discussion
We have identified a phenomenon in which Drosophila males deposit the pheromone 9-tricosene in

response to apple cider vinegar food-odor stimulation. This male-predominant cuticular hydrocarbon

acts as an aggregation pheromone to attract both males and females and as a chemosensory cue to

influence female oviposition site selection (Figure 9). The behavioral effects of 9-tricosene are

mediated via specific activation of a broadly tuned odorant receptor. To females, activation of this

odorant receptor imparts biologically relevant information regarding potentially beneficial egg-laying

sites. This behavioral choice is likely modulated by the ensemble activity of other odorant receptors

stimulated at the egg-laying site.

Aggregation behavior guided by food-odor perception
Our results suggest that aggregation at a food-site might be strongly influenced by the olfactory

perception of an optimal food source. We found that an aggregation pheromone is only deposited

upon food-odor stimulations, such as apple cider vinegar, ripe banana and yeast. An attractive

odorant component (ethyl acetate) found in apple cider vinegar was not sufficient for pheromone

deposition, suggesting that attraction per se to an odor is not sufficient for aggregation pheromone

deposition.

cVA has been suggested as the aggregation pheromone in D. melanogaster. However, in contrast

to aggregation pheromones identified in other Drosophila species (Bartelt et al., 1985; Hedlund

et al., 1996), cVA is only weakly attractive on its own (Xu et al., 2005), although does enhance

aggregation when coupled with food or food-derived odors (Bartelt et al., 1985; Everaerts et al.,

2010). However, mutating key components in the cVA signaling pathway did not affect the food-odor

induced aggregation behavior. Moreover, GC–MS analysis of the active aggregation pheromone

extract found no evidence that cVA was deposited. Therefore, cVA is likely not responsible for the

aggregation behaviors triggered by food odors in these experiments. Nonetheless, it remains

possible that under natural conditions, cVA is used as a long distance co-attractant with food odors at

mating sites while 9-tricosene is used as a short-range aggregation pheromone at food sites.

Figure 6. Continued

ablated flies (C: UAS-hid/+, p < 0.001, n = 9 per trial; C′: Or7a-Gal4/UAS-hid, p = 0.384; n = 9, One-way ANOVA test). (D) 9-Tricosene guided oviposition

site selection assayed in Or7a−/− mutant flies (p = 0.69; n = 9, One-way ANOVA test). (E) Positional recording throughout the 23 hr course of female

oviposition behavior with a 9-tricosene hybrid gel (p = 0.1; n = 6, One-way ANOVA test). (F) Oviposition site selection using a 7-tricosene hybrid gel.

(p = 0.28; n = 8, One-way ANOVA test). (G) Box plots indicating the total number of eggs laid in A–D (p = 0.0021 comparing WT and Or7a > hid,

p = 0.0001 comparing WT andOr7a−/−, p = 0.68 comparingOr7a > hid andOr7a−/− ; t-test ; n = 9–11). In all panels, colored dots indicate actual egg locations.

Different colors represent different experiment trials. Error bars indicate ±2.5 s.e.m. throughout. Data points not within this range are plotted as circles.

DOI: 10.7554/eLife.08688.038

The following source data and figure supplements are available for figure 6:

Source data 1. Source data for box plots in Figure 6.

DOI: 10.7554/eLife.08688.039

Figure supplement 1. Schematic of hybrid 9-tricosene gel construction.

DOI: 10.7554/eLife.08688.040

Figure supplement 2. Oviposition guidance of Or7a-neuron ablated flies to 9-tricosene.

DOI: 10.7554/eLife.08688.041
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Figure 7. E2-hexenal modulates oviposition site selection. (A) The effects of 9-tricosene guidance on egg-laying using a 3-well spot plate (34 × 85 mm)

containing 9-tricosene (10−4 dilution) in a 1% agarose gel (yellow, 0.001%; p < 0.001; t-test, n = 12) or control 1% agarose gel (blue) (p = 0.53, One-way

ANOVA test, n = 17). (B) Egg laying preference of Or7a−/− mutant flies in the 3-well spot 9-tricosene egg laying assay (p = 0.69, One-way ANOVA

test, n = 15). (C) Egg laying preference of w1118 flies in a 3-well spot egg laying assay (10−6 dilution) (p = 1.73x10-4, t-test, n = 10). (D) Egg laying

preference of Or7a−/− mutant flies in a 3-well spot E2-hexenal egg laying assay (p = 0.68, One-way ANOVA test, n = 10). For box plots (A–D), error

bars indicate ±2.5 s.e.m. Data points not within this range are plotted as circles. (E) Attraction of wild-type w1118 or Or7a mutant flies to E2-hexenal as

determined in the four-field olfactory assay (p = 2.4x10−4 for comparing 10−6 and 10−5 E2-hexenal dilutions; p = 0.0149 for comparing WT and Or7a−/− at

10−5 E2-hexenal dilution; t-test,. n = 4–6 for each condition).

DOI: 10.7554/eLife.08688.042

The following source data and figure supplement are available for figure 7:

Source data 1. Source data for box plots and bar graphs in Figure 7.

DOI: 10.7554/eLife.08688.043

Figure supplement 1. Oviposition selection to 9-tricosene in a surrounding presence of E2-hexenal odors.

DOI: 10.7554/eLife.08688.044
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For many flying and non-flying insects, pheromone trails play an important role in organizing

social foraging behaviors (Schorkopf et al., 2007; Wyatt, 2014). The first animals to find a

suitable food source use a pheromone trail to recruit even more animals to the food source, which

in turn deposit additional pheromone trails, and thereby establish a positive feedback of

pheromone signaling towards the foraging site (Schorkopf et al., 2007; Wyatt, 2014). Our

experiments identified pheromone tags deposited when D. melanogaster males perceived food

odors, implicating the existence of such a behavioral occurrence in this insect. We found that

9-tricosene, and Or7a neuron activities, are likely key mediators of this particular pheromone

response. Interestingly, the ‘E’ experiments with 9-tricosene suggests that 9-tricosene may cause

repulsion at high concentrations, although it remains to be determined if these high

concentrations represent natural conditions. Future experiments will investigate how 9-tricosene

responses are modulated by other chemicals or pheromones in guiding pheromone trailing. It also

remains to be explored if different pheromone trails are deposited under different environmental

conditions.

9-Tricosene is an important close-range social pheromone
Food searching behaviors rely on volatile chemosensory cues, which create long-distance odor plumes

or homogeneous odor clouds to guide foraging behaviors (Budick and Dickinson, 2006). E2-hexenal,

because of its high volatility, might represent such a long-distance cue for recently fallen fruit or

plants. Since E2-hexenal is generated by a plant-dependent enzymatic reaction, its levels will diminish

over extended time periods (Farag and Pare, 2002q; Myung et al., 2006). In contrast, 9-tricosene, as

a low volatility olfactory pheromone, might be ideally suited as a stable close-range olfactory marker

and utilized to convey environmental conditions. This is supported by the variety of functions

9-tricosene exhibits in other species. For instance, 9-tricosene is a sex attractant for female houseflies

(Musca domestica) (Carlson et al., 1971) and honey bee waggle dancers (Apis mellifera) use a

pheromone cocktail that includes 9-tricosene to communicate with nest mates about the locations of

Figure 8. Odorants that activate Or7a guide oviposition site selection. (A) Summary graph of Or activities induced

by 7 different odorants as detected by single sensillum recordings. All odorant responses are from (Hallem and

Carlson, 2006). ++++, spikes ≥200; +++, spikes ≥150; ++, spikes ≥100; +, spikes ≥50; 0, spikes ≥0; -, spikes ≤0.
(B) Oviposition-guidance preference for each odorant as assayed in the 3-choice assay. An oviposition preference

index (OPI) was calculated as: (# of eggs laid in odor well – average # of eggs laid in control wells) / (# of eggs laid

in odor well +average # of eggs laid in control wells) See Figure 8—Source data 1. ++++, OPI ≥0.8; +++, OPI ≥0.5;
++, OPI ≥0.2; +, OPI = 0–0.2; -. OPI = 0∼-0.2; –, OPI ≤ −0.2; —, OPI ≤ −0.5. n = 5–9 for each odor concentration.

n.d., not determined.

DOI: 10.7554/eLife.08688.045

The following source data and figure supplements are available for figure 8:

Source data 1. Source data for values graphically represented in Figure 8.

DOI: 10.7554/eLife.08688.053

Figure supplement 1. Oviposition preferences by different Or7a agonists and control odorants in a 3-well egg-

laying assay.

DOI: 10.7554/eLife.08688.046

Figure supplement 2. Optogenetic activation of Or7a neurons in egg-laying assay.

DOI: 10.7554/eLife.08688.047
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food sources (Thom et al., 2007). Future experiments will be required to determine the ecological

niche whereby 9-tricosene signaling in Drosophila is most prevalent.

Pheromones can activate basiconic sensillar neurons
Four basic-types of olfactory sensilla have been classified based on their size, shape, and predicted

functions (Couto et al., 2005). ORNs housed in basiconic sensilla tend to be strongly activated by

food odors; ORNs in intermediate/trichoid sensilla tend to be activated by kairomones and

pheromones; and ORNs in coeloconic sensilla are activated by amines, ammonia, water vapor and

putrescine (Hallem and Carlson, 2006; Benton et al., 2009). Only two exceptions are

known—phenylacetic acid is a food odor that activates coeloconic Ir84a + neurons (Grosjean

et al., 2011); and carbon dioxide is detected by basiconic neurons expressing Gr21a/Gr63a (Jones

et al., 2007). 9-tricosene represents the first Drosophila cuticular hydrocarbon pheromone that, to our

knowledge, is demonstrated to activate a Drosophila basiconic sensilla. Intriguingly, the same sensilla

and Or7a olfactory receptor responds to the silk moth pheromone bombykol (Syed et al., 2006). It is

interesting to speculate that this Drosophila neuron’s response to bombykol might represent off-

target ligand specificity for 9-tricosene. Our data further suggests that activation of odorant receptors

by both pheromone and plant volatiles might be more widespread than previously anticipated.

Indeed, an olfactory receptor in the moth Agrotis ipsilon that was previously considered to be

pheromone specific was recently found to also respond to the plant volatile heptanal, despite the

plant volatile showing no structural similarity to the moth pheromone (Rouyar et al., 2015).

Male pheromones influence a female oviposition decision
Oviposition site selection is a model system to study simple decision-making in Drosophila (Yang

et al., 2008; Joseph et al., 2009). The behavior comprises three steps—an ovipositor motor program,

a clean/rest period and a search-like behavior. The ovipositor motor program that leads to egg

deposition is relatively short (6–7 s) as compared to clean/rest and search-like behaviors (100–130 s)

(Yang et al., 2008). Rapid egg-laying associated with an extended positional search is consistent with

our observations that over long time periods there were no detectable positional preferences in the

9-tricosene pheromone quadrant even though female flies preferentially laid eggs in this quadrant

(Figure 6). These findings also suggest that 9-tricosene might mediate two temporally distinct

responses in our experimental design. A short-term aggregation behavior that lasts ∼25 min and a

long-term oviposition site selection behavior that lasts for hours. A possible mechanism underlying

Figure 9. Model of food-odor induced pheromonal behavioral responses. Upon exposure to food odors, male

Drosophila melanogaster deposit the pheromone 9-tricosene. 9-Tricosene functions via Or7a odorant receptors to

guide aggregation and oviposition site-selection decisions. Activation of Or7a by other odorants may also guide

similar behaviors.

DOI: 10.7554/eLife.08688.048
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these different behaviors could be that detection thresholds for the two behaviors are different, that

is, higher concentrations of 9-tricosene triggers aggregation whereas low 9-tricosene concentrations

affect oviposition.

In many insects, eggs are vulnerable and larvae have restricted motility, thus oviposition site

selection is a crucial decision for progeny survival. The hypothesis of ‘mother-knows-best’ stipulates

that female egg-laying decisions evolved to oviposit in places offering the best survival of offspring

(Soto et al., 2014). As expected, oviposition decisions require multiple sensory modalities, such as

visual, olfactory, gustatory and proprioception (Yang et al., 2008; Joseph et al., 2009; Schwartz

et al., 2012). Our study shows that a previously considered female-only decision can in fact be

modulated by a male-deposited pheromone. Since 9-tricosene is enriched only upon food-odor

stimulation, and acts to aggregate animals and increase courtship (Lin and Potter, unpublished

observations), it could be a mechanism used by Drosophila males to increase the likelihood that their

progeny will be laid in an optimal location. Thus, in addition to ‘mother-knows-best’, this suggest that

‘father’ may have co-opted a female’s olfactory system in order to influence an egg-laying decision for

maximizing progeny survival.

The identification of Or7a as a pheromone receptor represents an intriguing puzzle.

9-Tricosene is a specific activator of Or7a, but Or7a is not activated only by 9-tricosene. How

can a specific pheromone response be mediated by a ‘generalist’ odorant receptor? Our

behavioral experiments suggest a strong positive correlation with the specificity of Or7a

activation and oviposition-guidance. This suggests that activation of the Or7a olfactory receptor

neuron can strongly influence egg-laying decisions. 9-Tricosense may therefore have a specific

influence on oviposition decisions due to its specific activation of Or7a. Or7a olfactory neurons

join a growing list of olfactory neurons found to mediate specific olfactory behaviors like

oviposition-site selection (Dweck et al., 2013, 2015b), aversion (Suh et al., 2004; Ai et al., 2010;

Stensmyr et al., 2012), courtship (Kurtovic et al., 2007), and attraction (Semmelhack and Wang,

2009). Odorants besides 9-tricosene that stimulate Or7a neurons will activate additional olfactory

receptor neurons that may function to mask or modulate Or7a-mediated egg-laying behaviors.

This likely reflects how olfactory systems function to make sense of a complex environment, by

assigning biological weights and values to different olfactory neuron activity patterns that

together influence a behavioral choice.

Food odors and pheromone signals have been shown to project to non-overlapping divisions in

higher brain regions in Drosophila, suggesting that distinct brain divisions may be involved in

mediating different biological functions (Jefferis et al., 2007). Might these disparate olfactory signals

for oviposition decision converge in the female brain? ORNs expressing the same ORs converge onto

the same glomeruli and synapse with second order projection neurons, which relay the olfactory

information to higher brain regions (mushroom body calyx and lateral horn) (Jefferis et al., 2007). We

demonstrate that basiconic Or7a neurons are responsible for 9-tricosene and E2-hexenal guided

oviposition decisions (Figure 6C,D,7C,7D). Recently, it was found that flies preferred citrus fruit as

oviposition substrates as detected by Or19a + olfactory neurons (Dweck et al., 2013), and also

preferred to oviposit on substrates containing ethylphenols as detected by Or71a + olfactory neurons

(Dweck et al., 2015b). Interestingly, the Or7a DL5, Or19a DC1, and Or71a VC2 projection neurons

share highly similar axonal projection patterns in the lateral horn that are distinct from previously

described food and pheromone regions (Jefferis et al., 2007; Ronderos et al., 2014). This suggests

that oviposition site-selection might be strongly guided by a dedicated olfactory processing brain

center.

Materials and methods

Experimental procedures

Fly stocks
Wildtype flies are isogenized w1118 (IsoD1 w1118) and IsoD1 w+. Sources of the lines used in the study:

poxn mutant, ppk23− (Thistle et al., 2012), Ir8a− (Abuin et al., 2011), Ir25a− (Benton et al., 2009),

Ir64a-Gal4 (Ai et al., 2010), snmp1 mutant (Benton et al., 2007), lush mutant, constitutive active lush

(Laughlin et al., 2008),Or67d-Gal4 (Kurtovic et al., 2007), Δhalo/CyO; UAS-Or7a, Δhalo; Or22a-Gal4

(Hallem and Carlson, 2006), PromE(800)-Gal4, Tub-Gal80 ts/TM6B (Billeter et al., 2009), Or7a-Gal4

Lin et al. eLife 2015;4:e08688. DOI: 10.7554/eLife.08688 20 of 26

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.08688


(BS#23907 (Couto et al., 2005)), orco mutant (BS# 23130 (Larsson et al., 2004)), Or83c-Gal4

(BS#23910), Or43a-Gal4 (BS#9974), Or88a-Gal4 (BS#23138). Before any behavioral analyses were

performed, mutant or transgenic stocks were backcrossed at least 5 generations to IsoDI w1118.

Imaging and immunohistochemistry
Confocal images were taken on a LSM 700 Confocal Microscope (Zeiss). The procedures for fixation,

immunochemistry and imaging were as described previously (Wu and Luo, 2006). Primary antibodies

used were Rat anti-CD8 (Caltag Laboratories, 1:200) and Mouse anti-nc82 (DSHB, 1:25).

Four-quadrant behavioral assay
A four-quadrant olfactometer (Vet et al., 1983; Semmelhack and Wang, 2009) was used to track the

olfactory responses of multiple flies at 30 frames/second (Katsov and Clandinin, 2008). Central air

passed through a carbon filter before being split into multiple channels each regulated by a high-

resolution flowmeter (Cole–Parmer). Electronically controlled 3-way solenoid valves (Automate

Scientific, Berkeley, CA) regulated if clean air leaving the flowmeters expelled into the room or entered

into custom made odor chambers (Lundstrom et al., 2010). Teflon tubing was used for odor delivery.

The Teflon fly arena is 19.5 cm by 19.5 cm, with a thickness of 0.7 cm. Glass plates were secured onto

the arena using clamps. The airflow of each quadrant was maintained at a rate of 100 ml min−1 and

verified by an electronic flowmeter before each experiment. Apple cider vinegar was diluted in H2O to

make the final concentrations of 6.25% (1/16), 1.56% (1/64) and 0.39% (1/256) and acetic acid in water to

make final concentration of 0.33%. Ethyl acetate and 9-tricosene (Sigma #859885) were diluted in

paraffin oil for final concentration of 0.001% and 0.1%. When paraffin oil was used as solvent in the odor

chamber, paraffin oil alone used in the three non-odor control chambers. 40–50 flies with an isogenized

genetic background (IsoD1 w1118) were used. At the time of the assay, flies were 4–6 days old and had

been starved in vials containing 1% agarose for 40-42 hr to increase locomotor activity. The dark arena

was illuminated by 2 infrared LED arrays (AL4554-880; Advanced Illumination, Rochester, VT), monitored

by an infrared camera (Sony XC-EI50), and flies tracked by previously described software (Katsov and

Clandinin, 2008). Data was analyzed by custom Matlab scripts. On average, each fly generates

approximately 1800 tracked positional data points per min. If two flies intersect, their respective

previously continuous tracks are considered completed, and new independent tracks begun once they

move apart. This assures continuously labeled tracks originated from the same fly. An Attraction Index

(AI) is defined as (Ot5-Cavgt5)/ (Ot5+Cavgt5), in which Ot5 is the number of tracked positional data

points in the odor quadrant and Cavgt5 is average number of tracked positional data points in non-odor

control quadrants over a 5 min testing period. An AI = 1 indicates all flies were tracked to the odor

quadrant, and an AI = 0 indicates flies were equally distributed to all four quadrants.

Pheromone extraction
A 1:1 mixture of 40–44-hr starved 50 male:female flies were stimulated with humidified air or apple

cider vinegar for 5 min to deposit substrates onto cleaned glass plates. Apple cider vinegar

stimulation alone (without flies) was used as a negative control. Odors were followed by clean air

perfusion for another 5 min. To generate a hexane pheromone extract, the glass plates were treated 3

× with 500 μl hexane solvent. The apple cider vinegar-stimulated pheromone extract was used to

pipette a pattern onto a new clean glass plate or stored at −20˚C for GC–MS analysis. The humidified

air-stimulated hexane extract was used as a negative control in the hexane painting. In GC–MS

experiments, to monitor extraction efficiency, 750 ng of internal standard controls (hexacosane (Sigma

#241687) and triacontane (Sigma #263842) as dissolved in hexane) were added on to the glass plates

immediately before pheromone extraction procedures. In the 9-tricosene ‘E’ paint experiment,

9-tricosene was dissolved in hexane solvent (1:25,000 dilution) and 150 μl was evenly pipetted onto

the clean glass plate to form an ‘E’ pattern.

Gas chromatography/mass spectrometry (GC/MS)
A sample volume of 2 μl of the hexane extract was injected in splitless mode into a Thermo Scientific

ISQ single quadrupole GC/MS (Waltham, MA) with Xcalibur software (ThermoElectron Corp.) for

separation and analysis of the deposited hydrocarbons. The GC/MS was equipped with a Stabilwax

column, 30 m × 0.32 mm with 1.0 μm film thickness (Restek Corp., Bellefonte, PA). The injection port

was set at 230˚C. The oven temperature was set to 60˚C, raised to 180˚C at 6˚C min−1, held at 180˚C for

20 min, and then raised to 220˚C at 6˚C min−1 where it was maintained for an additional 20 min. Helium

carrier gas constantly flowed at 2.5 mL min−1. The mass spectrometer was operated at an ionizing
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energy of 70 eV with a 2 scan/s rate over a scan range ofm/z 40–400 and an ion source temperature of

200˚C. Identification of structures/compounds was performed using the National Institute of

Standards and Technology library, as well as comparisons with known literature compounds and

commercially available standards. Relative retention times were obtained by comparison of sample

hydrocarbons to authentic standards. All standards were purchased from Sigma or Cayman Chemical

Company at the highest available purity.

Electroantennography (EAG)
Electroantennograms were recorded with capillary glass electrodes (1.5 mm outer diameter) containing

Drosophila saline plus Triton X-100 (188 mM NaCl, 5 mM KCl, 2 mM CaCl2·2H2O, 0.02% Triton X-100).

The reference electrode was placed in the head capsule close to the base of the antenna. A polished

large diameter (∼40–50 μm) recording electrode was capped onto the anterior distal region of the

Drosophila third antennal segment. Control odorant stimulations (1% and 10% cVA; data not shown)

were used to verify that the recording electrode was properly sealed onto the distal antenna, 30 μl of
different dilutions of 9-tricosene in mineral oil on filter paper was used as the pheromone stimulus.

Electrical signals were acquired with a Syntech Intelligent Data Acquisition Controller IDAC-4-USB and

quantified by measuring the mV value at the greatest deflection in the EAG trace.

Fluorescence guided single sensillum recording (SSR)
Recordings were performed as previously described (Lin and Potter, 2015). Sensillum of targeted

ORNs was identified using green fluorescence signals by crossingOrX-Gal4 to 15xUAS-IVS-mCD8GFP

(Bloomington Stock #32193) (Pfeiffer et al., 2010). Extracelluar activity was recorded by inserting a

glass electrode to the base of the sensillum of 4–10 day-old flies. Signals were amplified 100X (USB-

IDAC System; Syntech, Hilversum, The Netherlands) and inputted into a computer via a 16-bit analog-

digital converter and analyzed off-line with AUTOSPIKE software (USB-IDAC System; Syntech). The

low cutoff filter setting was 50Hz, and the high cutoff was 5 kHz. Stimuli consisted of 1000 ms air

pulses passed over odorant sources (Dobritsa et al., 2003). The Δspikes/second is obtained by

counting the spikes in a 1000ms window from 500 ms after odor stimuli were triggered, subtracting

the spikes in a 1000ms window prior to stimulation. Furthermore, the response generated by control

solvent was further subtracted. The formula is as below:

(odor response-spontaneous response)-(solvent response-spontaneous response).

9-Tricosene from three different sources (Sigma Cat#859885, TCI America Cat#T1242, AK

Scientific Cat#M691) robustly activated ab4A neurons. 9-tricosene from Sigma was used in all

reported experiments. For SSR experiments using fly body odors, 50 male and 50 female flies were

starved in vials containing 1% agarose gel for 40 hr as described above and then transferred to a

40-ml glass vial (Thermo scientific B7999-6). Dry air or apple cider vinegar (6.25%) was perfused

through the vial for 30 min (flowrate = 100 ml/min). The vials were then used as odor sources to

stimulate the ab4 sensilla in the standard SSR setup as described above. Each odor vial was used less

than 3 times to avoid depletion of deposited odors.

Generation of Or7a transgene
5′ and 3′ homology arms of the Or7a gene were generated by PCR amplifying from bacterial artificial

chromosome (C.H.O.R.I, RP98-39F18) and WT genomic DNA, respectively and subcloned into the

pTVCherry vector (Baena-Lopez et al., 2013). 5′ homologous sequence immediately 5′ to the ATG start

site of Or7a (A of ATG is included) (4199 b.p.) was subcloned between NheI and KpnI restriction sites.

A 4304 b.p sequence starting from 1368 base pairs downstream to the ATG start codon of Or7a was

cloned between SpeI and BglII sites. In-Fusion cloning was used for subcloning into the pTV vector

(Clontech Laboratories, Inc.) (Figure 4—figure supplement 3).

Primers used for PCR (Vector specific sequence in red, Or7a specific sequence in blue; lowercase

letters indicate designed b.p. to preserve restriction sites):

5′ homology arm: 5′Or7a_FOR, GCT ACC GCG GGC TAG cCA ACA TGC CGA TTA TGT CG;

5′Or7a_REV, AGT TGG GGC ACT ACG gta ccT GGC TGA TGG ACT TTT GAC G

3′ homology arm: 3′Or7a_FOR, CGA AGT TAT CAC TAG tAG CCA AGT TCT CGT TTT CGC;

3′Or7a_REV, TTA TGC ATG GAG ATC tTT TGG CAT TGT GTG TTG CAC

Generation of Or7a deletion mutant and GAL4 knockin
Accelerated homologous recombination was performed according to Baena-Lopez LA et al. (Baena-

Lopez et al., 2013). Briefly, P-element insertion lines containing the Or7a knockout construct were
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crossed to hs-Flp, hs-SceI (BS#25679) and heat-shocked at 48 and 72 hr after egg-laying (1 hr duration

each time). Female progeny with mottled eyes were crossed to ubi-Gal4[pax-GFP] (Baena-Lopez

et al., 2013) in order to select against flies containing non-homologous recombination events. Stocks

were generated from candidate flies that contained both w+ and GFP markers. Or7a mutants were

verified by single sensillum recordings and PCR (Figure 4F, G, Figure 4—figure supplement 3). In

order to identify the ab4 sensillum, 30 μl of geosmin (Sigma #16423-19-1), an odor that specifically

activates only ab4B (Or56a) (Stensmyr et al., 2012), was used (Figure 4F,G).

Primers used for verification: G4polyA_FOR: TCG ATA CCG TCG ACT AAA GCC; gOr7a_REV:TCG

CCG TTG AGT TTT CAG AG

The Or7a-Gal4 knockin was generated by co-injection of the pRIV-Gal4 donor plasmid (Baena-

Lopez et al., 2013) with PhiC31 integrase to target GAL4 to the attP site within the knockout locus, as

described in (Baena-Lopez et al., 2013).

Four-quadrant egg laying behavior assay and positional recording
The schematic of the hybrid 9-tricosene or 7-tricosene gel is as shown in Figure 6—figure

supplement 1. Control agarose gel was made by pouring 70 ml of a 1% agarose gel onto a glass

plate assembled onto the 4-field arena. 9-tricosene or 7-tricosene gel was made by mixing

0.8 mg pure 9-tricosene (Sigma #859885) or 7-tricosene (Cayman Chemical Company #9000313)

into 70 ml of 1% agarose gel (temperature = ∼50˚C). One quadrant of the control gel or

9-tricosene or 7-tricosene gel was cut out and transferred to a Petri dish. In order to increase egg

production, mixed population of male and female flies were pre-induced in vials with wet yeast

paste (yeast +0.5% propionic acid) overnight. Mated females from premixed population were

rapidly separated by cooling on ice and transferred to the arena gel. The egg laying behavior was

performed in a dark enclosure at room temperature for 22–23 hr. Simultaneous recordings of the

fly positions were performed using the same setup for tracking of the four-quadrant behavior

assay described above except that the frame rate was set at 1 frame/5 s due to the large file size

generated over the extended time period. On average, each fly generated approximately 16,560

tracked positions per experiment. The recorded data was analyzed with custom Matlab programs

and analyzed for the AI as defined above. Analyses scripts are available as Source code 1 or upon

request.

3-well egg-laying behavior assay
A schematic of the 3-well (34 × 85 mm) egg-laying assay is shown in Figure 7. The 9-tricosene well was

made by mixing 1 μl 9-tricosene into a 70 ml 1% agarose gel solution. 1.2–1.3 ml of this solution was

allowed to set in a well for 10 min before the experiment. Control wells contained only 1% agarose.

Odorant wells (E2-hexenal (Sigma W256005), benzaldeyde (Sigma 418099), 1-butanol (Sigma

281549), 1-propanol (Sigma 279544), hexyl butyrate (Sigma W256803), pentanoic acid (Sigma

240370), and ethyl lactate (Sigma W244007)) were made by mixing 1 μl of 10−1 to 10−6 odorant

concentrations into a 70 ml 1% agarose solution. Odor concentrations listed in Figures or Figure

legends are the approximated final diluted concentrations in the agarose gel. Females were pre-

stimulated as described above, placed in the 3-well agarose spots, covered with Petri dish lids

(Diameter = 90 mm, Fischer Scientific FB0875712), and allowed to oviposit in a dark temperature

controlled chamber for 23 hr. The oviposition preference index (OPI) is defined as (Eo-Eavg)/ (Eo +
Eavg), in which Eo is the number of eggs in the odor well and Eavg is average number of egg numbers

in non-odor wells. An OPI = 1 indicates all eggs were laid in the odor well, an OPI = 0 indicates

eggs were equally distributed to all 3 wells, and an OPI = −1 indicates all eggs were laid in the

non-odor wells.

Channel rhodopsin activation
Newly eclosed flies were transferred to fly vials containing 0.4 mM of all-trans-retinal (Sigma–Aldrich

#R2500, dissolved in pure ethanol) in fly food. The flies were fed with all-trans-retinal food in the dark

for 3 days and used for the 3-well egg-laying assay as described above. A 627 nm LED light source

(1-up LED Lighting Kit, PART #: ALK-1UP-EH-KIT; LEDSupply.Com) was placed directly beneath the

glass 3-well egg-laying chamber with a white acrylic diffuser in between (Cat# 8505K11, McMaster-

Carr). The LED was powered and controlled by an Arduino Uno to activate UAS-CsChrimson

(Klapoetke et al., 2014) (Bloomington Stock # 55,135). The power supplied to the LED by the

Arduino was set to 2 V with light on for 8 ms and off for 17 ms by using a custom Arduino program.
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The red light stimulus was supplied continuously throughout the 23 hr egg-laying assay. The Arduino

program is available as Source code 1.
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