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Abstract

Many cortical and subcortical regions contribute to complex social behavior; nevertheless, the
network level architecture whereby the brain integrates this information to encode appetitive
socioemotional behavior remains unknown. Here we measure electrical activity from eight
brain regions as mice engage in a social preference assay. We then use machine learning to
discover an explainable brain network that encodes the extent to which mice chose to engage
another mouse. This socioemotional network is organized by theta oscillations leading from
prelimbic cortex and amygdala that converge on ventral tegmental area, and network activity is
synchronized with brain-wide cellular firing. The network generalizes, on a mouse-by-mouse
basis, to encode socioemotional behaviors in healthy animals, but fails to encode an appetitive
socioemotional state in a ‘high confidence’ genetic mouse model of autism. Thus, our findings
reveal the architecture whereby the brain integrates spatially distributed activity across
timescales to encode an appetitive socioemotional brain state in health and disease.
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Introduction

Social behaviors play a critical role in survival. To appropriately regulate social behavior,
mammals must integrate external sensory cues with internally generated emotional brain-
states. While many mechanisms whereby the brain processes external senses such as vision and
audition have been elucidated, the biological processes utilized by the brain to instantiate
emotional states that drive appetitive behavioral interactions remain largely unknown. This
knowledge gap exists, at least in part, because emotional states have classically been inferred in
preclinical models using behavioral measurements in isolation, rather than directly measuring
the brain-wide activity that underlies those emotional states in behaving animals. Furthermore,
collecting spatially- and temporally-resolved in vivo measurements of brain activity in healthy
humans, who can provide self-reports of their emotional state, remains a challenge.

Multiple brain regions contribute to complex social emotional behavior. Anterior cingulate
cortex activity signals empathy in humans (Morrison et al., 2004), prefrontal cortex activity
regulates social hierarchy in rodents (Wang et al., 2011), and medial dorsal thalamus plays a
critical role in social appetitive behavior (Ferguson and Gao, 2018). Circuit-level interactions
between regions have been shown to play a role in regulating social behavior as well. Recent
rodent studies have demonstrated that ventral hippocampus—> prefrontal cortex circuits
mediate social memory (Phillips et al., 2019), ventral tegmental area=>nucleus accumbens
circuits encode social reward (Gunaydin et al., 2014), and prefrontal cortex—>amygdala circuits
are critical for social avoidance and socially aversive learning (Allsop et al., 2018; Kumar et al.,
2014; Schaich Borg et al., 2017). Human electroencephalographic (EEG) studies have also
described the emergence of synchronized electrical oscillations between neocortical regions at
the milliseconds time scale during social perception (Fraiman et al., 2014; Rodriguez et al.,
1999), and functional magnetic resonance imaging (fMRI) studies have revealed synchronized
neural activity across the brain at the seconds timescale (Sokolov et al., 2018). Together, this
suggests that the brain integrates neural activity across multiple brain regions and timescales to
encode appetitive social brain states. Supporting this framework, a murine in vivo calcium
imaging study identified synchronous activity across multiple cortical and limbic regions on the
100ms—seconds timescale during exposure to social novelty (Kim et al., 2016).

We have previously observed synchronous electrical oscillations on the 10ms—100ms timescale
during aversive emotional states in rats and mice (Carlson et al., 2017; Hultman et al., 2018;
Schaich Borg et al., 2017). We have also found that these electrical oscillations exhibit
synchronous activity with millisecond-timescale cellular firing in the brain (Carlson et al., 2014;
Hultman et al., 2016). Thus, we hypothesized the existence of a broad network-level
mechanism involving the synchronization of electrical oscillations that integrates cellular firing
across brain regions and timescales (milliseconds to seconds) to encode an appetitive social
emotional brain state. Furthermore, we hypothesized that a disruption of this network
architecture may play a key role in mediating social-behavioral dysfunction in neuropsychiatric
disorders such as autism spectrum disorder (ASD).
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To address these questions, we implanted healthy C57BL/6J (C57) mice with recording
electrodes in eight brain regions including cingulate, infralimbic, and prelimbic cortex (the
anatomic subdivisions of prefrontal cortex), amygdala (basolateral and central), nucleus
accumbens (core and shell), medial dorsal thalamus, central hippocampus, and ventral
tegmental area (VTA). We then recorded electrical oscillations and cellular firing across these
regions, concurrently, as mice performed a task used to model social exploration. Using
machine learning, we integrated electrical activity across these regions and across the
milliseconds to seconds timescale into what we call an electrical functional connectome
(“electome”). By analogy to the connectome, which describes the detailed anatomical
connections within a brain, the electome describes the detailed pattern of electrical
interactions across a group of brain areas. Importantly, our machine learning approach is
biologically constrained such that the resultant electome model is explainable (reflects
fundamental biological processes).

By analogy to gene networks, which describe collections of genes within the genome that
functionally interact, electome networks describe the collection of brain circuits within the
electome that together encode distinct emotional states. Learning electome networks that
comprise the total electome is typically an unsupervised process, but we augmented a
supervised approach to increase relevancy to complex social behavior. After confirming that an
appetitive social electome network we discovered synchronizes cellular firing and generalizes to
new animals on a mouse-by-mouse basis, we also showed that the network is dysfunctional in a
genetic mouse model of ASD. Thus, our findings reveal a new mechanism whereby the brain
integrates activity across space and time to encode social behavior in health and disease.

Results

To discover the network architecture underlying a putative appetitive social brain state, we
performed multisite electrical recordings while C57 strain mice were subjected to a task
modeled after a classic social preference assay (Moy et al., 2007). In this behavioral assay, mice
freely explore a large arena that is divided into two chambers: a small container housing a novel
age- and sex-matched C3H strain mouse is situated in one chamber, and a second container
holding a novel inanimate object is situated in the other (Fig. 1a). The location of the
experimental mouse is tracked throughout a ten-minute exploratory period; social preference is
calculated based on the relative time spent proximal to each container (Fig. 1b). Importantly,
this assay can be repeated across days with new mice and new objects substituted into the
containers (Fig. 1c), enabling us to collect nearly 100 minutes of electrical recordings for each of
our 28 implanted mice. As expected, mice spent substantially more time interacting with a
social stimulus than an object across the recording sessions (main effect of stimulus F,
594.8=349.1, P<0.0001 using a 3-way repeated measures ANOVA of unequal variance comparing
stimulus, sex, and session; there were no other significant main effects or interactions; see also
Fig. 1c).
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We used discriminative cross spectral factor analysis non-negative matrix factorization (dCSFA-
NMF) to discover the network structure within this neural data (Talbot et al., 2020). dCSFA-NMF
is a supervised machine learning approach that we designed to be both descriptive (i.e.,
discovers brain activity measures that are integrated with each other across seconds of time)
and predictive (i.e., uses supervision to discover networked patterns of brain activity that
encode external behavioral variables) (Vu et al., 2018). Importantly, dCSFA-NMF is based on
widely accepted measures of brain activity, such that the resultant electome networks are
interpretable (Vu et al., 2018). Specifically, each learned electome network integrates local field
potential (LFP) power (measurement of oscillatory amplitudes across frequencies resolved from
1 to 56Hz; a neural correlate of cellular population activity and synaptic activity within brain
regions), LFP synchrony (quantification of how two LFPs correlate across frequencies resolved
from 1 to 56Hz over a millisecond timescale; a neural correlate of brain circuit function
between brain regions), and LFP Granger synchrony (statistical forecasting based on Granger
causality testing; a neural correlate of information transfer within a circuit). Finally, our dCSFA-
NMF model yields an activity score for each electome network, which indicates the strength at
which that network is represented during each one-second segment of LFP data. A given brain
area or circuit can belong to multiple electome networks, providing the opportunity for distinct
electome networks to functionally interact to yield a global emotional brain state (Hultman et
al., 2018). Thus, dCSFA-NMF integrates spatially distributed neural activity across milliseconds
to seconds of time in a manner that both models naturally occurring brain networks and
predicts external behavioral conditions widely shown to induce emotional states in mice.

Using the data collected/recorded during the social preference task, we found an electome
network that encoded social vs. object interactions. Here, we trained a model using a subset of
our recorded timepoints and balanced the influence of social and object timepoints for each
mouse. To encourage dCSFA-NMF to learn a network that encoded sociability (an appetitive
component of social behavior), rather than solely the collection of neural responses that
occurred during social interactions (e.g., sensation, arousal, etc.), we also weighted each mouse
in the model based on its social preference (Supplemental Fig. S1a). Modeling our data with six
electome networks optimally balanced complexity (i.e., explaining more variance) with
parsimony (i.e., choosing fewer networks to represent the brain; see supplemental Fig. S1b). As
expected, the supervised electome network showed the highest predictive performance
(electome network #1, hereafter referred to as social-electome Network; EN-Social; Fig. 1d). We
then probed the activity of EN-Social network across all the timepoints while mice explored the
two-chamber assay. Though our initial learning model only used data widows labeled as social
and object classes, we found that EN-Social activity exhibited dynamics (time course changes)
that reflected behaviorally relevant task variables. Specifically, we found that ES EN-Social
activity increased at the onset of social interactions and sloped downward as epochs of social
interactions concluded. We also found that EN-Social activity decreased during object
interactions (Fig. 1e). Thus, EN-Social exhibited activity that reflected multiple behavioral
variables in the two-chamber social assay. Critically, the discriminatory strength of EN-Social
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was also directly correlated with social preference across our population of mice (P=0.002,
R=0.56 using spearman correlation), suggesting that our weighting strategy successfully biased
dCSFA-NMF to learn a network that putatively encoded an appetitive social emotional brain
state.

After establishing that EN-Social reflects a behaviorally-relevant social brain state in the group
of mice used to train our model, we explored the extent to which activity in this network
mapped to widely accepted biological measures including LFP power, LFP synchrony, LFP
Granger-synchrony, and cellular firing that we directly measured across our eight implanted
brain regions. EN-Social mapped to LFP theta (4—11Hz) power within all the implanted regions.
Additionally, EN-Social comprised prominent theta synchrony across all the implanted brain
regions except ventral hippocampus (Fig. 2a, see blue highlights). The network also mapped to
oscillatory activity in two higher frequency bands: 30—40Hz and 50-56Hz. The 30—40Hz
oscillations showed local activity in ventral hippocampus and medial dorsal thalamus, as well as
synchrony between all the implanted brain regions except ventral hippocampus (Fig. 2a, see
green highlights). The higher frequency gamma band (50-56Hz) showed local activity within all
the brain regions we measured except amygdala and cingulate cortex, and synchrony between
all the implanted brain regions except ventral hippocampus (Fig. 2a, see red highlights).
Prominent circuit directionality, quantified as the difference in the Granger synchrony between
each pair of brain regions (i.e., area A>B versus area B>A), was observed only in the theta
frequency range. This activity emerged from prelimbic cortex, infralimbic cortex, and amygdala,
relayed through cingulate cortex and nucleus accumbens to medial dorsal thalamus, and
converged in ventral tegmental area (see supplemental Fig. S2). Thus, EN-Social emerged from
brain regions previously shown to play a prominent role in social behavior and converged on a
brain region critical for reward regulation.

Having identified the oscillatory signatures underlying EN-Social, we next verified that this
electome network was a bona fide representation of biological activity and not simply an
abstract mathematical construct (Hultman et al., 2018). To achieve this, we determined
whether EN-Social activity demonstrated a relationship with the activity of cells recorded
simultaneously from the implanted brain regions, an undisputed reflection of biological
function. Since we found that cellular firing was broadly related to social vs. object interactions
in the two-chamber assay (112/326 cells, see Fig. 2d), we used a permutation test (see
methods) to rigorously test our findings. Specifically, we found that EN-Social exhibited a
relationship to the activity of ~18% of the cells we recorded (Fig. 2e-f). Thus, we confirmed that
EN-Social reflects a network-level neural process that emerges from cellular firing across the
brain (Carlson et al., 2014; Hultman et al., 2018).

We next established EN-Social as a true measure of a social emotional brain state by testing the
generalizability of this network, a gold-standard machine-learning validation strategy (Vu et al.,
2018). Specifically, rather than simply testing whether EN-Social encoded object vs. social
interactions in the same group of animals performing additional sessions of the two-chamber
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behavioral assay, we tested whether the electome network we learned in the initial group of
mice generalized to a new cohort of C57 mice performing a different behavioral assay that also
guantifies social behavior (Fig. 3a). Likewise, we also examined EN-Social activity in two
orthogonal behavioral tasks to test whether this network was indeed encoding an emotional
state relevant to the valence of external stimuli. To emphasize, the machine learning electome
model was completely blind to these tasks and data, so this represents a test of its
generalizability. First, we acquired neural activity in eight new mice exposed to our Free
object/social interaction test (FOSIT; Fig. 3b). In this assay, the C57 subject mice are repeatedly
exposed to a novel object or a novel conspecific (age- and sex-matched) stimulus mouse.
Encounters in FOSIT occur in the absence of sub chambers used for the two-chamber assay,
such that the experimental mouse can also initiate social interactions with the stimulus mouse.
When we projected neural data obtained during FOSIT into our initial electome model, we
found that EN-Social activity was higher in reciprocal social interactions than it was in the object
condition (x%339=20.52 and P=1.3x10"* using Freidman’s test; P=0.002 using post-hoc two-tailed
sign-rank test with false discover rate correction; n=10 new mice). EN-Social activity was also
higher during non-reciprocated social interactions initiated by the experimental partner mouse
than it was during periods when the two mice were not interacting (P=0.01 using two-tailed
sign-rank test). Finally, EN-Social activity tended to be higher during reciprocal interactions than
the unilateral interactions, though these differences did not reach statistical significance
(P=0.06 using two-tailed sign-rank test).Together, our findings verified that EN-Social
generalized to new mice performing a different appetitive social task.

We then tested whether EN-Social indeed encoded an appetitive state (rather than simply
sensory information or salience) by testing whether the network signaled valence in other
orthogonal behavioral tasks. First, we subjected a new cohort of C57 mice to an intermittent
sucrose access test designed to model an appetitive state associated with food reward. Here,
new mice were implanted with microwire electrode arrays and individually housed in an arena
fitted with two nose poke holes. A syringe placed in the back of each hole dispensed 10ul water
in response to a nose poke. After several days of habituation, water vials were replaced with 2%
sucrose for 1.5 hours during the dark cycle (beginning two hours after lights off). Neural
recordings were acquired during intermittent access to sucrose and the subsequent water
consumption period and then projected into our initial electome model. EN-Social activity was
higher following nose pokes for sucrose than for water (Fig. 3C; P=0.016 using sign-rank test;
n=7 new mice), and EN-Social encoded the sucrose vs. water conditions to the same extent that
it encoded the social vs. object conditions in the FOSIT (U=129; P=0.48 using rank-sum test; AUC
=0.59+0.02 and 0.61+0.02, for EN-Social in the sucrose vs. water condition and the social vs.
object condition in the FOSIT. Thus, activity in EN-social also encoded reward in a behavioral
context that was unrelated to social behavior, demonstrating that EN-social activity more
generally reflected an appetitive brain state.

Second, we probed whether EN-Social activity encoded the location of mice on a classic
elevated plus maze assay used to model avoidance behaviors. In this assay, mice are placed on
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a large plus-shaped platform that is elevated off the floor. Two of the arms of the maze are
walled and the other two are open. The time that mice spend in the open arms of the maze is
increased by myriad anxiolytic manipulations and decreased by anxiogenic manipulations
(Krishnan et al., 2007; Marcinkiewcz et al., 2016; Rodgers et al., 1992). Furthermore, several
anxiety-related neural signatures are observed as animals explore the open arms of the maze
(Felix-Ortiz et al., 2016; Padilla-Coreano et al., 2016; Padilla-Coreano et al., 2019; Seidenbecher
et al., 2003); thus, the open arms of this assay are widely accepted as an environmental context
that induces an aversive anxiety-like brain state in C57 mice. When we projected neural data
acquired from C57 mice subjected to the elevated plus maze into our initial electome model, we
found that EN-Social encoded the open vs. closed arm location of mice [P=0.016 using two-
tailed sign-rank test; n=7 mice (5 mice from training set in a new, untrained-on behavioral
condition and 2 new mice)]. Strikingly, EN-social activity was lower in the open arm than the
closed arm (AUC=0.40+0.03 for open arm vs. closed arm, with an AUC below .5 signifying a
negative relationship but the same strength as an AUC=0.60 relationship), demonstrating that
network did not simply encode a brain state related an animal’s arousal state or the salience of
a sensory cues. Rather, since the strength of EN-Social encoding was the same for the FOSIT and
elevated plus maze test assays (U=73; P=0.84 for comparisons of |AUC-0.5]| for the two tasks
using a rank-sum test), our findings showed that EN-social encoded a brain state related to the
emotional valence of external stimuli. Taken together, these results show that EN-Social
encodes social emotional brain states in a manner that generalizes across mice and task.
Furthermore, this network encodes information related to the valence state of the animal.

After demonstrating that EN-Social encoded a social appetitive brain state, we next established
that the brain state was indeed causal. Here, we employed a strategy that enabled selective
manipulation of neural activity within in a key node of EN-Social network during concurrent
neurophysiological recordings and behavioral assessments. We targeted the prelimbic
cortex=>nucleus accumbens circuit element, a component of EN-social (4-11Hz, see Fig. 2A-C),
because a prior causal optogenetic had study implicated this circuit in appetitive social
behavior. We implanted mice with recording electrodes and bilateral stimulating fibers in
nucleus accumbens eight weeks after mice were infected with channel rhodopsin-2 (AAV5-
CamKII-Chr2, Fig. 4a) in prelimbic cortex, bilaterally (n=10); thus, targeting prelimbic cortex
terminals in nucleus accumbens. Four—six weeks following surgical recovery, we subjected
animals to our FOSIT assay during stimulations with blue light (473nm) to activate Chr2, or
yellow light (589nm) as a negative control (10Hz, 1mW bilaterally, 5ms pulse-width; Fig. 4b).
Critically, we confirmed activation of the prelimbic cortex—=> nucleus accumbens terminals in all
of the experimental animals (Fig. 4c, left), and we excluded mice that exhibited pronounced
local oscillatory responses to blue light stimulation across all of the implanted brain regions
(Fig. 4c, right; n=2) given our prior observations that supraphysiological optogenetic stimulation
can suppress network level activity (Hultman et al., 2018).

Causal activation of the prelimbic cortex—>nucleus accumbens circuit at 10Hz enhanced EN-
Social activity and increased social behavior. Specifically, we projected LFP data into our initial
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electome model and quantified EN-Social activity during periods of social interaction (Fig. 4d).
We found that blue light stimulation enhanced EN-Social activity compared to yellow light
stimulation (P=0.016 using sign-rank test; n=7 mice; Fig. 4e). Next, we compared the amount of
time mice spent socially interacting during periods of blue and yellow light stimulation. We
found that blue light stimulation increased social interaction time in the FOSIT (F1,13=5.76;
P=0.03 for stimulation effect using two-way RMANOVA,; Fig. 4f, left). No differences in object
interaction time were observed for the two light stimulation conditions (F1,13=1.67; P=0.22 for
stimulation effect using two-way RMANQOVA; Fig. 4f, right). Thus, our findings showed that
activation of the prelimbic cortex=> nucleus accumbens circuit enhanced both EN-Social activity
and increased social interaction. Taken together with our other validation experiments, these
results provided strong evidence that EN-Social was causally related to appetitive social
behavior.

After establishing EN-Social as a generalized and putatively causal appetitive social emotional
brain state under healthy conditions, we wondered whether the appetitive aspects of EN-Social
would be altered in a disease state associated with social deficits. Autism spectrum disorder
(ASD) is a pervasive neurodevelopmental disorder for which social deficits are a core feature.
They include deficits in social attention and engagement and deficient processing of social
information (Crawford et al., 2016; Dawson et al., 2012; Dawson et al., 2004; Klin et al., 2015).
Genetic manipulations are implicated in ~52% of ASD cases (Gaugler et al., 2014), and one such
high confidence gene is ANK2 which codes the Ankyrin-B protein (SFARI-GENE, 2020; Yang et
al., 2019). Importantly, unlike many other genes that are implicated in syndromic ASD, ANK2
mutations yield social deficits without impacting executive cognitive dysfunction. We previously
developed an ANK2 mouse model based on a gene mutation initially identified in a patient with
ASD showing social deficits with normal IQ and no seizures. Heterozygous mice show decreased
social behavior on multiple assays, decreased juvenile vocalizations, and increased cognitive
flexibility (Yang et al., 2019).

We implanted adult ANK2 male mice and their wild-type littermate controls with recording
electrodes and subjected them to neural recordings in the two-chamber social assay (Fig. 5a-b).
ANK2 mice exhibited normal social preference (U=64; P=0.86 using rank-sum test; Fig. 5c¢) and
did not show seizure activity (Fig. 5d-e). When we projected their LFP activity into our initial
electome model, ANK2 mice and their littermate controls both exhibited EN-Social activity that
was higher during social vs. object encounters (F1,16=30.5; P=4.7x107-5 for social vs. object
effect using a mixed-model ANOVA; n=11 and 7, for wild-type and ANK2 mice, respectively; Fig.
5f). Furthermore, no differences in EN-Social activity were observed across genotype (F1,6=0.58;
P=0.46 for genotype effect; F1,16=1.04; P=0.32 for interaction effect), demonstrating that EN-
Social continued to encode socially relevant information in the mutants. We then tested
whether mutants also encoded the appetitive component of EN-Social.

The discriminatory strength of EN-Social was directly correlated with social preference on a
mouse-by-mouse basis across the group of wild-type mice (F1,14=10.1; P=0.007 for interaction
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effect using Analysis of Covariance; P=0.004 and RHO=0.81 for wild-type mice using spearman
rank test; see Fig. 5g), demonstrating that the socially appetitive brain state we discovered in
our original group of training animals generalized to new mice. Strikingly, EN-Social activity was
not correlated with social preference in the ANK2 mutants (P=0.14 for ANK2 mutants using
spearman rank test; see Fig. 5h). Thus, EN-Social failed to encode the socially appetitive brain
state in ANK2 mice, confirming that EN-Social was altered in a disease state associated with
social deficits.

Discussion

The manner whereby cells, segregated across multiple brain regions, integrate their activity
over time to generate socially appetitive brain states remains an unaddressed question. Human
studies have sought to discover this network-level mechanism by probing changes in brain-wide
hemodynamic responses using fMRI and/or fast electrical activity across the scalp using EEG.
These studies have revealed multiple brain regions and several fast-neural oscillatory features
that putatively contribute to appetitive social processing (Fraiman et al., 2014; Rodriguez et al.,
1999; Sokolov et al., 2018). Nevertheless, fMRI is limited in its ability to resolve neural activity
at the timescale of cellular activity in the brain (i.e. milliseconds), EEG does not quantify neural
activity deep within the brain, and causality testing via direct manipulation of the human brain
remains a challenge. Preclinical animal studies, on the other hand, readily facilitate causality
testing of genetic and cellular/molecular mechanisms; however, approaches that monitor
electrical activity across multiple regions have yet to be broadly applied to the study of
emotional behavior. Given these limitations, network models that describe the causal
mechanism whereby fast neural activity throughout the depth of the brain integrates across
space and time to encode social-appetitive behavior remain elusive.

Here we implanted recording wires into eight cortical and limbic brain regions located through
the depth of the brain, allowing us to record millisecond-timescale electrical fluctuations as
mice engaged in behaviors used to model appetitive and aversive social brain states. Our neural
recordings yielded 5152 features that quantified fast timescale (i.e., milliseconds to hundreds of
milliseconds) region-specific activity and between-region circuit activity each second. Using
machine learning, we discovered the biophysiological patterns whereby these features
integrated across seconds of time to encode an appetitive social-emotional brain state. Not
only did we discover that activity in the resulting electome network encoded the onset and
termination of social interaction epochs (Fig. 1e), we also confirmed that the activation strength
of EN-Social was correlated with the social preference of individual mice (Fig. 1f). Both these
properties generalized to new groups of mice that were not used to discover the initial network
on a mouse-by-mouse basis (see Fig. 4g and supplemental Fig. S3), and the network generalized
across sex (unpublished findings). Strikingly, we found that EN-Social generalized to encode
active and passive social engagement in a different task that allows two freely behaving mice to
interact with each other (i.e., FOST), confirming its validity. EN-Social also encoded food reward.
Interestingly, the network exhibited some spectral overlap (based on brain regions,
frequencies, and directionality composition) with another electome network we recently found
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to signal goal progress (Vu et al., 2019), suggesting that the EN-Social may exploit general brain
circuits which encode reward. Finally, EN-Social encoded an emotional state related to anxiety
avoidance, demonstrating that the network signaled the valence of external stimuli.

Activity in the electome network correlated with cellular firing throughout the brain, confirming
its biological significance. The network was composed of theta oscillations (4-11Hz) that
synchronized across most of the regions we measured, and gamma oscillations that were most
prominent in the 30—40Hz and 50-56Hz bands. Directionality in the network was largely
organized within the theta oscillatory frequency, and this activity emerged from amygdala,
prelimbic cortex, and infralimbic cortex, relayed through cingulate cortex and nucleus
accumbens to medial dorsal thalamus, and converged in VTA.

Critically, directionality observed within a circuit by no means implies that information flow is
unidirectional (Granger A->B exceeding Granger B> A does not denote Granger A->B but not
Granger B>A), nor does directional Granger coherence preclude other regions serving as
anatomic relays (Granger A->B does not exclude Granger A>Z->B). Nevertheless, it is notable
that the activity pattern we discovered in EN-social mirrored findings from other causal studies
aimed at dissecting the individual anatomical circuits that contribute to social behavior. For
example, while hyperactivation of prelimbic cortex projection neurons disrupts social
preference (Yizhar et al., 2011), projection specific studies revealed that the prelimbic cortex >
nucleus accumbens circuit, but not the prelimbic cortex—=>amygdala or prelimbic cortex2>VTA
circuits mediates this effect (Murugan et al., 2017). This aligns with the directionality in EN-
Social which exhibits activity in the prelimbic cortex = nucleus accumbens circuit, but not the
prelimbic cortex—=>amygdala or prelimbic cortex=>VTA circuits.

In contrast to these previous findings, here we found that stimulation of the prelimbic cortex 2>
nucleus accumbens circuit induced social behavior. This discrepancy may be due to difference
in stimulation frequency used in the prior work (10Hz and 20Hz), the context in which social
encounters occurred (novel area vs. habituated arena), or difference in experimental design
(within-subjects vs. cross-subjects) (Murugan et al., 2017). Nevertheless, since we found that
10Hz stimulation of this pathway also enhanced EN-Social activity, we believe that our data
support a causal role of prelimbic cortex = nucleus accumbens and EN-Social in supporting
social behavior. Finally, prior work has also implicated the cingulate cortex=>amygdala circuit in
mediating aversive social emotional states (Allsop et al., 2018). While our first electome model
learned in a socially aversive context identified this same circuit pathway (Schaich Borg et al.,
2017), the cingulate cortex—>amygdala was not prominently featured in our current appetitive
social electome network. Thus, the network we discovered clarifies how distinct circuits
integrate in a normal physiological context to encode an appetitive social emotional brain state.
Notably, we found that EN-Social also encodes emotional valence in other orthogonal behavior
tasks including sucrose drinking and the elevated plus maze. Future analysis using adversarial
machine learning models may clarify whether and/or disambiguate which specific aspects of
EN-Social uniquely signal appetitive social behavior rather than generally signal all appetitive
brain states.

Our findings also established a role for altered EN-Social function in pathological emotional
brain states. ASD is a neurodevelopmental disorder characterized by social deficits, including
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aberrant social attention and engagement and deficient processing of social information
(Crawford et al., 2016; Dawson et al., 2012; Dawson et al., 2004; Klin et al., 2015). There is no
clear genetic basis for the disorder in many individuals, and a convergent cellular/molecular
pathway that globally mediates social deficits in ASD remains elusive. Conversely, network-level
deficits in processing faces, facial affect, and biological motion manifest in ASD, even in this
absence of known genetic underpinnings. For example, high-risk infants who later develop ASD
show atypical neural responses when viewing face stimuli and dynamic complex social stimuli
(Jones et al., 2016), and EEG studies demonstrate impaired face and facial affect processing in
children and adults with ASD (Dawson et al., 2005; Jokisch et al., 2005; Kroger et al., 2014;
Pavlova et al., 2004; Ulloa and Pineda, 2007). Together, these observations suggest that a
convergent network-level mechanism, rather than a convergent cellular/molecular-level
mechanism, may mediate social deficits in the disorder. Indeed, aberrant neural responses to
faces and facial affect are considered amongst the most promising ASD biomarker candidates
(Jeste and Geschwind, 2016; Loth et al., 2016; McPartland, 2016; Ruggeri et al., 2014).

Here, we subjected an ANK2-based mouse model of ASD to in vivo neural recordings during a
classic social behavioral assay. The ANK2 mutants exhibited altered function of EN-Social.
Specifically, EN-Social encoded the difference between social and object interactions, but it
failed to encode the social preference of individual ANK2 mutant animals. Thus, though EN-
Social successfully encoded a social brain state in the ‘high-confidence’ ASD model, the circuit
components of EN-Social that encode socially appetitive information in healthy animals were
altered in the mutants. These findings raise the intriguing potential that ANK2 mice may fail to
encode an appetitive brain state, or that a different set of brain circuits or networks may sub-
optimally encode socially appetitive behavior in ASD. Future experiments in which electome
networks are trained across larger groups of ANK2 mutants may clarify this question.

ASD behavior is typically quantified in mice using a battery of social behavioral tasks.
Nevertheless, it is well known that several mouse lines which exhibit genetic construct validity
with the human disorder fail to exhibit measurable deficits in specific assays. For example, we
found that our ANK2 mice exhibited normal social preference in our two-chamber social
preference assay. This is consistent with our prior observations in this mouse line (Yang et al.,
2019), and another mouse line engineered to exhibit construct validity with another high
confidence risk gene, SHANK3 (SFARI-GENE, 2020; Wang et al., 2016). On the other hand, both
lines exhibit clear deficits in separate social-behavioral assays, suggesting that our approach of
quantifying circuit/network activity may have higher sensitivity for detecting the
pathophysiological processes underlying social deficits in ASD than behavioral measurements in
isolation.

Supporting this notion, our prior experiments in normal mice exposed to social stimuli
identified circuit components that shared spectral features with EN-Social (including
synchronized theta oscillations between prelimbic cortex, nucleus accumbens, cingulate cortex,
and medial dorsal thalamus), and SHANK3 mutant mice showed diminished activation of
several of these circuits (Wang et al., 2016). In our other work, we also found EN-Social
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dysfunction in a mouse model of ASD that was based on stress-induced manipulations of the
prenatal environment (unpublished findings). These observations suggest that many causal ASD
manipulations may globally disrupt the encoding of socially appetitive brain states.
Alternatively, different and likely less efficient networks may emerge to encode socially
appetitive brain states at key developmental timepoints. Both outcomes suggest that EN-Social
dysfunction may reflect a convergent mechanism underlying social deficits in ASD, and
additional experiments are warranted to directly test these hypotheses.

There are no pharmacological agents that treat social deficits in ASD. The identification and
validation of a socially appetitive brain state in normal mice and ASD models raises the
potential that brain spatiotemporal dynamics can be exploited to develop ASD diagnostics and
stimulation-based therapeutics that ameliorate social dysfunction in individuals with ASD.

Figure Legends

Figure 1: An electome network encodes a social emotional brain state. a) Schematic of the
two-chamber social assay and b) Automated scoring approach used to quantify social and
object interaction. c) Mice exhibit stable interaction times across repeated sessions (n=36
mice). d) Machine learning was used to discover six networks composed of multi-regional LFP
activity [n=28 mice; amydgala (AMY), Cingulate cortex (Cg), Infralimbic cortex (IL), Prelimbic
cortex (PrL), Nucleus Accumbens (NAc), Ventral Hippocampus (Hip), Medial dorsal thalamus
(MD), and ventral tegmental area (VTA) ]. The supervised electome network (blue; EN-Social)
showed the strongest classification of social vs. object interactions. e) EN-Social event-related
activity. Blue highlights identify time windows subjected to supervision by class (social vs.
object). Data shown as mean+95% C.l. f) Decoding accuracy of EN-Social activity within animal
versus social preference (P=0.002 using spearman correlation).

Figure 2: Social-emotional electome network maps to biological features. a) Power and
synchrony measures that compose EN-Social. Brain areas and oscillatory frequency bands
ranging from 1 to 56Hz are shown around the rim of the circle plot. Spectral power measures
that contribute to the electome are depicted by the highlights around the rim, and cross
spectral (i.e., synchrony) measures are depicted by the lines connecting the brain regions
through the center of the circle (electome activity is shown at a relative spectral density
threshold of 0.33, signifying the 85 percentile of retained features). b) Granger offset
measures were used to quantify directionality within the electome network. Prominent
directionality was observed across the theta (4—-11Hz) frequency band (shown at a spectral
density threshold of 0.33). Histograms quantify the number of lead and lagging circuit
interactions for each brain region. c) Schematic of signal directionality within EN-Social. d)
Cellular firing preference for object vs. social interactions during two-chamber assay (cellular
activity analyzed from session #5). Significant differences were observed between the two
conditions for 112/326 cells (P<0.05 using rank-sum test). e) Representative example of cell
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that showed activity correlated with EN-Social. Horizontal red and green lines signify object and
social interactions, respectively. f) Cellular firing vs. EN-Social activity across the multi-regional
population of cells (P<0.05 using permutation test; recorded from session #5 of two-chamber
assay).

Figure 3: Electome network selectively generalizes to appetitive social-emotional brain states.
a) Strategy for validating social electome network (EN-Social). b) Activity in the EN-Social
network increased during distinct social appetitive brain states (n = 10 new mice; P<0.05 using
Friedman’s test, and post-hoc testing using sign-rank test with false discover rate correction).
The position of the subject mouse is shown relative to an object or another experimental
mouse on the bottom. c) EN-Social activity encoded the difference between water and sucrose
consumption (n=6 new mice) and d) encoded (negatively) the difference between the open and
closed arms of an elevated plus maze (n=7 mice, 2 of which were new to the study).

Figure 4. Causal activation of the prefrontal cortex to nucleus accumbens circuit element
enhances EN-Social activity. a) Targeting strategy used to activate Prelimbic cortex terminals in
Nucleus accumbens. b) Experimental paradigm for FOSIT. c¢) Power spectral plots showing
increased 10Hz oscillatory activity during blue light stimulation. Plots show representative
spectral patterns from a mouse during blue (left) and yellow (middle) light stimulation trials
included in analysis. Representative plots from a mouse that showed increased 10Hz activity
across all brain regions during blue light stimulation is shown to the right. d) Strategy used for
EN-Social validation. e) EN-Social activity during blue light stimulation. Network activity was
pooled across periods of social interaction by the subject mice and compared between the blue
and yellow light stimulation periods. f) Social (left; P<0.05) and object interaction time (right;
P>0.05) during blue and yellow light stimulation.

Figure 5: Electome network fails to encode social preference in a genetic model of Autism
spectrum disorder. a-b) ANK2 mice and their littermate controls were subjected to the two-
chamber social assay. ¢) Both ANK2 mice and their littermate controls showed preference for
social interactions (P>0.05). d-e) Representative LFP activity in d) wild type and e) ANK2 mice
showing no seizure activity. f) EN-Social activity during social and object interactions (P<0.05 for
conditions; P>0.05 for genotype effects). g-h) EN-Social activity vs. appetitive social behavior in
g) wild-type mice (P<0.05) and h) ANK2 mutants (P>0.05).

Acknowledgements

We would like to thank Vann Bennett for contributing the ANK2 mutant mice; Staci Bilbo, Cagla
Eroglu, Carina Block, and Rainbo Hultman for comments on this work; Derek Southwell, and
Timothy Nyangacha for technical support. This work was supported by WM Keck Foundation
grant to KD and Fan Wang; NIH grant ROLMH120158 to KD; NIH grant R21MH104316 to KD and
YHJ; NIH grant RO1ES025549 to KD, SB, and CE; and NIH grant 1RO1EB026937 to DEC and KD. A

14


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

special thanks to Freeman Hrabowski, Robert and Jane Meyerhoff, and the Meyerhoff
Scholarship Program.

References

Allsop, S.A., Wichmann, R., Mills, F., Burgos-Robles, A., Chang, C.J., Felix-Ortiz, A.C., Vienne, A.,
Beyeler, A., Izadmehr, E.M., Glober, G., et al. (2018). Corticoamygdala Transfer of Socially
Derived Information Gates Observational Learning. Cell 173, 1329-1342 e1318.

Carlson, D., David, L.K., Gallagher, N.M., Vu, M.T., Shirley, M., Hultman, R., Wang, J., Burrus, C.,
McClung, C.A., Kumar, S., et al. (2017). Dynamically Timed Stimulation of Corticolimbic Circuitry
Activates a Stress-Compensatory Pathway. Biol Psychiatry 82, 904-913.

Carlson, D., Schaich Borg, J., Dzirasa, K., and Carin, L. (2014). On the relations of LFPs & Neural
Spike Trains Advances in Neural Information Processing Systems 27.

Crawford, H., Moss, J., Oliver, C., Elliott, N., Anderson, G.M., and McCleery, J.P. (2016). Visual
preference for social stimuli in individuals with autism or neurodevelopmental disorders: An
eye-tracking study. Molecular autism 7, 24.

Dawson, G., Jones, E.J., Merkle, K., Venema, K., Lowy, R., Faja, S., Kamara, D., Murias, M.,
Greenson, J., Winter, J., et al. (2012). Early behavioral intervention is associated with
normalized brain activity in young children with autism. J Am Acad Child Adolesc Psychiatry 51,
1150-1159.

Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., and Liaw, J. (2004). Early
social attention impairments in autism: Social orienting, joint attention, and attention to
distress. Developmental psychology 40, 271-283.

Dawson, G., Webb, S.J., and McPartland, J. (2005). Understanding the nature of face processing
impairment in autism: Insights from behavioral and electrophysiological studies. Developmental
neuropsychology 27, 403-424.

Felix-Ortiz, A.C., Burgos-Robles, A., Bhagat, N.D., Leppla, C.A., and Tye, K.M. (2016).
Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the
medial prefrontal cortex. Neuroscience 321, 197-209.

Ferguson, B.R., and Gao, W.J. (2018). Thalamic Control of Cognition and Social Behavior Via
Regulation of Gamma-Aminobutyric Acidergic Signaling and Excitation/Inhibition Balance in the
Medial Prefrontal Cortex. Biol Psychiatry 83, 657-669.

Fraiman, D., Saunier, G., Martins, E.F., and Vargas, C.D. (2014). Biological motion coding in the
brain: analysis of visually driven EEG functional networks. PLoS One 9, e84612.

15


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Gaugler, T., Klei, L., Sanders, S.J., Bodea, C.A., Goldberg, A.P., Lee, A.B., Mahajan, M., Manaa, D.,
Pawitan, Y., Reichert, J., et al. (2014). Most genetic risk for autism resides with common
variation. Nat Genet 46, 881-885.

Gunaydin, L.A., Grosenick, L., Finkelstein, J.C., Kauvar, I.V., Fenno, L.E., Adhikari, A., Lammel, S.,
Mirzabekov, J.J., Airan, R.D., Zalocusky, K.A., et al. (2014). Natural neural projection dynamics
underlying social behavior. Cell 157, 1535-1551.

Hultman, R., Mague, S.D,, Li, Q., Katz, B.M., Michel, N,, Lin, L., Wang, J., David, L.K., Blount, C.,
Chandy, R., et al. (2016). Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic
Dynamics Drives Stress-Induced Emotional Pathology. Neuron 91, 439-452.

Hultman, R., Ulrich, K., Sachs, B.D., Blount, C., Carlson, D.E., Ndubuizu, N., Bagot, R.C., Parise,
E.M., Vu, M.T., Gallagher, N.M., et al. (2018). Brain-wide Electrical Spatiotemporal Dynamics
Encode Depression Vulnerability. Cell 173, 166-180 e114.

Jeste, S.S., and Geschwind, D.H. (2016). Clinical trials for neurodevelopmental disorders: At a
therapeutic frontier. Science translational medicine 8, 321fs321.

Jokisch, D., Daum, I., Suchan, B., and Troje, N.F. (2005). Structural encoding and recognition of
biological motion: evidence from event-related potentials and source analysis. Behav Brain Res
157, 195-204.

Jones, E.J., Venema, K., Earl, R., Lowy, R., Barnes, K., Estes, A., Dawson, G., and Webb, S.J.
(2016). Reduced engagement with social stimuli in 6-month-old infants with later autism
spectrum disorder: A longitudinal prospective study of infants at high familial risk. ] Neurodev
Disord 8, 7.

Kim, C.K., Yang, S.J., Pichamoorthy, N., Young, N.P., Kauvar, |., Jennings, J.H., Lerner, T.N.,
Berndt, A., Lee, S.Y., Ramakrishnan, C., et al. (2016). Simultaneous fast measurement of circuit
dynamics at multiple sites across the mammalian brain. Nature methods 13, 325-328.

Klin, A., Shultz, S., and Jones, W. (2015). Social visual engagement in infants and toddlers with
autism: Early developmental transitions and a model of pathogenesis. Neurosci Biobehav Rev
50, 189-203.

Krishnan, V., Han, M.H., Graham, D.L., Berton, O., Renthal, W., Russo, S.J., Laplant, Q., Graham,
A., Lutter, M., Lagace, D.C,, et al. (2007). Molecular adaptations underlying susceptibility and
resistance to social defeat in brain reward regions. Cell 131, 391-404.

Kroger, A., Bletsch, A., Krick, C., Siniatchkin, M., Jarczok, T.A., Freitag, C.M., and Bender, S.
(2014). Visual event-related potentials to biological motion stimuli in autism spectrum
disorders. Soc Cogn Affect Neurosci 9, 1214-1222.

16


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Kumar, S., Hultman, R., Hughes, D., Michel, N., Katz, B.M., and Dzirasa, K. (2014). Prefrontal
cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat Commun 5,
4537.

Loth, E., Spooren, W., Ham, L.M., Isaac, M.B., Auriche-Benichou, C., Banaschewski, T., Baron-
Cohen, S., Broich, K., Bolte, S., Bourgeron, T., et al. (2016). Identification and validation of
biomarkers for autism spectrum disorders. Nat Rev Drug Discov 15, 70-73.

Marcinkiewcz, C.A., Mazzone, C.M., D'Agostino, G., Halladay, L.R., Hardaway, J.A., DiBerto, J.F.,
Navarro, M., Burnham, N., Cristiano, C., Dorrier, C.E., et al. (2016). Serotonin engages an anxiety
and fear-promoting circuit in the extended amygdala. Nature 537, 97-101.

McPartland, J.C. (2016). Considerations in biomarker development for neurodevelopmental
disorders. Curr Opin Neurol 29, 118-122.

Morrison, I., Lloyd, D., di Pellegrino, G., and Roberts, N. (2004). Vicarious responses to pain in
anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 4, 270-
278.

Moy, S.S., Nadler, J.J., Young, N.B., Perez, A., Holloway, L.P., Barbaro, R.P., Barbaro, J.R., Wilson,
L.M., Threadgill, D.W., Lauder, J.M., et al. (2007). Mouse behavioral tasks relevant to autism:
phenotypes of 10 inbred strains. Behav Brain Res 176, 4-20.

Murugan, M., Jang, H.J., Park, M., Miller, E.M., Cox, J., Taliaferro, J.P., Parker, N.F., Bhave, V.,
Hur, H., Liang, Y., et al. (2017). Combined Social and Spatial Coding in a Descending Projection
from the Prefrontal Cortex. Cell 171, 1663-1677 e1616.

Padilla-Coreano, N., Bolkan, S.S., Pierce, G.M., Blackman, D.R., Hardin, W.D., Garcia-Garcia, A.L.,
Spellman, T.J., and Gordon, J.A. (2016). Direct Ventral Hippocampal-Prefrontal Input Is Required
for Anxiety-Related Neural Activity and Behavior. Neuron 89, 857-866.

Padilla-Coreano, N., Canetta, S., Mikofsky, R.M., Alway, E., Passecker, J., Myroshnychenko,
M.V., Garcia-Garcia, A.L., Warren, R., Teboul, E., Blackman, D.R,, et al. (2019). Hippocampal-
Prefrontal Theta Transmission Regulates Avoidance Behavior. Neuron 104, 601-610 e604.

Pavlova, M., Lutzenberger, W., Sokolov, A., and Birbaumer, N. (2004). Dissociable cortical
processing of recognizable and non-recognizable biological movement: analysing gamma MEG
activity. Cereb Cortex 14, 181-188.

Phillips, M.L., Robinson, H.A., and Pozzo-Miller, L. (2019). Ventral hippocampal projections to
the medial prefrontal cortex regulate social memory. Elife 8.

Rodgers, R.J., Lee, C., and Shepherd, J.K. (1992). Effects of diazepam on behavioural and
antinociceptive responses to the elevated plus-maze in male mice depend upon treatment
regimen and prior maze experience. Psychopharmacology (Berl) 106, 102-110.

17


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., and Varela, F.J. (1999).
Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430-
433.

Ruggeri, B., Sarkans, U., Schumann, G., and Persico, A.M. (2014). Biomarkers in autism
spectrum disorder: The old and the new. Psychopharmacology (Berl) 231, 1201-1216.

Schaich Borg, J., Srivastava, S., Lin, L., Heffner, J., Dunson, D., Dzirasa, K., and de Lecea, L.
(2017). Rat intersubjective decisions are encoded by frequency-specific oscillatory contexts.
Brain Behav 7, e00710.

Seidenbecher, T., Laxmi, T.R., Stork, O., and Pape, H.C. (2003). Amygdalar and hippocampal
theta rhythm synchronization during fear memory retrieval. Science 301, 846-850.

SFARI-GENE (2020). https://gene.sfari.org/about-gene-scoring/.

Sokolov, A.A., Zeidman, P., Erb, M., Ryvlin, P., Friston, K.J., and Pavlova, M.A. (2018). Structural
and effective brain connectivity underlying biological motion detection. Proc Natl Acad Sci US A
115, E12034-E12042.

Talbot, A., Dunson, D., Dzirasa, K., and Carlson, D. (2020). Supervised Autoencoders Learn
Robust Joint Factor Models ofNeural Activity. arxiv.

Ulloa, E.R., and Pineda, J.A. (2007). Recognition of point-light biological motion: mu rhythms
and mirror neuron activity. Behav Brain Res 183, 188-194.

Vu, M.T., Adali, T., Ba, D., Buzsaki, G., Carlson, D., Heller, K., Liston, C., Rudin, C., Sohal, V.,
Widge, A.S., et al. (2018). A Shared Vision for Machine Learning in Neuroscience. J Neurosci.

Vu, M.T., David, L.K., Thomas, G., Vagwala, M., Burrus, C., Gallagher, N.M., Wang, J., Blount, C.,
hughes, D.N., Adamson, E., et al. (2019). Brain-wide electrical spatiotemporal dynamics encode
reward anticipation. BioRxiv.

Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z., and Hu, H. (2011). Bidirectional control of social
hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693-697.

Wang, X., Bey, A.L., Katz, B.M., Badea, A., Kim, N., David, L.K., Duffney, L.J., Kumar, S., Mague,
S.D., Hulbert, S.W., et al. (2016). Altered mGIuR5-Homer scaffolds and corticostriatal
connectivity in a Shank3 complete knockout model of autism. Nat Commun 7, 11459.

Yang, R., Walder-Christensen, K.K., Kim, N., Wu, D., Lorenzo, D.N., Badea, A., Jiang, Y.H., Yin,
H.H., Wetsel, W.C., and Bennett, V. (2019). ANK2 autism mutation targeting giant ankyrin-B
promotes axon branching and ectopic connectivity. Proc Natl Acad SciUS A 116, 15262-15271.

18


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Yizhar, O., Fenno, L.E., Prigge, M., Schneider, F., Davidson, T.J., O'Shea, D.J., Sohal, V.S., Goshen,
., Finkelstein, J., Paz, J.T., et al. (2011). Neocortical excitation/inhibition balance in information
processing and social dysfunction. Nature 477, 171-178.

19


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

a Two-Chamber Social Interaction Test

Social (C3H) Object

‘\

x

300 Social Interaction AMY sty _. 07
@ — Object Interaction Cg iy 8 [
o 250 ooy
= 200 W L s s >
= ufiglsfiitiyhgy - Machine 2
S 150 Prl ) S 0.5
= NAC #ttu iy Learning =
B 100 | g—0—o 00— g
T Hip M\MMWMW 2 04
c 30 )
T ) MD by § 03
123 456 7 8 9 10 VTA MM | 5y < 123456
Session 500ms Electome Network
e Interaction Start Interaction End f O
0.45 o) R=0.56; P = 0.002
2 o
S 0.4 Py 0.8 ..
g 2 o o% 77
<_E0-35 5 06'—-—.—*.”
.S ) ]
;.J 0.3 o 04
. NS,
Z 0.25 c 0.2
w > o
©
2 0
255530 1 232001 2 £ o 02 04 06 08

Time Offset (s) Time Offset (s) Social Preference

*asuadl| [euoneulalu] 07 AN-DN-AG-DD © Japun a|gejieAe apew si 1| “lapuny/loyine ay) si (mainal Jaad Ag paiyiuad Jou sem
yoiym) Jundaid siyy Joy sapjoy ybuAdoo syl 0z0z ‘g AN palsod uoisian siy) 2 ¥ET8T TO'L0°0202/TOTT 0T/Bi0"10p//:sdny :lop Jundaid AixHolg


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

d 3L

o N __ Amy
2]l I 9
= M — [ IL
3 18[ mE PrL
% 38[ i NAC
o 3[ =—mm [ ﬂp
161[ - MD
40 e VTA
1 05 0 0.5 1
Preference

o

Directionality (4-11Hz)

|Amy| cg | 1L | PrL|NAC] Hip | MD]vTA]

< 7
©

2ol_l n B0 -

g 1
-0 || | []

|Amy| cg | 1L | PrL|NAC] Hip | MD]VTA]

€ .

30

Cellular Firing Rate (Hz)

M8893_PrL_01a |0.8
R=0.13

1200pV

0.2ms

o o
> o

EN-Social Actvity

©
[N}

0
0 10 20 30 40 50 60

Time (s)

C

m (+) Correlated

(-) Correlated
Uncorrelated

Corr Cells
Amy| 11 70
Cg | 11| 67
Hip 1 7
IL 0 7
MD 4 19
Nac 9 57
PrL 3 20
VTA 18 79

n =326 Cells

ALINMYNOILLD3dIA

17.5%

*asuddl| [euoneulau] 07 AN-DN-AG-DD © Japun a|qejieAe apew si 1| “lapuny/loyine ay) si (mainal Jaad Aq paiyiuad Jou sem
yoiym) Juudaid siyy Joy sapjoy ybuAdoo syl 0z0z ‘g AN palsod uoisian siy 2 ¥ET8T TO'L0°0202/TOTT 0T/Bi0"10p//:sdny :iop jundaid AixHoig


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

d

Data Collection »» ?Hypothesis Testing?

Emotional Behavioral Assays

Validation Strategy

Electome N; Activity = f(LFPs)

Amy

Cg
IL
L —|
NACc
Hip

hapd

MD
VTA

LFPs

Electome Network

Coefficients

Electome NI

A7

/ Electome N

2

!

Electome N,

Electome Network
Activity Scores

Sucrose Consumption Assay

Ve

7/
. o
| ®
| * |
| ’\ |
‘ y ;
Sucrose
12 P=0.016 3
> 10 «
E 08 %
= 0.6 K:
8 04 S
A —————9 E
E 0.2 .—/ pt
0 g
<

Water

Sucrose

22 0 2
Poke Offset (s)

-4

Free Object and Social Interaction Test

0

T

-

e

100,

P<0.01
P=0.06
P<0.02

EN-Social Actvity (% Change)

d

0.
0.
0.
0.
0.
0.

EN-Social Actvity

i;

@f’

x

7

Elevated Plus Maze

open

-

closed

6 P=0.016

5
4
3
2
1

0

closed arm

open arm


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

d

Free Object and Social Interaction Test

s

T

o

-

S

e

Block

e

Validation Strategy

Data Collection »» ?Hypothesis Testing?

S 0 O S

S O

1

2

3

*P=0.016

U 80,
& 80
Electome N; Activity = f(LFPs) S
Amy ElectomeN7 6 60
§ Cg 8\0,
2 g <. 40
S —
T I % / Electome N2 E
o -
g P D K — S20
< NAc W\ =
g N g
— Hip \ (@)
©
S MD 2
8 Electome N, E -20
UEJ VTA n
LFPs Electome Network Electome Network

Coefficients Activity Scores

C

Blue Yellow
55
T
Amy <
g
W10 ¥ B
55 ;
¥
PrL =
o
g
[N ik
55
N
NAc <
o s !
O | imareprins
(i AT SR S T .= IR
5s 5s
Laser ON

Laser OFF —I

Interaction Time (s)

60

40

20

Social
r *P=0.02

Interaction Time (s)

80

60

40

20

Blue
l60
y
Pnisw e B
)
k)
. 3]
2
o
a
W s e H-40
5s

Object
P=0.23

*asuddl| [euoneulau] 07 AN-JN-AG-DD © Japun a|gejieAe apew si 1| “lapuny/loyine ay si (mainal Jaad Ag paiyiuad Jou sem
yoiym) Jundaid siyy Joy sapjoy 1ybuAdoo syl 0zoz ‘g Ainc palsod uoisian siy) *2¥ET8T TO'L0°0202/TOTT 0T/Bi0"10p//:sdny :iop Jundaid Aixyoig


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.181347. this version posted July 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

EN-Social Actvity

o
-

© o o o o
N W DN Ul O

o

Social (C3H) Object

N B
oftie

Social Preference

0.6~

0.5+

0.4

0.3+

0.2+

0.1+

AMY il i A g pp Ay

T N e A T R

e At MR Pt g Al
o Ay NAC i iy sy
T s e P A

P<5x10-5

— WT
— HET

Object Social

500ms [2mV

08 WT
S 0.7

o [ J
‘q—; 0.6 ®
> 05 & °
>

O 04

g 03

[

S 02

S 01 P=0.004

=z R=0.81

0
0 02 04 06
Social Preference

Area Under Curve (ROQ)

0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

0

MDAt Ay I WA Wl
VTA et i gt A o gy

500ms
HET
{ ]
.
88 Ny
P=0.14
0 02 04 0.6

Social Preference


https://doi.org/10.1101/2020.07.01.181347
http://creativecommons.org/licenses/by-nc-nd/4.0/

