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Abstract
Motor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural
basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have
been restricted to artificial, repetitive paradigms, far removed from natural movements performed “in the wild.”
Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial recordings
from 12 human subjects during thousands of spontaneous arm reach movements, observed over several days
for each subject. These naturalistic movements elicited cortical spectral power patterns consistent with findings
from controlled paradigms, but with an important difference: there was considerable neural variability across
subjects and events. We modeled inter-event variability using ten behavioral and environmental features; the
most important features explaining this variability were reach angle and recording day. Our work is among the
first studies connecting behavioral and neural variability across cortex in humans during spontaneous move-
ments and contributes to our understanding of long-term naturalistic behavior.

Natural human movements are remarkable in their complexity
and adaptability, relying on precisely coordinated sensorimotor
processing in several cortical regions [1–4]. Much of our un-
derstanding on the neural basis of movement has been gained
by studying constrained, repetitive movements in the labora-
tory, but it remains unclear how well these results generalize to
the spontaneous actions observed in the real world [5]. Focus-
ing on more naturalistic behaviors enriches our understanding
of the relationship between motor behavior and cortical activa-
tion [6–8]. Further, these data and insights motivate develop-
ment of more robust brain-computer interfaces to restore im-
paired movement and sensation across diverse contexts [9–13].

The history of modern neuroscience has seen a consistent trend
towards studies incorporating more naturalistic elements. The
use of stimuli, environments, and tasks with increasing eco-
logical relevance to the animal has enhanced our understand-
ing of how the brain functions, complementing results from
more artificial laboratory paradigms. For instance, early neu-
ral recordings focused on anesthetized animals, but the transi-
tion to experiments with awake, behaving animals transformed
our knowledge of sensory, motor, and cognitive brain func-
tions [14–18]. More recently, researchers have moved towards
using natural auditory and visual stimuli, finding novel neural
responses not seen with artificial stimuli [19–24]; moreover,
features of natural stimuli often better explain the observed vari-
ance in neural activity [25, 26]. In human neuroscience and be-
havior, advances in technology have enabled an expanded focus
on a variety of mobile outdoor paradigms [27–31], spatial nav-
igation tasks within immersive virtual environments [32, 33],
and tasks involving active social interactions [34–37].

Intracranial electrophysiological recordings offer a unique view
into the neural correlates of human behavior. These recordings,
obtained using electrocorticography (ECoG), contain physio-

logically relevant spectral power patterns corresponding to a va-
riety of behaviors [38–42]. ECoG recording electrodes are im-
planted on the cortical surface, beneath the skull and dura; these
signals are thus cleaner and less susceptible to artifact contam-
ination than signals from electroencephalography (EEG) [43].
Although implanting ECoG electrodes is an invasive neurosur-
gical procedure, the recordings are highly informative and have
a combination of high spatial and temporal resolution not found
in other commonly used human neuroimaging or neural record-
ing modalities [44–46]. During instructed upper limb move-
ments, ECoG spectral power in fronto-parietal cortical areas,
particularly over sensorimotor cortex, has been shown to tran-
siently increase at high frequencies and decrease at low frequen-
cies [4, 47, 48]. Similar spectral power changes have been
observed in EEG and local field potential recordings across a
wide variety of movement behaviors [49–53]. An important at-
tribute of ECoG recordings is that the patients are being continu-
ously monitored over long periods of time, often approximately
a week, providing unique opportunities to collect long-term
datasets during unconstrained, uninstructed movements [54–
59]. The behavioral and neural variability of such spontaneous,
naturalistic movements have remained unexplored.

Analyzing naturalistic data presents formidable challenges, but
recent innovations in data science make it possible to extract
meaningful findings from increasingly complex, including nat-
uralistic and opportunistic, datasets [62]. Without prior exper-
imental design or direct behavioral measurements, a critical
first step in analyzing naturalistic data had previously been la-
borious manual annotation of behavior. Such tedious labeling
severely limits the amount of usable data and is prone to subjec-
tive error. Fortunately, recent advances in computer vision and
machine learning have enabled substantial automation of the
analysis and quantification of naturalistic behaviors [60, 63–66].
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Fig. 1: Schematic overview of data processing, analysis, and modeling framework. (a)–(b) Based on continuous video
monitoring of each subject, trajectories of the left and right wrists (WristL and WristR in (b)) were estimated using neural
networks [60] and automatically segmented into move (gray) and rest (white) states as shown in (b) [61]. (c)–(d) Raw multi-
electrode electrocorticography (ECoG) was filtered and re-referenced; bad electrodes (e.g., ones with artifacts) were removed
from further analysis. (e) Movement onset events detected from video as shown in (b) were aligned with ECoG data using
timestamps. (f) For each move event at each electrode, spectral power was computed and visualized as a log-scaled spectrogram.
(g) Summarizing across events and electrodes, we projected the spectral power from electrodes onto 8 cortical regions based
on anatomical registration and computed the median power across movement events. (h) Our data included 12 subjects; their
electrode placements are shown in MNI coordinates. Five of the subjects had electrodes implanted in their right hemispheres
(denoted by asterisks). For consistency of later analyses, we mirrored the locations of these electrodes as shown here. (i) To
partially explain the event-by-event neural variability, we fit multiple linear regression models at each electrode using behavioral
features extracted from the videos.

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.17.047357doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047357
http://creativecommons.org/licenses/by-nd/4.0/


Behavioral & neural variability of naturalistic movements 3

Even so, making sense of the recorded behaviors remains chal-
lenging in the absence of a rigid, trial-based structure. Behav-
ioral and neural variables are often continuous valued, not dis-
crete, and the complex interactions of multiple variables make it
difficult to compare averaged data across conditions [67]. One
widely used approach to address this problem is the use of re-
gression models. These models attempt to explain neural vari-
ability via regression using behavioral and environmental input
features and have been effectively employed across many be-
havioral paradigms and neural recording modalities [68–71].

In this paper, we analyzed opportunistic, clinical intracranial
recordings from 12 human subjects across 3–5 days each as we
observed their naturalistic spontaneous arm movements. We
developed an automated approach to identify and character-
ize thousands of spontaneous arm movements, enabling scal-
able analysis of video that was acquired simultaneously with
the intracranial recordings. We characterized the variability of
both naturalistic upper-limb reaching movements and the cor-
responding changes in cortical spectral power. Based on find-
ings from controlled experiments, we hypothesized that natu-
ralistic reaches are associated with transient decreases in low-
frequency power and increases in high-frequency power, local-
ized to fronto-parietal sensorimotor cortices [4]. Our results
support this hypothesis on average; however, we show that there
is considerable natural variability in spectral power both within
and across subjects. Next, we developed a multiple-variable lin-
ear regression model of the single-event spectral power variabil-
ity based on 10 movement and environmental features, includ-
ing reach angle, reach duration, day of recording, and presence
of spoken words. We found that vertical reach angle and day of
recording features best account for the observed neural variabil-
ity across movement events, but much of the variance remains
unexplained by the linear model. To support reproducibility
and facilitate future research in naturalistic human movement
analysis, we have made our curated dataset containing synchro-
nized behavioral and neural data publicly available.

Results
We describe behavioral and neural variability observed in multi-
electrode intracranial neural recordings and video obtained op-
portunistically from 12 human subjects during thousands of
spontaneous arm movements. Each subject had been implanted
with electrocorticography (ECoG) electrodes for clinical mon-
itoring, and we analyzed 3–5 days of simultaneously recorded
video and electrophysiological data following surgery. We de-
veloped an automated and scalable approach to tracking upper
limb movements based on machine learning and then focused
on analyzing spectral power changes associated with move-
ments of the wrist contralateral to the hemisphere with elec-
trode implantation (Fig. 1a–g). ECoG monitoring was clini-
cally motivated, so there was substantial variation in electrode
placement among subjects (Fig. 1h). Because our focus was
on motor behaviors, we chose to analyze 12 subjects who were
generally active during their monitoring and also had electrodes
implanted over fronto-parietal sensorimotor cortical areas.

Naturalistic movements and intracortical spectral power

The goal of our data processing pipeline was to automate both
the robust identification of wrist movement initiation events

and the description of behavioral and environmental features
around each event. For each subject, we obtained simultane-
ously recorded neural activity and movement trajectories imme-
diately before and after the initiation of each movement event
(Fig. 1e). Briefly, two-dimensional wrist trajectories were esti-
mated from the video recordings [60] and then segmented into
move or rest states [61]. For simplicity of interpretation, we fo-
cused on movement initiation events of the wrist contralateral to
the ECoG implantation hemisphere, detected during transitions
from rest to move states. Movements of primarily the ipsilat-
eral arm and of both arms simultaneously are not considered in
our analysis until the modeling described in a later section.

The spontaneous wrist movement events we identified include
a wide variety of upper-limb movement behaviors. Because
subjects were sitting in bed, a majority of the movements we
analyzed involved relatively little movement of the shoulders
and elbows (see, for example, Fig. 2a). Most of the detected
movements corresponded to actions such as reaching for a
phone, eating, or touching one’s face. We find high variabil-
ity in the contralateral wrist’s 2D position and displacement
following movement initiation (Fig. 2a–b). This large behav-
ioral variability reiterates how spontaneous arm movements
are distinct from instructed, repeated movements. Confirming
that our event detection algorithm primarily identified contralat-
eral wrist movements, the median contralateral wrist displace-
ment across events notably increases during movement initia-
tion compared to ipsilateral wrist displacement for all subjects
(Fig. 2c).

We find a consistent set of group-level spectral power pat-
terns, largely localized in fronto-parietal sensorimotor cortical
regions. After aligning curated wrist movement events with
preprocessed ECoG recordings, we computed time-frequency
spectral power at each electrode and then visualized group-
level spectral patterns projected onto common regions of inter-
est for all subjects. Generally, we find the expected pattern of
low-frequency (∼4–30 Hz) spectral power decrease and high-
frequency (∼50–120 Hz) power increase during movement ini-
tiation across multiple cortices (Fig. 3), as reported in previ-
ous controlled movement experiments [4]. Because ECoG elec-
trode placement varies across subjects, we visualize group-level
neural activity by projecting power at every electrode onto 8
common cortical regions of interest [72]: middle frontal, pre-
central, postcentral, inferior parietal, supramarginal, superior
temporal, middle temporal, and inferior temporal. Maximal
power deviations primarily occur near movement onset, as ex-
pected. Spectral power deviations are largest in magnitude in
precentral, postcentral, and inferior parietal regions, which are
located in sensorimotor areas of the brain. The middle frontal
region also contains strong power fluctuations that could indi-
cate motor planning and possible recruitment of the supplemen-
tary motor area. In addition, low-frequency power decreases
are more spatially widespread than high-frequency power in-
creases, so they are also present in supramarginal and superior
temporal regions. As expected, all 3 temporal cortical regions
contain minimal movement-related spectral power fluctuations.

Despite these consistent group-level spectral power patterns
across cortical regions, there is considerable spectral power
variability across subjects (Supplementary Fig. 1). For instance,
the postcentral region contains the same low/high-frequency
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(b) Single-event wrist displacements(a) 2D limb marker distributions
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Fig. 2: Behavioral variability during naturalistic movements is large. (a) An example of tracked joint markers during 2 hours
of video monitoring for S01. Movement events of S01’s right wrist are visualized, as the subject’s electrodes were implanted
in the left hemisphere. A heatmap of locations of each joint is shown. (b) An example of 100 randomly selected movement
trajectories of the right wrist for S01, shown as displacement in pixels from the rest position, demonstrates the large variability
seen across naturalistic arm movements. Solid black line denotes median displacement across events. Events are aligned by time
of movement initiation (vertical dashed line). (c) Because we selected movement initiation events of the wrist contralateral to
the hemisphere with implanted electrodes, the median contralateral wrist displacements (orange lines) across all 12 subjects are
substantially greater than ipsilateral wrist displacements (gray lines).

power pattern for each subject (Fig. 4), but the amplitudes
and frequency bands of maximal power deviation differ widely
across subjects. Subjects 03, 06, 07, 08, and 11 show increased
power at high frequencies up to 120 Hz, while subjects 09 and
12 have increased power primarily between 60–80 Hz. For sub-
jects 04 and 08, low-frequency power decreases occur across
narrower frequency bands compared to the other subjects. Be-
sides arising from inter-subject differences in neural anatomy
and connectivity, these spectral power variations may reflect
variability in daily activities, electrode placement, medication,
and seizure foci among subjects [73, 74]. Spectral power plots
for the 7 other regions of interest are shown in Supplementary
Figs. 2–8.

Comparison of naturalistic movements to instructed hand
clenches

For three of our subjects, we directly compared the neural cor-
relates of naturalistic reaches with instructed movements dur-
ing a controlled bedside experiment. We obtained ECoG and
movement data during visually cued hand clenches in an ex-
periment that had been performed with subjects 01–03 (as de-
scribed in [75]). Hand movements were measured using a wired
glove, which provided precise timing of hand clench initiation
events. Each subject was instructed to clench their hand about
10 times, and the associated ECoG data was analyzed using the
same time-frequency power methods applied to the naturalistic
reaches (Fig. 1).

Both naturalistic reaches and experimental hand clenches show
consistent median spectral power patterns in similar electrodes,
but the behavioral and electrocortical variability is substantially
higher during naturalistic reaches. For all 3 subjects, we find
high standard deviations (SDs) for wrist displacement during
naturalistic reaches, while the instructed hand clenches show
less variation (Fig. 5a). This difference in SD across con-
ditions is particularly striking because we compute the SD

with many more naturalistic reaches (484.0±241.1 per sub-
ject [mean±SD]) than instructed hand clenches (9.7±0.6 per
subject). Analyzing the neural data, we find that electrodes
with significant power magnitudes in low/high-frequency bands
(LFB/HFB) are mostly located in sensorimotor areas (p <
0.05, two-sided bootstrap statistics) (Fig. 5b). In both con-
ditions, low-frequency power decreases appear spatially more
widespread than high-frequency power increases, and time-
frequency power patterns are visually similar (Supplementary
Figs. 9 and 10). However, spectral power during naturalis-
tic reaches shows decreased magnitude compared to instructed
hand clenches. This decrease in power likely results from
the significantly increased variability in LFB/HFB power com-
pared to instructed hand clenches (Fig. 5c; LFB: W = 1009,
p = 1.8e−39, Pearson’s r = 0.16 and HFB: W = 7883,
p = 7.3e−14, Pearson’s r = −0.07; two-sided Wilcoxon signed-
rank test).

Behavioral and environmental features of movement events

To explain the event-by-event variability in the spectral power
at low and high frequency bands, we first extracted features
of movement events and several associated environmental vari-
ables. We defined a reach as the maximum radial displace-
ment of the wrist during the detected movement event, as com-
pared to the wrist position at movement initiation. We extracted
10 behavioral metadata features that quantify the time when
each reach began, how the contralateral wrist moved during
the reach, whether people were speaking during movement ini-
tiation, and how much both wrists moved during each move-
ment [61].

We found that many metadata feature distributions show large
within-subject and between-subject variations (Fig. 6). The
number of reaches detected across days of recording are fairly
consistent, with the exceptions of subjects 04, 05, and 09, who
each had one day representing most of the total events. As ex-
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Fig. 3: Group-level cortical spectral power changes are consistently localized to sensorimotor regions. Spectrograms show
movement event-triggered spectral power changes for 8 cortical regions (highlighted in lower right) summarized across all 12
subjects. On average, there are low-frequency (4–30 Hz) power decreases and high-frequency (50–120 Hz) power increases at
time of movement initiation, with largest power fluctuations in fronto-parietal sensorimotor areas. Spectral power is projected
based on anatomical registration from electrodes onto 8 regions of interest: middle frontal (blue), precentral (red), postcentral
(green), inferior parietal (magenta), supramarginal (cyan), superior temporal (yellow), middle temporal (orange), and inferior
temporal (purple). We subtracted the baseline power of 1.5–1 seconds before movement initiation. Non-significant differences
from baseline power were set to 0 (p > 0.05).

pected, detected movement events tend to have occurred mostly
during waking hours. Reach duration and reach magnitude
show less inter-subject variability, with most reaches lasting
less than 2 seconds and covering less than 200 pixels (∼67 cm).
The distributions for reach angle tend to be bimodal, with peaks
at ±90°, indicating that detected events are biased towards up-
ward and downward reaches, with few side-to-side reaches.
Both onset speed and speech ratio distributions vary greatly
across subjects, likely reflecting inter-subject differences in the
activities performed and the number of people visiting during
the detected movement initiations. We also considered a num-
ber of features related to coordinated movements that involve
the ipsilateral arm. For bimanual ratio and overlap features, the
distributions are skewed towards unimanual movements of the
contralateral limb, as expected from Fig. 2c, with less skew for
subjects 02, 04, and 05. In contrast, the bimanual class categor-
ical feature is primarily skewed towards bimanual movements,
indicating that the ipsilateral wrist is often moving, but only a
small amount.

We also assess group-level correlations between feature pairs,
finding high correlations for 3 reach parameter feature pairs and
between all 3 bimanual feature pairs (Supplementary Fig. 11).
Reach magnitude positively correlates with reach duration (r =
0.26) and onset speed (r = 0.56), meaning that reaches tend
to cover more distance when they last longer or have higher
onset speed. Reach duration is also positively correlated with
bimanual overlap (r = 0.48) due to movements with long du-
ration having more possible overlap time. The high correla-
tions between bimanual features (pairwise Pearson correlation
coefficients between overlap v. ratio: r = 0.51, class v. ra-
tio: r = 0.50, and overlap v. class: r = 0.61) indicates that

contralateral wrist movements classified as bimanual generally
show increased overlap between ipsilateral and contralateral
movements and increased ipsilateral amplitude relative to con-
tralateral, as expected.

Modeling single-event spectral power with behavioral features

We developed a robust multiple variable linear regression
model to explain single-event spectral power at every in-
tracranial electrode using our 10 behavioral metadata features
(Fig. 1i). For each electrode, we chose to model the spectral
power at two subject-specific frequency bands averaged over
the half second following movement onset. The high- and low-
frequency bands were chosen separately for each subject to ac-
knowledge the large variability across subjects (high- and low-
frequency bands for each subject are shown as dark and light
gray bars in Fig. 4, respectively). For each model, behavioral
features were pruned independently using forward selection to
avoid overfitting. To assess each model, we randomly withheld
10% of movement events from training, then used this test data
to compute the model’s R2 performance (referred to as the full
model R2). To assess the contributions of each individual fea-
ture, we shuffled all labels for that feature in the training data,
fit a new linear model, and then computed this model’s R2 on
withheld data. We subtracted this new R2 from the full model
R2 to obtain ∆R2 as an estimate of feature importance. Higher
∆R2 values indicate features that explain more variance.

Intracortical activity variability is best explained by our models
fit to electrodes located in fronto-parietal sensorimotor areas
(Fig. 7b). Of the many models fit across electrodes and fre-
quency bands, we focus on well-fit models that have a positive
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Fig. 4: Spectral power patterns in the postcentral region of interest vary considerably across subjects. Some subjects show
spectral power patterns similar to the group-level results in Fig. 3, yet many deviate substantially from the expected pattern in
both magnitude and frequency band of deviations from baseline. The colormap indicates differences in spectral power relative
to baseline 1.5–1 seconds before movement initiation (no statistical masking is used). Boxes to the right of each panel indicate
frequency bands with large positive (dark gray) and negative (light gray) deviations from baseline during the first half second
following movement initiation. These subject-specific frequency bands were used to compute spectral power features used as
targets in the multiple regression modeling.

R2 on withheld data. While all but 1 subject had at least one
well-fit model, the number of well-fit models per subject varies
considerably, ranging from 1–29 (Fig. 7a). For both frequency
bands, among the recorded cortical areas, the neural variability
in sensorimotor areas was consistently best explained across
all subjects, based on their relatively large full model R2 scores
(Fig. 7b and Supplementary Fig. 12). This finding matches well
with the spatial distribution of spectral power (see Fig. 3). We
note that the maximum R2 is near 0.1, indicating that even the
best models cannot explain ∼90% of the variance in the with-
held data. Among individual features, we find that reach angle
and day of recording are the most informative (Fig. 7c). Inter-
estingly, feature importance for day of recording appears more
spatially localized than for reach angle, especially for the low
frequency band. In addition to being informative, reach angle is
also the most often retained feature following forward selection
in sensorimotor regions (Supplementary Table 1), indicating its
importance for modelling neural activity during movement on-
set.

In agreement with the R2 and ∆R2 scores, both reach angle and
day of recording have the largest coefficient magnitudes among
behavioral features in the regression models (Fig. 8). The coef-
ficients for these two features also show consistent magnitude
and sign across subjects for electrodes located in sensorimo-
tor areas. The coefficients for reach angle indicate that upward
reaches are associated with decreased low frequency power and
increased high frequency power compared to the average re-
sponse. In other words, upward reaches tend to increase the
magnitude of the spectral power pattern seen. In addition, we
consider the day and time of day during which the movement
was made. The SD of the coefficients corresponding to these
timing features are large, indicating that neural responses vary
across long time scales usually not captured in short, controlled
experiments. This observation highlights the importance of
properly accounting for long-term temporal effects when under-
standing and decoding neural recordings. These results mostly

match trends in the feature importance scores. Reach duration,
reach magnitude, and onset speed have relatively large coeffi-
cients that are similar to the coefficients for reach angle, but
these features may lack enough inter-event variability to pro-
vide useful predictions on withheld data. Note that the regres-
sion coefficients of all well-fit models are robust to the selection
of train and test data, as seen in Supplementary Fig. 13.

Discussion

Our results demonstrate that electrocortical correlates of nat-
uralistic arm movements in humans corroborate findings from
controlled experiments on average, as we had hypothesized, but
naturalistic movements exhibit high behavioral and neural vari-
ability. Using multiple regression modelling, we are able to
partially explain this event-by-event electrocortical variability
using behavioral metadata features extracted from video record-
ings. Of the 10 behavioral and environmental features used,
vertical reach angle and day of recording account for most of
the explained variance. Upward reaches are associated with in-
creased cortical spectral power, and the significance of the day
of recording feature highlights the importance of accounting for
long-term neural variability.

Across subjects, we observe a consistent decrease in low-
frequency band cortical power and increase in high-frequency
band cortical power during naturalistic upper-limb movement
initiation, consistent with previous controlled studies [4, 54].
Decreases in low-frequency power are thought to reflect
changes in the current neural state if a new or unexpected event
occurs [76]. In our study, the neural state can be disrupted
during movement initiation by a variety of factors, such as
increased attention or prediction error once the arm is in mo-
tion. In contrast, high-frequency power increases may indi-
cate active sensorimotor processing [77–81]. Low-frequency
and high-frequency power changes are thought to represent two
separate processes [82, 83], which could explain the difference
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Fig. 5: Naturalistic reaches are more variable than in-
structed hand clenches. Movement initiation behaviors and
the corresponding neural activity are shown for experimentally
instructed hand clenches and naturalistic reaches for the same 3
subjects. (a) Median values for distal index joint voltage and
wrist marker displacement are shown for hand clenches and
reaches, respectively. Shaded standard deviation indicates in-
creased behavioral variability during reaches compared to hand
clenches. (b) For intracortical spectral power, we find similar
low frequency band (LFB) and high frequency band (HFB) me-
dian power fluctuations across conditions for all 3 subjects dur-
ing the first half second after movement initiation. Only elec-
trodes with significant spectral power compared to baseline are
shown (p < 0.05). (c) For both LFB and HFB, neural variabil-
ity was significantly increased during naturalistic reaches com-
pared to experimentally instructed hand clenches (p < 0.05).
Variability was computed by the median absolute deviation of
the spectral power for every electrode.

seen in the spatial spread of cortical power changes between
low and high frequencies. Our regression analysis does not pro-
vide additional evidence for separate processes, as behavioral
feature coefficients vary similarly across both frequency bands.
However, the frequency bands of maximum spectral power re-
sponses do differ across subjects, which suggests that the pro-
cesses underlying the low and high frequency bands vary across
subjects. This inter-subject variability reinforces the impor-
tance of assessing both subject-specific neural responses and
group-level activity.

Despite showing the expected cortical pattern on average, nat-
uralistic reaches exhibited greater behavioral and neural vari-
ability than instructed hand clenches performed in a bedside
experiment. Healthy human movements are often quite vari-
able [84, 85], which has been shown to facilitate motor learn-
ing [86, 87]. The high variability seen during naturalistic
reaches likely reflects variations in sensory input and movement
constraints due to different types of behaviors [88]. In addition,
the type of movement differs between conditions, which may
explain some of the behavioral and neural variability that we
observe. In particular, making a fist is a highly stereotyped
movement, while reaching could invoke different muscle pat-
terns depending on the direction moved. Even so, the naturalis-
tic reaches contain higher neural and behavioral variability than
instructed hand clenches, despite having ∼36 times as many
events per subject as the experimental clenches. Since the mea-
sures we use to estimate variability decrease as sample size in-
creases, our results imply that naturalistic movements must con-
tain high variability compared to instructed hand clenches. Dur-
ing modelling, we find that our models only explained at most
∼10% of the variability; this measure is low, but not unusual
given the single-event noise in the electrocortical signal. Fur-
ther, some of this variability may be explained by other move-
ment behaviors beyond what we quantified [89].

Our regression model identified vertical reach angle and day of
recording as the most explanatory features. The importance of
vertical reach angle is not surprising because upward reaches re-
quire more effort and activate different muscles than downward
reaches. In addition, population neural activity has been shown
to robustly encode reach direction [90, 91]. We did not include
a reach angle feature sensitive to horizontal movements because
reach angle distributions were skewed towards vertical angles
at ±90°, as seen in Fig. 6. The day of recording feature was
also found to explain much of the variance captured by regres-
sion modelling. Neural variation across days of recording could
be caused by several factors, including changes in medication,
seizure frequency, and alertness while recovering from ECoG
implantation surgery. Similar long-term, inter-day variability
has been observed in previous EEG and ECoG studies [92–
94]. It is also worth noting that these day-to-day changes in
ECoG spectral power may be small; the average electrocortical
response is only ±1–2 dB. Furthermore, recent research sug-
gests that despite long-term neural recording variability, low-
dimensional representations of this activity remain stable over
long periods of time [95].

Our study has several important limitations. First, we are study-
ing subjects who have epilepsy and are recovering from elec-
trode implantation surgery, which may introduce confounding
effects due to medication and seizure location. To address this
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Fig. 6: The distribution of extracted behavioral and environmental features show large inter-subject variability. For each
subject, features shown include timing (day of recording, time of day), reach parameters (duration, magnitude, angle, onset
speed), environment (speech ratio), and bimanual factors (ratio, overlap, and class). The total number of events for each subject
was between 150 and 950 (median of 640 across subjects). Each distribution was normalized. These extracted features were used
as inputs to the multiple regression models. Note that 3 pixels approximately equal 1 cm.

issue, we ignored data from the first 2 days post-surgery, re-
moved electrodes with abnormal activity, and assessed move-
ments across multiple days to avoid single-day bias. Another
limitation is that the clinical video monitoring system includes
only one camera, whose view can be obstructed by people and
various objects throughout the day. We minimized obstruc-
tion effects by selecting movement events with high confidence
scores in the event detection algorithm and manually review-
ing all detected events to check if they were actual movements
and not false positives, but using multiple cameras would ex-
tend body tracking to 3D in future studies. Finally, we confined
our regression analysis to linear models. While studies have
shown evidence of nonlinear relationships between electrocor-
tical activity and behavior [19, 96], linear regression models
provide easily interpretable results and allow straightforward
assessments of individual feature contributions.

Our results underline the importance of studying naturalistic
movements and understanding neural variability across multi-
ple days. Our approach could be extended to other naturalistic
movements and behaviors, such as grasping objects, sleep/wake
transitions, and conversing with others. More broadly, our re-
sults have implications for developing novel brain-computer in-
terfaces that can decode neural data across subjects in natural
environments. For instance, movement data from many sub-
jects could be combined to train decoders that generalize to new
subjects with minimal re-training and are robust to a richer set
of behavioral and environmental contexts. By publicly releas-

ing our curated dataset, we hope to spur further research that en-
hances our understanding of naturalistic behavior and informs
the development of next-generation brain-computer interfaces.

Methods

Subject information

We analyzed opportunistic clinical recordings from 12 sub-
jects (8 males, 4 females) during their clinical epilepsy mon-
itoring (conducted at Harborview Medical Center in Seattle,
WA). Subjects were 29.4±7.9 years old at the time of record-
ing (mean±SD). Our study was approved by the University of
Washington Institutional Review Board for the protection of hu-
man subjects. All subjects provided written informed consent.

We selected subjects who had ECoG electrode coverage near
primary motor cortex, with either one 8×8 or two 4×8 elec-
trode grids placed subdurally on the cortical surface. Additional
electrodes were implanted on the cortical surface for some sub-
jects, resulting in 87.0±12.9 total surface electrodes per subject
(mean±SD). In addition, five subjects had 23.2±12.1 intracor-
tical depth electrodes (mean±SD). Electrodes were implanted
primarily within one hemisphere for each subject (5 right hemi-
sphere, 7 left hemisphere). Single-subject electrode placement
and recording duration information are given in Supplementary
Table 2.
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Fig. 7: Event-by-event multiple regression models explain neural spectral power features using extracted behavioral and
environmental features. (a) The number of electrodes per subject with full model R2 > 0 is shown for low/high frequency band
(LFB/HFB) spectral power. All R2 scores were computed on test data withheld from model fitting. (b) Models with the largest R2

scores were primarily located in sensorimotor areas. (c) Feature importance assesses how much the R2 on withheld data changed
by shuffling a particular feature’s training data. From this measure, we find that reach angle and day of recording were the most
important features in this model. Only electrodes with positive full model R2 values are shown for (b)–(c).
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Fig. 8: Coefficient weights of the multiple regression model, showing magnitude and direction for each model. Weights are
shown in units of spectral power. Day of recording and time of day features are shown as standard deviation (SD) of coefficient
values across one-hot encoded variables. Both features have notable standard deviations, highlighting the importance of long-term
temporal variability. Only electrodes with a positive R2 on withheld test data are plotted.
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Data collection

Subjects underwent 24-hour clinical monitoring, involv-
ing semi-continuous ECoG and audio/video recordings over
7.4±2.2 days per subject (mean±SD). Some breaks occurred
throughout monitoring (on average, 8.3±3.2 total breaks per
subject, each lasting 1.9±2.4 hours [mean±SD]). For all sub-
jects, we restricted our analysis to days 3–7 following the
electrode implantation surgery, in order to exclude potentially
anomalous neural and behavioral activity immediately follow-
ing electrode implantation surgery. For several subjects, some
days were excluded due to corrupted or missing data files, as
noted in Supplementary Table 2. During clinical monitoring,
subjects were observed during a variety of typical everyday ac-
tivities, such as eating, sleeping, watching television, and so-
cializing while confined to a hospital bed. ECoG and video
were initially sampled at 1000 Hz and 30 frames per second, re-
spectively. Fig. 1 shows an example of the clinical monitoring
setup, along with our data processing pipeline.

ECoG data processing

We processed the raw ECoG data using custom MNE-Python
scripts [97]. First, we removed DC drift by subtracting the me-
dian voltage of each electrode. Widespread, high-amplitude
artifacts were then identified by abnormally high electrode-
averaged absolute voltage (> 50 interquartile range [IQR]). We
set these artifacts to 0, along with all data within 2 seconds of
each identified artifact. Removing such high-amplitude discon-
tinuities minimizes subsequent filtering artifacts due to large,
abrupt changes in the signal [98].

With data discontinuities removed, we band-pass filtered the
data (1–200 Hz) and notch filtered to minimize line noise at 60
Hz and its harmonics. The data were then resampled to 500 Hz
and re-referenced to the common median for each grid, strip,
or depth electrode group. Electrodes with bad data were identi-
fied based on abnormal standard deviation (> 5 IQR) or kurto-
sis (> 10 IQR) compared to the median value across channels.
This process resulted in the removal of 4.9±4.9 surface elec-
trodes per subject and 1.0±1.4 depth electrodes for each of the
5 subjects with depth electrodes.

Electrode positions were localized using the Fieldtrip toolbox
in Matlab [99, 100] to enable multi-subject analyses. This pro-
cess involved co-registering preoperative MRI and postopera-
tive CT scans, manually selecting electrodes in 3D space, and
warping electrode positions into MNI space.

Movement event identification and pruning

We performed markerless pose estimation on the raw video
footage separately for each subject to determine wrist positions
(Fig. 1a). First, for each subject, we manually annotated 1000
random video frames with the 2D positions of 9 keypoints:
the subject’s nose, ears, wrist, elbows, and shoulders (https:
//tinyurl.com/human-annotation-tool). Video frames
were randomly selected across all days, with preference given
to frames during active, daytime periods. These manually anno-
tated frames were used to train a separate neural network model
for each subject using DeepLabCut [60]. Each model was then
applied to every video for that subject to generate estimated
wrist trajectories.

Movement states were identified by applying a first-order au-
toregressive hidden semi-Markov model to each wrist trajec-
tory. This state segmentation model classified the wrist trajec-
tory into either a move or rest state. For this study, we focused
on movements of the wrist contralateral to the implanted hemi-
sphere. Contralateral wrist states were then discretized, and
movement initiation events were identified at state transitions
where 0.5 seconds of rest states are followed by 0.5 seconds of
move states. See Singh et al. [61] for further methodological
details.

After identifying movement initiation events, we coarsely la-
beled the video data manually (∼3 minutes resolution) and ex-
cluded arm movements during sleep, unrelated experiments,
and private times (as specified in our IRB protocol). In addition,
we only retained movement events where (1) movement dura-
tions were between 0.5–4 seconds, (2) the confidence scores
from DeepLabCut were > 0.4, indicating minimal marker oc-
clusion, and (3) wrist movements followed a parabolic trajec-
tory, as determined by a quadratic fit to the wrist’s radial move-
ment (R2 > 0.6). We found that this quadratic fit criteria elim-
inated many outliers with complex movement trajectories and
improved the interpretability of our subsequent analyses. For
each day of recording, we selected up to 200 events with the
highest movement onset velocities. Finally, all movement ini-
tiation events were visually inspected, and events with occlu-
sions or false positive movements were removed (17.8%±9.9%
of events [mean±SD]).

ECoG-event synchronization and segmentation

We used timestamps accompanying clinical recordings to syn-
chronize movement initiation events with ECoG recordings
and generated 10-second ECoG segments centered around
each event. ECoG segments with missing data and large ar-
tifacts, such as line noise, were removed by computing log-
transformed spectral power density for each segment and dis-
carding segments with power below 0 dB or with abnormally
high power at 115–125 Hz (>3 SD) compared to all seg-
ments. With these bad ECoG segments removed, we computed
log-transformed, time-frequency spectral power using Morlet
wavelets [101]. Power at each segment was then baseline-
subtracted, using a baseline defined as 1.5–1 seconds before
each movement initiation event.

Projecting power into regions of interest

Because electrode placement was clinically motivated and var-
ied greatly across subjects, we projected the spectral power
computed at every electrode into common regions of interest
defined by the AAL atlas [102]. Prior to projection, in order
to combine all subjects, all right hemisphere electrode posi-
tions were flipped into the left hemisphere. Using EEGLAB
and Matlab, we mapped from electrodes to small, predefined
brain regions by positioning a three-dimensional Gaussian (2
cm full-width at half-maximum) centered at each electrode po-
sition and calculating the Gaussian’s value at each small re-
gion [72, 103, 104]. The values across small regions were com-
bined based on the AAL region boundaries, providing a map-
ping between each electrode and AAL region based on radial
distance. We performed this projection procedure separately
for each subject.
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By summing the weights from these mappings across elec-
trodes, we estimated the electrode density for each AAL re-
gion. We retained regions with an average electrode density
> 3 across subjects, resulting in 8 regions of interest (ROIs):
middle frontal, precentral, postcentral, inferior parietal, supra-
marginal, superior temporal, middle temporal, and inferior tem-
poral (Fig. 3). These 8 ROIs represent where most of the elec-
trodes were located across subjects. We then normalized the
weights for each ROI so that they summed to 1. These nor-
malized weights were used to perform a weighted average of
electrode-level spectral power for every ECoG segment, gener-
ating a spectral power estimate at each region of interest.

After projecting single-event spectral power onto regions of in-
terest, we computed the median value across events separately
for each subject and region. We then averaged the event-median
spectral power across subjects to obtain group-level estimates
for each region of interest. To mask spectral power patterns that
were not significant, group-level spectral power for every fre-
quency bin within each region of interest was then compared to
a 2000-permutation bootstrap distribution generated from base-
line time points. Non-significant differences from each boot-
strap distribution were set to 0 (p > 0.05, two-sided bootstrap
statistics, false discovery rate correction [105]).

Comparison with visually instructed hand clenches

For subjects 01–03, we compared our naturalistic arm move-
ment results to instructed hand clenches recorded during a bed-
side experiment. For the controlled experiment, subjects were
visually instructed to either clench their contralateral hand or
stick out their tongue, followed by a brief rest period. We
focused only on hand clench initiation events based on mea-
surements recorded from a wired glove (CyberGlove II, Cyber-
Glove Systems, San Jose, USA). Hand clench initiation events
were manually selected based on distal index finger sensor
voltage increases from baseline. We then computed baseline-
subtracted spectral power using the same process as the natu-
ralistic movements, except using a baseline of -1.1 to -0.6 sec-
onds based on the average time between the stimulus cue and
hand clench initiation. To compare electrocortical power dur-
ing naturalistic and instructed movement initiation conditions,
we averaged the spectral power over the first half second of
movement initiation, divided into low frequency (8-32 Hz) and
high frequency bands (76-100 Hz) used in previous research [4].
We compared this averaged power in each electrode to a 2000-
permutation bootstrap distribution. Non-significant differences
from each bootstrap distribution were set to 0 (p > 0.05, two-
sided bootstrap statistics, false discovery rate correction). Ad-
ditionally, we quantified inter-event spectral power variability
by computing the median absolute deviation at each frequency
band [106].

Single-event behavioral metadata features

We extracted multiple behavioral and environmental metadata
features that quantify variations in movement parameters and
environmental contexts. These features were later used as input
variables for regression models of inter-event spectral power
and can be divided into 4 categories.

1) Timing features

Day of recording and time of day for each movement initiation
event are used to capture long-term variations in the neural re-
sponse.

2) Reach movement features

To quantify differences in the detected movements, we defined
a reach as the maximum radial displacement of the wrist marker
during the detected move state compared to its position at each
movement initiation event. These features included the dura-
tion and magnitude of each reach. We also computed the 2D
reach angle and transformed angles at 90–270° to range from
90° to −90°, respectively. This transformation made the reach
angle sensitive to vertical reach variations, with 90° for up-
ward reaches and −90° for downward reaches. We also com-
puted wrist marker radial speed during movement onset. Note
that these movement features were based on the location of the
video camera, which varied slightly across subjects and record-
ing days.

3) Environmental feature

Based on results from the literature [23, 107], we were mo-
tivated to consider how environmental factors affect electro-
cortical power. Here, we examined the environmental fac-
tor of people talking during movement initiation. First, we
cleaned the recorded audio signal using spectral noise gating
(https://www.audacityteam.org), which performed 40 dB
reduction on audio signal components that were similar to a se-
lected noise period during rest. We then used the short-time
Fourier transform to compute the spectral power from 370–900
Hz as a proxy for speech [108]. This power was divided by the
total power at each time point, producing a ratio that is robust
to broadband changes in the audio signal caused by noise. This
speech ratio was smoothed using a 1st-order low-pass filter with
4.2 mHz cutoff to minimize the effects of transient changes in
power due to noise. We then averaged this ratio from -1 to 1
seconds around each movement initiation event, generating a
speech ratio feature that ranges from 0.0 to 1.0.

4) Bimanual reach features

While movement initiation event selection was based solely
on contralateral wrist movement, the ipsilateral wrist can still
move and may affect the electrocortical response. We quan-
tified the relative magnitude of ipsilateral wrist movement by
computing the ratio of the ipsilateral wrist reach magnitude to
the sum of ipsilateral and contralateral reach magnitudes. In ad-
dition, we computed the temporal overlap between contralateral
and ipsilateral move states over the duration of the entire con-
tralateral wrist movement. Finally, we computed a binary fea-
ture that classified movements as either unimanual or bimanual
based on the amount of temporal lag between contralateral and
ipsilateral wrist movement onset. This feature was bimanual if
a sequence of 4 consecutive move states of the ipsilateral wrist
began either 1 second before contralateral wrist movement ini-
tiation or anytime during the contralateral wrist move state.
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Single-event spectral power linear regression

Using the 10 extracted behavioral features as independent vari-
ables, we fit a separate linear regression model to the spectral
power at every electrode. While projecting onto cortical regions
provided a useful visualization, we found that fitting regression
models using projected power resulted in very poor model fits,
likely due to electrodes with maximal power responses over-
lapping multiple regions and differing across subjects. All fea-
tures were standardized prior to regression, with reach dura-
tion and reach magnitude features also being log-transformed.
We categorized the two timing features using one-hot encoding
based on day of recording and three 8-hour segments (12am–
8am, 8am–4pm, 4pm–12am) for time of day because we do
not expect linear long-term power changes within and across
days. For the dependent variable, we averaged spectral power
over the first half second of movement onset for subject-specific
low/high frequency bands. These frequency bands were deter-
mined by visual inspection of maximal spectral power devia-
tions, as shown in Fig. 4. We then randomly selected 90%
of each subject’s total contralateral arm movement events as
training data, while withholding the remaining 10% for test-
ing model generalizability. For each model, we independently
pruned input features using forward selection, retaining fea-
tures that improved adjusted R2 for an ordinary least squares
fit. This procedure helped minimize overfitting due to too many
independent variables.

For training, we applied a multiple linear regression model for
event-by-event spectral power patterns (shown schematically in
Fig. 1i) defined as:

y jk f = β0k f +

m∑
i=1

βik f xi j (1)

where y jk f is the spectral power for movement event j at elec-
trode k averaged over frequency band f , during the first half
second of movement initiation; xi j is feature i at event j, and
βik f is the coefficient for feature i at electrode k and frequency
band f (β0k f is the intercept term). We minimized the Huber
norm during model fitting to improve model robustness to out-
liers.

After training, we performed model validation by computing
the R2 on withheld data, referred to as the full model R2. We
also assessed the contribution of each behavioral feature inde-
pendently by shuffling one feature, fitting a new model, and
computing the R2 on the unshuffled, withheld data. This new
R2 was subtracted from the full model R2 to obtain ∆R2 as an
estimate of that feature’s importance. We repeated this shuffling
process and computation of ∆R2 across all model features.

We computed independent regression models using forward se-
lection, along with R2 and ∆R2 scores, over all electrodes and
for both low and high frequency bands. To minimize bias in our
selection of training and testing data, we performed 200 ran-
dom, independent train/test splits for every regression model,
averaging the full model R2, ∆R2, and coefficients across all
splits.

Data availability

Our curated dataset is publicly available without restriction,
other than citation, through Figshare at https://figshare.
com/s/ef4ea24d67d16233f73d. This public dataset contains
synchronized neural and behavioral data that can be used to gen-
erate Figures 2b–c and Figures 3–8.

Code availability

Our data analysis code is publicly available without restriction,
other than citation, on Github at https://github.com/

BruntonUWBio/naturalistic_arm_movements_ecog.
The code in this repository can be used in conjunction with our
published dataset to reproduce all main findings and figures
from our study. We ask that future studies building on our
published data and code cite both this paper and [61].
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