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Abstract8

9

Recent work has suggested that prefrontal cortex (PFC) plays a key role in context-dependent10

perceptual decision-making. Here we investigate population-level coding of decision variables in11

monkey PFC using a new method for identifying task-relevant dimensions of neural activity. Our12

analyses reveal that, in contrast to one-dimensional attractor models, PFC has a multi-dimensional13

code for decisions, context, and relevant as well as irrelevant sensory information. Moreover, these14

representations evolve in time, with an early linear accumulation phase followed by a phase with15

rotational dynamics. We identify the dimensions of neural activity associated with these phases,16

and show that they are not the product of distinct populations, but of a single population with broad17

tuning characteristics. Finally, we use model-based decoding to show that the transition from lin-18

ear to rotational dynamics coincides with a sustained plateau in decoding accuracy, revealing that19

rotational dynamics in PFC preserve sensory as well as choice information for the duration of the20

stimulus integration period.21

Introduction22

A large body of work has aimed to identify the precise computational roles of various brain regions23

during perceptual decision-making1–8. Recent interest has centered on prefrontal cortex (PFC), which24

has been shown to carry a wide range of sensory, cognitive, and motor signals relevant for integrating25

sensory information and making decisions1;4;6;7;9–12. A major barrier to understanding PFC’s functional26

role, however, is that PFC neurons exhibit mixed selectivity, characterized by heterogeneous tuning to27

multiple task variables13. The idiosyncratic single-neuron responses observed in PFC make it difficult28

to gain insight into the population-level representation of different sensory and cognitive variables.14–16.29

1

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted October 21, 2019. . https://doi.org/10.1101/808584doi: bioRxiv preprint 

https://doi.org/10.1101/808584
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here we analyze the population-level representation of information in PFC using model-based targeted30

dimensionality reduction (mTDR), a general method for identifying the dimensions of population activity31

that encode information about different task variables over time. We applied this method to data from32

a context-dependent perceptual decision-making task1, in which a context cue determined what kind33

of sensory information (color or motion) should be used for making a binary decision (Fig. 2a,b). In34

contrast to previous findings, our analysis revealed that the encoding of decisions, context, and relevant35

as well as irrelevant stimulus variables exhibited rotational dynamics in a multi-dimensional subspace,36

involving modulation of two or more orthogonal neural activity patterns over time.37

We also introduce a new unsupervised method, sequential principal components analysis, for decom-38

posing multidimensional representations of task information into a sequence of axes that reflect the39

order in which information about each variable becomes available. This method reveals that multi-40

dimensional trajectories can be decomposed into an early phase with linear dynamics, followed by a41

later phase with rotational dynamics. We used model-based decoding under the mTDR framework to42

show that the transition between these phases corresponded to a sustained plateau in decoding ac-43

curacy for sensory as well as decision information, suggesting that the population did not continue to44

accumulate sensory information during the rotational phase.45

Taken together, these results substantially extend the prevailing picture of decision encoding in PFC:46

rather than integrating evidence along a single dimension of population activity, with amplitude that47

reflects accumulated evidence17, neural population activity enters a phase of rotational dynamics that48

maintains information about the choice as well as relevant and irrelevant sensory information over the49

entire course of a single trial.18–20.50

Results51

Model-based targeted dimensionality reduction52

To characterize population-level representations of information in PFC, we introduce a new method,53

model-based targeted dimensionality reduction (mTDR), which seeks to identify a set of dimensions of54

population activity that carry information about distinct task variables. We illustrate the basic intuition for55

mTDR with a hypothetical 3-neuron population in a perceptual decision-making task (Fig. 1). For this56

example, there are two task variables of interest: a sensory stimulus xs and a binary decision variable57

xc. These variables modulate the firing rates in different ways and the modulations are time-dependent,58

producing a diverse pattern of population responses across conditions (Fig. 1a).59

The population-level response can be examined in a 3-dimensional state space, where the coordinates60

of each axis correspond to the firing rates of each of the neurons (Fig. 1b). Although the full space is 3-61

dimensional, the trajectories traced out by these particular firing rates exhibit low-dimensional structure62

that is not apparent from the PSTHs alone (Fig. 1a). Specifically, the population activity is confined to a63

2D plane defined by a pair of one-dimensional axes: a 1D “stimulus axis” (green arrow) captures infor-64
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Figure 1: Schematic illustrating low-dimensional population-level encoding in a binary sensory
decision-making task. (a). Conditional PSTHs for three neurons that exhibit mixed selectivity to a stim-
ulus variable (taking on six different values) and a choice variable (taking on two values). (b) Modulations of
the PSTHs by the task variables span a 2-dimensional “encoding subspace”, which is low-dimensional rela-
tive to the 3-dimensional space of firing rates. In this case, a 1D stimulus-encoding subspace (green arrow)
captures all information about the stimulus value, while a 1D choice-encoding subspace (red arrow) captures
all information about the decision. Note, for example, that the neuron 2 firing rate axis is nearly orthogonal
to the choice axis, meaning that neuron 2 carries almost no information about choice. (c). Projections onto
the stimulus and choice subspaces reveal the time-course of information about stimulus and choice, respec-
tively. These timecourses can be seen as temporal basis functions for the single-neuron PSTHs shown in (a).
mTDR aims to recover these encoding subspaces even in the presence of additional components that take
neural activity outside the plane spanned by these two axes, and is not restricted to 1D subspaces.

mation about the stimulus strength, while a 1D “decision axis” (red arrow) captures information about65

the choice. These axes capture all information about the task variables in the population. Projecting the66

population response onto each of these axes reveals a timecourse of information about stimulus level67

and choice, respectively (Fig. 1c).68

The goal of mTDR is to identify these encoding subspaces from high-dimensional neural population69

data. For our three-neuron example, the mTDR model describes the time evolution of the population70

response y(t), a vector of 3 neural firing rates, as:71

y(t) = xs ·wsss(t) + xc ·wcsc(t) + noise, (1)

where xs is the stimulus variable, which takes one of six values from [−3,−2,−1,+1,+2,+3] indicating72

the level of positive or negative sensory evidence, and xc denotes the decision variable, which takes73

on values of ±1, indicating a positive or negative choice. The activity vectors ws and wc are patterns74

of activity across the three neurons specifying the stimulus and choice axes (green and red arrows75

in Fig. 1b), and the time-varying functions ss(t) and sc(t) are temporal profiles for the activity along76

stimulus and choice axes, respectively (Fig. 1c).77

Although the choice and decision subspaces in this example are both 1-dimensional, the mTDR model78

easily extends to higher dimensionality with an arbitrary number of task variables. Let Y denote a79

neurons × time matrix of firing rates for a single condition defined by task variables {x(1), . . . x(P )}.80
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The mTDR model decomposes population activity as:81

Y = x(1) ·W1S1
> + · · ·+ x(P ) ·WPSP

> + noise (2)

where Wp is neurons ×rp matrix whose columns span a rp-dimensional encoding subspace for task82

variable x(p), and Sp is a time×rp matrix of temporal profiles that describe the timecourse of population83

activity within this subspace. (See supplementary Figure S1 for a schematic illustration of this model.)84

This model-based formalism represents a generalization of targeted dimensionality reduction1, which85

allows us to identify both the number of activity patterns used to encode different variables and the86

timecourses with which these patterns are recruited. (For details see Methods and Supplementary87

Note S1).88

Population coding of task variables in PFC89

To investigate population-level coding in PFC, we applied mTDR to neural data recorded from an area90

in and around the frontal eye fields (FEF) of two monkeys performing a context-dependent decision-91

making task1 (see Methods, Experimental details) In this task, monkeys were presented with a visual92

stimulus that contained colored, moving dots on each trial (Fig. 2a). A context cue (yellow square or93

blue cross) appeared before each trial and instructed the monkeys to attend either to the color (red94

vs. green) or the motion (left vs. right) of the dots. In the color context, the animal had to attend to color95

and ignore motion, making a left (right) saccade if a majority of the dots were red (green). In the motion96

context, the animal had to attend to motion and ignore color, making a left (right) saccade if the dot97

motion was left (right).98

Task difficulty was controlled by varying the fraction of red vs. green dots across 6 levels of color99

coherence (from “strong red” to “strong green”), and varying the fraction of coherently moving dots100

across 6 levels of signed motion coherence (from “strong left” to “strong right” motion), resulting in 6101

× 6 = 36 unique stimulus conditions (Fig. 2b). The stimulus was followed by a randomized delay, after102

which the monkey was cued to indicate its decision by making an eye movement to one of the two103

saccade targets. Taking into account the 2 possible contexts and 2 possible decisions on each trial,104

there were 2 x 2 x 36 = 144 unique task conditions in total.105

The classical approach to analyzing data from such experiments involves computing the mean firing106

rate, or peristimulus time histogram (PSTH), from subsets of the data, such as “all trials with the strong107

rightward motion and a rightward choice”. We will refer to these condition-averaged responses as con-108

ditional PSTHs. For this dataset, the conditional PSTHs of individual neurons exhibited heterogeneous109

tuning to the different task variables1 (Fig. 2c). This hetereogeneity, and the fact that each neuron en-110

codes a wide variety of task variables, makes it difficult to obtain a clear picture of the population-level111

representation of task variables from an examination of single-neuron PSTHs.112

To overcome these limitations, we used mTDR to determine the dimensionality of population-level rep-113

resentations of the different task variables. The mTDR model included a regressor for each of 6 task114
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Figure 2: Context-dependent decision-making task and neural responses. a) On each trial, the animal
was presented with a context cue (yellow dot or blue cross) indicating which dimension of the stimulus the
animal is to attend to, followed by a stimulus of colored, moving dots. On motion context trials the animal is
cued to respond to the dominant dot motion direction. In color context trials the animal is cued to respond to
the dominant color of the dots. b) The strength of both the color (red / green) and motion (left / right) stimulus
was displayed with one of six possible degrees of coherence, making for many possible task contingencies
(2 choices × 2 contexts × 6 motion strengths × 6 color strengths = 144 possible combinations). c) PSTHs of
representative neurons for monkey A. Motion context PSTHs were sorted by motion coherence and averaged
over color coherence. Color context PSTH’s were sorted by color coherence and averaged over motion
coherence. Red–indigo color scale indicates motion coherence where red indicates the preferred motion
direction. Gold–blue color scale indicates color coherence where gold indicates the preferred color direction.
Bolder colors indicate stronger coherence.

variables: color strength, motion strength, context, and choice, as well as two additional terms for the115

absolute values color and motion strength. Absolute value terms were included due to the observations116

that some neurons displayed nonlinear encoding of stimuli, consistent with observations of nonlinear117

mixed selectivity13. The model also included a term for the condition-independent time-varying firing118

rate, which reflects temporal modulation not due to the task variables (see Methods for details). To119

determine the dimensionality of the encoding of each task variable, we used a greedy selection method120

based on the Akaike information criterion21 (AIC) that added dimensions based on their contribution121

to the model prediction performance. We validated this approach with simulation experiments and by122

using cross validation on the real data, which we found to slightly underestimate dimensionality due to123

the need to divide data into training and test sets (Fig. 3c; details in Supplemental Note S3).124

We found that population-level representations of all task variables were at least two-dimensional, and125
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at least three-dimensional in monkey A (Fig. 3; Supplemental Table 1; Supplemental Fig. S3). Fig-126

ure 3a shows the variable-specific components revealed by mTDR for an example neuron. The first127

three columns show the timecourse of this neuron’s activity within the first three dimensions of the128

corresponding variable’s encoding space. The timecourses represent the columns of the temporal129

component matrices Sp, scaled by the levels of each of the task variables xp (eq. 2). Thus, each trace130

represents the inferred contribution of each dimension to the neuron’s PSTH from the different settings131

of the associated task variable. The rightmost column of Figure 3a shows the model-based estimate132

of the neuron’s net time-varying response to each task variable. Summing these responses together133

gives the model-based reconstruction of the neuron’s PSTH (“model PSTH") for each task condition;134

this matches the neuron’s true PSTH to high accuracy (bottom). Because each neuron weights each135

dimension independently, the fitted model collectively accounts for a wide variety of conditional PSTHs136

(Fig. 3b). Note that the data were not temporally smoothed in pre-processing and no smoothness con-137

straints were included in the model, indicating that the smoothness of the timecourses is a property of138

the data.139

To examine whether the model with estimated dimensionality provided sufficient richness to describe140

the diversity of PSTHs from the whole population, we calculated the R2 of our model for each neuron141

using held-out data. We found that the R2 of PSTH reconstructions increased with firing rate with the142

highest-rate neurons achieving R2 greater than .9 (Fig. 3d). The dependence of R2 on firing rate likely143

reflects higher signal-to-noise ratio in higher firing-rate neurons.144

We also measured how much of the variance of the PSTHs formed from held-out trials could be ex-145

plained by each of the learned subspaces alone (Fig. 3e). We defined each subspace by a set of146

orthonormal vectors ordered by the amount of variance explained (for details see Methods and Supple-147

mentary Note S4.1). We found that all dimensions contributed to the variance of at least some neurons,148

but that different neurons had their variance distributed differently across components (Fig. 5a,b). For149

example, for the decomposition of the activity of the neuron displayed in Figure 3a, dimension 3 of150

the abs(motion) axis has a higher loading than dimension 1 despite the fact that the first dimension151

describes most of the variance across the population.152

These findings verify that the subspaces defined by the mTDR model capture high-variance dimensions153

and that the model describes a large fraction of the variance of the PSTHs for most neurons, despite154

the population representation being relatively low dimensional.155

State-space trajectories reveal dynamic encoding156

To examine the dynamics of population-level encoding during this task we used projections of PSTHs157

from held-out data onto the estimated subspaces for motion, color, choice, and context (Fig. 4a–d; also158

see Supplementary movies; projections for abs(motion) and abs(color) are presented in Supplementary159

Fig. S9; monkey F projections shown in Supplementary Fig. S11; for details see Methods) . Since all of160

the task variables for monkey A were estimated to have a dimensionality of 3 or higher, we will restrict161
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Figure 3: Model fit for monkey A. a) Example of a neuron’s fitted responses composed of a set of weighted
basis functions (same as neuron 1 from Fig. 2c). These basis functions are shared by the whole population
but are weighted differently for each neuron. Weighted basis functions are summed to form the neuron’s
response to each task variable. The responses for each task variable are then added together to give the
model reconstructed PSTHs (model PSTH). The conditional PSTHs of this neuron are shown for compari-
son. b) Summed responses for three additional example neurons (same as neurons 2–4, from Fig. 2c) which
display a diversity of dynamics. c) Dimension estimation based on 5x 4-fold (20 estimates) cross validation.
Dimensionality is slightly smaller than estimated using all data but is tightly distributed around a single esti-
mate. d) R2 of the model reconstructions for the PSTHs as a function of mean firing rate for each neuron. e)
Percent variance explained for PSTHs of each neuron by projection onto each subspace dimension. Red hor-
izontal bars indicate the median. Box edges indicate 25th and 75th percentiles. Whiskers indicate positions
of furthest points from median not considered outliers. Red dots indicate outliers with respect to a normal
distribution. Dots have been horizontally jittered to aid with visualization. Colors in title text for (a) and (b)
correspond to colors of markers in Figure 5.
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our description of subspace trajectories to projections onto the three most significant axes.162

Consistent with the findings in Mante et al.1 using targeted dimensionality reduction (TDR), the dynam-163

ics in both the motion and color subspaces were qualitatively similar (Fig. 4a,b). However, in contrast164

to those findings, and the findings of others using a related TDR method8, the encoding of informa-165

tion about the stimulus variables was not transient but persisted throughout the recording epoch, albeit166

along a changing set of dimensions at each point in time.167

In order to examine when and how the stimulus encodings changed over time we developed a method168

for identifying an ordered set of axes that account for the variance of the projections sequentially in time.169

We term the method “sequential principle components analysis" (seqPCA) (see Methods, Supplemen-170

tary Note S9). Using seqPCA we obtained 3 orthonormal axes that correspond to “early," “middle," and171

“late" epochs of the projections’ trajectories (labeled axes in left panels of Fig. 4a–d). The early axis172

accounted for the majority of the variance shortly after stimulus onset. Variability that is not described173

by the early axis but nevertheless emerges sometime after stimulus onset is captured by the middle174

axis. The late axis accounts for activity that is not accounted for by the early and middle axes, but175

is present as the epoch transitions from the stimulus presentation to the delay period. The late axis176

therefore may not exhibit perfectly sequential activation relative to the middle axis. Projections onto the177

seqPCA axes show clear times at which task variable information becomes available onto each axis178

(right-side panels in Fig. 4a–d). For all subspaces, we found that the early epoch is characterized by179

loading of the projections almost exclusively onto a single axis. In contrast, the middle and late epochs180

were distinctly two dimensional, or higher.181

We found that the transience of the early axes in the stimulus subspaces resembles that of the stimulus182

encodings presented by the TDR method1. Indeed, we found that our early axis was well correlated183

with the TDR axes (see Supplementary Note S10). It is therefore apparent that the existence of the184

middle and late seqPCA axes permit the stimulus information to persist throughout the stimulus viewing185

epoch. To show this, we compared projections onto the learned subspaces of the mTDR method with186

the 1D axes of the TDR method (see Supplementary Note S10). We found that while the loading of187

stimulus information appeared transient for TDR, the mTDR projections were both larger and more188

persistent at nearly all times during stimulus viewing (Fig. 4e, S12).189

The encodings for motion and color for monkey A, and the motion encoding for monkey F, exhibit190

remarkable similarity (Fig. 4a,b and Supplementary Figs. S10a,b, S11a, S14a). Specifically, along the191

“early" axes stimulus encodings peak at around 300 ms after stimulus onset (Fig. 4a,b), peaking slightly192

earlier for motion than for color. Stimulus encodings begin loading onto the middle axes just prior to the193

choice trajectories (Fig. 4c). In all cases, the magnitude of the projections onto the seqPCA axes scales194

with the stimulus strength (Fig. 4b,d) and appear to statically encode the stimulus near the end of the195

stimulus presentation in a way consistent with delay-period encoding in parametric working memory196

seen elsewhere22–27.197

The population-level representation of choice, context, and other variables also exhibited multi-dimensional198

structure (Fig. 4c,d; Supplementary Fig. S9). We describe this structure and discuss its consequences199
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Figure 4: Projections of population PSTH’s onto latent encoding subspaces. Projections onto the first,
second, and third principle-axes of the (a) motion, (b) color, (c) choice , and (d) context subspaces. Caption
continued on next page.
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Figure 4: Projections of population PSTH’s onto latent encoding subspaces. Continued... Motion, color,
and context subspaces have been orthogonalized with respect to the first dimension of the choice subspace.
The choice subspace has been orthogonalized with respect to the context subspace. The context subspace
has also been orthogonalized with respect to the motion and color subspaces. Details of orthogonalization
are presented in Supplementary note S4.2. Color conventions are the same as those described in Figure
2. Red dots indicate the origin. Projected PSTH’s made from held-out data not used during parameter
estimation. a) Projections of PSTHs onto the motion subspace, sorted by motion coherence and averaged
over color coherence for trials where the motion stimulus was the active context. b) Projections onto the
color subspace sorted by color coherence and averaged over motion coherence for trials where the color
stimulus was the active context. c) Projections onto the choice subspace. Motion context trials are displayed
with the same sorting and color conventions as displayed in (a). Color context trials are displayed with the
same sorting and color conventions as displayed in (b). Only correct trials are displayed. d) Projections
onto the context subspace using the same conventions as displayed in (c). Only correct trials are displayed.
Colored axes in 3D plots indicate seqPCA axes. Solid vertical lines accompanying time traces indicate the
time points where middle-axis variance starts to increase. Dashed vertical lines indicate the time points
where late-axis variance starts to increase. Units of the ordinate are arbitrary but all time-trace axes are on
the same scale. PSTHs were generated with ≈ 13 ms time bins and smoothed with a Gaussian window with
standard deviation of ≈ 50 ms. e) Median encoding strength of pseudotrials onto the first three encoding
axes of mTDR compared with the 1D subspace estimated by the max-norm method used by Mante et al.1

(see Supplementary note S10 for details). For clarity, only trials with the strongest stimulus strengths are
shown. Grey bars at y = 0 indicate time points where the mTDR projections had significantly stronger
encoding across all stimulus levels than the 1D projections (left-tailed Wilcoxon signed-rank test, pFDR28

controlled at .01). Multi-dimensional mTDR projections are larger than 1D projections at nearly all times for
all task variables. f) Rotation angle traversed through rotational projection using jPCA. Angle was calculated
starting from time when the projection transitions between the early and middle epochs. Coherent traversal
across stimulus strengths that is consistent and monotonically increasing is an indication of rotation. Shaded
areas are 95% confidence regions calculated using a maximum entropy method29 under the null hypothesis
of no population structure other than the empirical means and covariances across time, neurons, and task
conditions.

in subsequent sections.200

Trajectories exhibit rotational dynamics201

The projections for motion, color, choice, and context exhibit rotations after a short period of loading202

onto the early axes (Fig. 4a–d, left panels). This observation is supported by the fact that the trajec-203

tories are ≥ 2 dimensional during this period (Fig. 4a–d, right panels). While rotations are inherently204

≥2-dimensional, the fact that we found trajectories to be ≥2-dimensional need not imply rotations.205

We therefore identified the plane of greatest rotation of the trajectories using jPCA18 (Supplemental206

Fig. S10, Fig. S14), and observed clear rotational structure. The two dimensions of the jPCA plane207

accounted for a relatively large amount of the variance for all task variables (Fig. S15). Condition-208

shuffled projections yielded no apparent sequential or rotational structure (Supplementary Note S10,209

Fig. S16,Fig. S17).210

In order to rigorously examine the presence of rotational dynamics, we examined the angle of rotation211

that the trajectories traversed from the beginning of the middle epoch to the end of stimulus viewing212
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(Fig. 4f). We reasoned that for trajectories to be consistent with rotational dynamics they would have213

to have monotonically changing angle of rotation. We compared the angle of rotation to samples from214

the null distribution corresponding to the maximum entropy distribution with the same second order mo-215

ments as the data29 (Fig. 4f, see Supplementary note S5 for details). We found evidence for rotational216

dynamics in motion, color, choice, and context subspaces, although rotations were less consistent with217

the trajectories of the color encoding for monkey F (Fig.S11, Fig. S14, Fig. S18). These results indicate218

that rotational dynamics are not trivially present in these data and that we observe them in most of the219

linear subspaces examined.220

Projections onto the subspaces for the absolute values of motion and color (abs(motion), abs(color))221

were qualitatively different from those of the linear regression terms (Supplementary Fig. S9). While222

they clearly encoded the absolute values of the stimuli, evidence for rotational dynamics was not signif-223

icant (Fig. 4f, Supplementary Fig.S10, Fig. S9) .224

Neurons exhibit time-dependent tuning with stimulus encoding correlated with decision225

encoding226

We used the mTDR model and seqPCA to examine the tuning properties of these cells. The encoding227

subspaces found by mTDR for motion, color, and choice, appeared to be correlated with one another228

(Fig. 5a). More specifically, the weights defining the motion and color bases were correlated with the229

choice weights but not with one another (Fig. 5c), indicating that motion and color representations230

both contributed to the choice encoding but that there was little interference between representation of231

motion coherence and the representation of color coherence.232

Individual neurons exhibited complex mixtures of early, middle and late responses (Fig. 5b). While233

the population tuning of some task variables (abs(motion), abs(color)) were dominated by the early234

response none of the task variables were found to display clustering, but a continuous distribution of235

tuning across all three seqPCA axes. Late axes tended to explain less of the population variance,236

especially for color, choice, and abs(motion), but were responsible for explaining the majority of the237

variance for at least some neurons.238

Also notable is the low density of cells near the early/late axis (i.e. left-arm of the ternary plots in239

Fig. 5b). This indicates that there are few cells that encode a task variable at the beginning and end of240

stimulus viewing but lose sensitivity to a task variable in the middle stimulus viewing. This implies that241

individual cells encode each task variable in continuous epochs, even if only transiently.242

Accurate stimulus decoding corresponds to transition in dynamics243

Our generative model framework provides a natural setting for the decoding of population responses by244

maximum likelihood (see Supplementary Note S6). This allows our decoding analysis to be consistent245

with the results of dimensionality reduction. We can therefore investigate how and when the features of246
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Figure 5: Distribution of variance within and between subspaces. (a) Proportion of variance among
seqPCA axes. Each marker corresponds to one neuron. The position of each neuron indicates the distribution
of variance from PSTHs across corresponding early, middle, and late axes. e.g. a point that lies closer to the
“early" vertex of the motion plot has more of its motion-specific variance explained by the early axis while a
point in the middle of the simplex has variance equally distributed across all axes. Darker regions indicate
higher density of points. Colored dots correspond to cells displayed in Figure 3. (b)Weights of the top (in
terms of variance explained) 3 axes for all cells for motion, color, and choice subspaces. Cell indexes are
sorted according to the choice weights from most positive to most negative. (c) Magnitude of the Pearson
correlation between top 3 subspace axes. The magnitude is used because the axes are only identifiable up
to a sign. Markers indicate significant correlations controlled by the positive false discovery rate28)(* Q < .01,
+Q < .01). Null distribution is based on the positive half-Gaussian with zero-mean and standard deviation
σ0 = 1/n, where n is the number of neurons. Significant correlations are most consistent between color-
choice and motion-choice pairs.

the low-dimensional trajectories translate into putatively perceived stimuli and behavior, and whether or247

not these features may be read out by downstream populations. We note that while decoding of task248

variables does not imply a causal role for the encoded variables in FEF function, decoding analysis249

does provide a clearer picture of the dynamics and fidelity of task variable encoding.250

For decoding experiments with monkey A, we used a 4-fold cross validation in which we used 75% of the251

data to estimate parameters of the model and used the remaining 25% to produce 100 pseudosamples252

(with replacement) for decoding (for monkey F we used 2-fold cross validation with similar results). The253

resulting decoded values were averaged over pseudosamples and cross validation folds.254

Stimuli could be accurately decoded within≈150ms of stimulus onset for the motion stimulus and within255
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Figure 6: Instantaneous decoding of stimulus for monkey A. a) Top: Decoded motion coherence by
mTDR model in both contexts. Bottom: Mean squared error (MSE) over time of motion coherence decoding
across stimulus levels and context. MSE decreases precipitously, and then stabilize around the time of the
first transition. b) Same as a) for color coherence decoding. Color conventions are the same as in Fig. 4.
Shaded regions indicate 50% confidence intervals. Dashed lines indicate error trials from the corresponding
context for the lowest stimulus strengths. 100 pseudotrials for each of 4-fold cross validation used for all
analyses. Solid vertical lines indicate the time of early/middle axis transition for the corresponding stimulus
subspace projections. Dashed vertical lines indicate the time of middle/late transition.

≈200ms for the color stimulus, roughly corresponding to the time of transition between the early and256

middle seqPCA axes (Fig. 6a). The decoded value of the stimuli were constant by the start of the257

middle epoch for both contexts and the variance of the decoding decreased dramatically up to this258

time (Fig. 6b). Thus, the change in population dynamics (early-to-middle transition) within the stimulus259

subspace was consistent with decoding accuracy and stability. The decoded values are slightly biased260

toward zero in the irrelevant context, suggesting some gating of information across contexts. Moreover,261

we found that the decoded stimulus values of the same sign were more closely spaced than the true262

stimuli. This effect is in keeping with the findings of Hanks et al.6 where they showed that the encoding263

of stimulus evidence in FOF (a rodent analogue for the FEF) encodes accumulator values nonlinearly,264

with wider-than-linear spacing for moderate stimulus strengths.265

We also examined the decoded stimulus for error trials using the weakest stimulus strengths (dashed266

lines, Fig. 6c, Supplementary Fig. S19c). For these data only the weakest stimulus strengths had267

enough error trials to provide reliable statistical analysis1 . For monkey A, we found that the decoded268

stimulus values on error trials were similar to correct-trial decoding but were opposite in sign; suggesting269

that the origin of errors was (on average) an incorrect percept.270
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Choice Decoding271

We next studied how and when decision information became available in PFC and how the dynamics272

we observe in the encoding of choice translates into its decoding. In contrast to the decoding of stimuli273

, which are a continuous-valued variables, the choice variable was encoded in our model as a binary274

variable. Therefore, at each point in time we studied the log likelihood ratio (LLR) (for details, see275

Supplementary Note S6.3) of pseudotrials sampled from held-out data where the ratio was between276

the likelihood of a preferred, versus an anti-preferred, choice (Fig. 7a). Positive LLR indicates evidence277

in favor of a choice toward the preferred target and negative LLRs indicate evidence in favor of a choice278

toward the anti-preferred target.279

Figure 7: Instantaneous decoding of choice. a) Log-likelihood ratios (LLR’s) for monkey A in favor of a pre-
ferred choice using single pseudotrials from color - context (gold-blue, sorted by color coherence) and motion
- context (red-violet, sorted by motion coherence) trials. Shaded regions indicate 95% quantile intervals for
each stimulus strength. Solid lines indicate the median of correct trials. Dashed lines indicate median of error
trials. b) Probability of a preferred choice based on corresponding LLRs combined over all stimulus strengths
(see section S6.3 for details). Solid lines indicate median of correct trials. Dashed lines indicate median of er-
ror trials. Shaded regions indicate quantile coverage intervals of correct trials (light-to-dark: 95%,75%,50%).
Color conventions are the same as in Figure 4. 100 pseudotrials for each of 4-fold cross validation folds used
for all analyses. c) LLRs for in favor of a preferred choice where the choice subspace has been restricted to
only the early, middle, or late axes. d) Probability of a preferred choice based on LLRs from (c).

The magnitude of the LLRs increased monotonically indicating an increasing strength of the decision280

signal over time. Although, the magnitude of the LLR did not differ strongly across context, direction281

of decision, stimulus strength, or whether the trials were correct or error trials (dashed lines, Fig. 7a).282

By transforming the LLRs into decision probabilities (Fig. 7b, see Supplementary Note S6.3) we were283
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able to examine a moment-by-moment probability of the animal’s choice and ask when the decision is284

unequivocal and along which axes is the information available. We found that the choices could be dis-285

criminated with better than 95% accuracy as early as 300ms following stimulus onset for motion context286

trials and as early as 350 ms after stimulus onset for color context trials (Fig. 7b). This timing roughly287

corresponded to the time of transition between the early and middle seqPCA axes for choice. Similar re-288

sults were observed for monkey F but timing was shifted slightly later (Supplementary Fig. S20). These289

results suggest that the animals had made their decisions on virtually every trial well before stimulus290

offset (at least 500ms before stimulus offset for monkey A and 100ms for monkey F) regardless of the291

stimulus coherence and that these decisions were coincident with a change in dynamics from a linear292

integration to a rotation within the choice subspace.293

Interestingly, although the decoded choice for monkey F was somewhat more variable, a reliable de-294

cision signal was present from the first time point for many trials (Supplementary Fig. S20). This was295

particularly true for error trials, suggesting that either the decision was made earlier on average for error296

trials than for correct trials, or that the pseudosamples representing error trials are a mixture of both297

perceptual errors and “lapse" trials in which the animal did not attend the stimulus and made its choice298

by guessing.299

We next examined the LLRs while restricting the choice subspace to only the early, middle, or late300

axes. The LLRs displayed the same invariance to choice, stimulus strength, context, and correct/error301

trial identity as the full model. For both monkeys, the early axis provides the majority of the available302

information about the decision and decoding along the early axis alone is nearly as accurate as when303

we use the full model (Fig. 7d and Supplementary Fig. S20d). However, the middle and late axes304

also displayed information about the choice later during stimulus viewing. Because we can decode305

the animals’ decisions with the early axis alone, it would seem as though the middle and late axis306

information is redundant and it is unclear what the purpose of these axes are. Similar multidimensional307

encoding of decision has been observed previously in premotor cortex30.308

Context Decoding309

We also examined the context signal using the same LLR method as our analysis of choice (Supplemen-310

tary Fig. S21a, S22a). Similarly, the context evidence did not differ strongly across decision, stimulus311

strength, or whether the animal provided a correct or incorrect response. Transforming the LLRs into a312

probability of the perceived context (Supplementary Fig. S21b, S22b) showed that the correct context313

could be identified for both monkeys on the majority of pseudotrials from the first time point, which is314

consistent with the fact that the context cue was presented 650 ms before stimulus onset1. These315

patterns all appear to hold for LLRs obtained with error pseudotrials as well as when decoding was316

restricted to only the early, middle, and late subspaces (Supplementary Fig. S21c,d, S22c,d). These317

findings demonstrate that accurate context information was available in PFC for the vast majority of both318

correct and error trials, suggesting that confusion about context was not a significant source of errors319

for either animal.320
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Discussion321

Our analyses have shown that PFC encodes individual task variables in distinct multidimensional sub-322

spaces within which the representation changes over time. The population activity patterns representing323

each task variable tended to follow a stereotyped pattern of 1D/linear encoding, followed by rotational324

dynamics. Our ability to make these observations was enabled by a new method of dimensionality325

reduction that is based on a generative model of the data.326

We found that the dynamic nature of encodings in PFC requires multiple dimensions of neural popula-327

tion activity for accurate characterization. In particular, only multidimensional encoding, as opposed to328

1D encoding, captures the persistence of stimulus information in PFC throughout the stimulus-viewing329

epoch (Fig. 4a,b). This finding complements the original report of these data1, as well as results re-330

ported by others using similar 1D targeted dimensionality reductions methods8. Our results suggest331

that previously reported transient stimulus encoding in PFC is only consistent with the early encoding332

axis (Fig. 4e). Our observations resemble multi-dimensional stimulus coding that mixes transient and333

persistent components30 as well as population code “morphing"16, where the optimal weights for de-334

coding from population activity change over time, although the results shown here are on a time scale335

that is nearly an order of magnitude faster than previously reported.336

While we validated our method for identifying the “true" dimensionality of the data using simulation ex-337

periments, it is unclear if the dimensionality would differ under different experimental conditions. Specif-338

ically, the dimensionalities we learned are likely to be influenced by a variety of factors31 including the339

sample size, the fraction of neurons observed, the intrinsic model dynamics, and the task complexity32.340

Some of these factors may explain the differences in dimensionality between the two animals in the341

present study, where the dimensionalities of monkey F were lower than monkey A in correspondence342

with smaller sample sizes and fewer recorded cells. However, we would like to emphasize that during343

the early encoding, nearly all trajectories are 1D and only afterward are ≥2D. This may be a direct344

reflection of the rotational nature of the trajectories following the first transition, where rotations are345

inherently ≥2D since they require both sine and cosine parts.346

The mTDR method is distinct from unsupervised methods like PCA or factor analysis in that it uses347

information about the trial structure in order to perform dimensionality reduction. The method is also348

distinct from previously proposed supervised methods1;25–27;33 in its use of an explicit statistical encod-349

ing model to describe the transformation from task variables to neural activity patterns. This distinction350

not only allows us to make predictions of population responses to experimental contingencies not ob-351

served in the data (something not possible for methods based on the conditional PSTHs like dPCA352

without model-based interpolations27) but it allows us to apply the tools of probabilistic modeling and353

inference to estimate both the model parameters and the dimensionality of the encoding.354

Our descriptive model of neuronal responses (eq. 5) is similar in principle to that used by Mante355

et al.1 and other linear regression models used previously (see examples22;34–36). However, ours is356

distinguished in its explicit specification of low-rank regression parameters and neuron-specific noise357
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variance. Future iterations of our model may be improved by accounting for nonlinear mapping of358

stimuli onto neuronal responses22, by modeling of noise correlations between simultaneously recorded359

neurons, and accounting for variable trial lengths.360

Much theoretical development has rested on the notion that single-neuron spike rates map onto an361

evidence accumulator but recent evidence in the frontal orienting field (FOF, a rodent analogue of the362

FEF) has challenged this view6, suggesting that this region can be better described as maintaining a363

running motor plan (saccade for FEF, orienting for FOF) based on the evidence accumulated so far6;7.364

While our analysis does not aim to suggest a causal role of FEF, the results of the present study could365

be interpreted as supporting this view, where the early dynamics represent an evolving decision and366

the rotational dynamics indicated an evolving motor plan, but more work is needed to determine the367

precise role of FEF.368

Functional significance of sequential subspaces369

Our analysis revealed temporally segregated dynamics with early-axis, linear activity transitioning to370

middle- and late-axes, with rotations dominating by around 200–400 ms after stimulus onset (Fig. 4,371

Fig.S10). The temporal separation of the linear and rotational subspaces suggest that these are sub-372

spaces within which distinct computations are evolving18;20;37 or have independent sets of down-stream373

targets19.374

With the present data we can only speculate about what the nature of these different computations375

must be but the analysis presented here indicates the possibility that the early subspace is a correlate376

of the temporal window within which decision making is performed. For example, the time-frame of377

transition between early and middle epochs is consistent with the time frame within which we can378

decode the animals’ decisions from single pseudotrials (Fig. 7 and Supplementary Fig. S20). This379

time frame is consistent with the time-frame of saturation of the chronometric curve for the traditional380

moving dots task38–40, is consistent with the distribution of step times in the stepping model of evidence381

accumulation41, and is consistent with early weighting of evidence in visual discrimination tasks42.382

This evidence suggests that the transition from linear to rotational dynamics is a correlate of decision383

commitment.384

In premotor cortex, a similar sequence of dynamics has been observed in population activity that cor-385

responds to distinct “preparatory" and “movement" epochs18–20;37. However, the latter findings were386

isolated to motor and premotor areas while ours were from dorsolateral PFC, localized around FEF1.387

In addition, in the premotor and motor cortex studies the transitions in dynamics could be linked directly388

to an overt action (arm movement) while our animals would not have made an overt action (saccade to389

target) until 300-1,500 ms after the end of our analysis epoch1. Therefore, if the animal has made its390

decision then it would have done so only covertly.391

These distinctions, however, may very well be superficial. The qualitative features of our results re-392

flect observations in motor cortex strikingly well18–20;37 suggesting that common mechanisms may be393
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at work in both motor execution and decision making. Indeed, FEF is defined as a region that elicits394

eye movement under stimulation43;44 and has been implicated as a region important for visual decision395

making1;4;6;9–11;11;12;14;15, oculomotor planning45, and covert visuospatial attention46;47. Thus, although396

FEF is not a motor region per se we may think of FEF as itself a premotor area responsible for visuospa-397

tial attention and motor planning concomitant with decision making4;6;7;9. While the dynamic transitions398

in our analysis could be interpreted as signaling decision commitment rather than an action plan6, it399

seems reasonable to view the distinct spatiotemporal partitioning of dynamics we find in the present400

study as signaling a covert action preparation that reflects the upcoming saccade, in analogy with the401

spatiotemporal transitions observed between preparatory and movement periods seen in premotor cor-402

tex18;19;37. Single-trial population analysis and analysis of trajectories that extend into the delay and403

saccade epochs of these experiments may shed light on how the dynamics we observe reflect the404

animals’ decisions.405

Some subspaces lack a distinct late component (eg. color and choice subspaces for Monkey A,406

Fig. 4a,c). However, it is possible that the middle seqPC for some task variables is serving a simi-407

lar role as the late seqPC for others; preparing the network for a new set of targets and storing the408

memory of the stimuli as persistent activity over the course of the delay period. Indeed, the number of409

seqPCâĂŹs needed to describe the population activity may be a reflection of the rate at which rotations410

twist into new encoding directions and therefore reflect a quantitative difference in encoding rather than411

a qualitative one. Future work should be aimed at identifying the significance of the dimensionality of412

the encoding relative to changing dynamics.413

Finally, the nature of dynamic encoding for the context variable remains mysterious. Context encoding414

for both animals displayed clear and consistent dynamics (Fig. 4d,S11d) including rotations (Fig. 4f).415

Furthermore, while most of the predictive capacity of the context encoding lies in the early subspace416

(Fig. S21, S22), where context is encoded throughout the stimulus viewing period, context encoding417

at the single-neuron level is broadly distributed across the early, middle, and late axes (Fig. 5b, S13),418

indicating that some neurons do not encode context until well after stimulus onset. Further work is419

needed to determine what, if any, function these dynamics serve in decision making and memory.420

Differences in encoding between animals421

The two monkeys in this study displayed similar, but not identical, encoding properties. For example,422

the trajectories through the motion subspaces are strikingly similar (Fig. 4a, Supplementary Fig. S11a)423

but we found obvious differences between the encoding trajectories for color (Fig. 4b versus Fig. S11b).424

For monkey A the color trajectories closely resemble the trajectories for motion (Fig.4a,b) while for425

monkey F the color trajectories display no obvious rotational component (Supplementary Fig. S11b).426

Choice and context trajectories in monkey F appear to be similar to those of monkey A (Fig. 4e,g and427

Supplementary Fig. S11e,g) but display less pronounced rotations, (Fig, S10, Supplementary Fig S14).428

These across-animal differences verify that rotational dynamics are not trivially present in these data429

and while it is unclear precisely what function they serve they are a potentially important feature of430
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encoding in PFC. The abs(motion) and abs(color) trajectories in both monkeys appear to follow similar431

dynamics, with an early response peaking ≈200-300 ms and a later response that appears to tonically432

encode the magnitude of the stimulus (Fig. S9a,c and Supplementary Fig. S11e,f).433

These differences are reflected in the our decoding results as well. While the qualitative results of434

stimulus and choice decoding appear to hold across animals, motion decoding appears to be more435

precise for monkey F (Fig. S19) than for monkey A (Fig. 6) and the 1D color decoding in monkey F is436

far more sensitive to the animals’ choice and the quality of decoding is relatively poor (Fig. S19). We437

also found that the transition between early- and middle-epoch decoding accuracy is less dramatic for438

monkey F than for monkey A ( Fig. S19).439

While the reason for differing dynamics between the color encoding for monkey F and the other stimulus440

encodings is unclear we do have some behavioral clues as to its effect. For example, the color-context441

psychometric curve for monkey F was somewhat more shallow than for motion as well as for both442

motion or color for monkey A (Extended data Fig. 2d in1), and motion served as more of a distraction443

during the color task for monkey F than for monkey A, suggesting that color discrimination task was444

more difficult for monkey F. Furthermore, we found that the decoding accuracy for color in monkey F445

was considerably worse than for monkey A (Fig. 6, Fig. S19) suggesting that color information was446

more poorly represented in PFC for monkey F. Although not definitive, together these results suggest447

that monkey F may have had more difficulty with color coherence perception and that the encoding448

dynamics we observe are a correlate of perceptual uncertainty. Future experiments could be aimed at449

examining this hypothesis.450

Decoding of error trials suggests sources of errors451

There are three ways that the animals may commit an error: the animal perceived the wrong stimulus452

(e.g. perceived left motion on a right-motion trial); the animal was confused about the context (e.g.,453

made its decision using the color information in the motion context); or the animal made a random454

choice, independent of context cue or stimulus (i.e., a “lapse” trial). The results of this analysis indicate455

that the most likely of these scenarios, for monkey A at the weakest stimulus strengths, is that the456

animal perceived the wrong stimulus. We showed that the decoded context on most trials was the457

correct context, suggesting that the correct context was also the perceived context (Fig. S21), ruling out458

confusion about which stimulus the animal was supposed to attend. We also showed that lapse errors459

do not contribute significantly to the animal’s behavior since the LLR in favor of the executed choice460

indicates evidence in favor of the choice made on error trials that rose as fast as the correct trials,461

and follows essentially the same time course (Fig. 7a,b), where lapse errors would be indicated by a462

LLR that signals a decision earlier than correct trials. Indeed, the psychophysical curves of monkey463

A suggest a small lapse rate, if any1. Finally, the decoded stimulus on error trials indicates that the464

perceived relevant stimulus on error trials was of the opposite sign as the stimulus that was presented465

(Fig. 6c). Together, these observations indicate that the error trials are characterized by a deliberated466

decision based on an incorrect perception of the relevant stimulus. A more direct trial-by-trial analysis467
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of simultaneously recorded neurons would be useful in probing this hypothesis.468

The results for monkey F are more difficult to interpret. The decoded stimuli for error trials appear to be469

close to 0, indicating an ambiguous stimulus (Fig. S19b). Furthermore, the choice signal on error trials470

appears to be present earlier on average than on correct trials and is present on some trials as early471

as the first time point (Fig. S20b) suggesting that the animal may have made its decision before even472

viewing the stimulus, suggesting that a significant source of errors for monkey F are lapses.473

Given the present data, it may be impossible to distinguish the neural correlates of the animals’ choices474

from neural correlates of motor planning for the eventual saccade. Recent work has shown that there475

may be independent cortical signals for evidence accumulation and decision commitment in other corti-476

cal areas42. It may therefore be difficult using data of this kind to distinguish between a deliberate effort477

to make a stimulus discrimination and the formation of a motor plan34.478

Nevertheless, the results presented here demonstrate the utility of mTDR for the analysis of neuronal479

population data and provide a description of PFC dynamics that should serve as important constraints480

on future models of the mechanisms of PFC function.481

Methods482

Detailed description of model483

High-dimensional description of observations484

Our model describes trial-by-trial neuronal activity with a linear regression with respect to the task485

variables. We assume that the activity of the ith neuron yi,k(t) at time t on trial k can be described by a486

linear combination of P task variables x(p)k , p = 1, . . . , P (eg. stimulus variables, behavioral outcomes,487

and nonlinear combinations thereof), such that488

yi,k(t) = x
(1)
k βi,1(t) + x

(2)
k βi,2(t) + · · ·+ x

(P )
k βi,P (t) + εi,k(t). (3)

where the P values of the task variables x(p)k are known, the βi,p(t) are unknown coefficients, and489

εi,k(t) is noise. This basic model structure is identical to that of the regression model used in1 and has490

been successfully employed in characterizing neuronal activity of single neurons in other studies of per-491

ceptual decision making23;48. In cases where we include a time-varying mean rate that is independent492

of the task variables, we define x(P )
k ≡ 1 for all k, and the P th component becomes the time-varying493

mean.494

To represent all neurons simultaneously, we concatenate the responses into a vector yk(t) and write495

yk(t) = x
(1)
k β1(t) + x

(2)
k β2(t) + · · ·+ x

(P )
k βP (t) + εk(t), (4)

where yk(t) = (y1,k(t), . . . , yn,k(t))
>, βp(t) = (β1,p(t), . . . , βn,p(t))

>, and εk(t) = (ε1,k(t), . . . , εn,k(t))
>.496
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For trial epochs of duration T we can regard all observations on a given trial to be a matrix, Yk =497

(yk(1), . . . ,yk(T )), giving the observation model498

Yk = x
(1)
k B1 + x

(2)
k B2 + · · ·+ x

(P )
k BP + Ek, (5)

where Ek = (εk(1), . . . , εk(T )), and Bp = (βp(1), . . . ,βp(T )). For the present study, we assume the499

noise is normally distributed εk(t) ∼ N (0,D−1) for all trials k and times t, where D = diag(λ1, . . . , λn)500

is a n× n diagonal matrix of noise precisions.501

Low-dimensional description of observations502

With no additional constraints our observation model (5) is extremely high dimensional and is effectively503

a separate linear regression for each neuron at every time point. This would only be a sensible model504

if we believed that neurons were not in fact coordinating activity between each other or across time.505

To define our low-dimensional model we can describe each Bp by a low-rank factorization, i.e. Bp =506

WpSp, where Wp and Sp are n × rp and rp × T respectively, where rp = rank(Bp). Equivalently, we507

can say that rp is the dimensionality of the encoding of task variable p. This is equivalent to saying508

that the characteristic response of each neuron to the pth task variable can be expressed as a linear509

combination of rp weighted basis functions βpi (t) =
∑rp

j=1w
(p)
i,j s

(p)
j (t), where rp is the dimensionality510

of the encoding, {s(p)j (t)}rpj=1 are a common set of time-varying basis functions, and {w(p)
i,j }

rp
j=1 are511

neuron-dependent mixing weights.512

Marginal estimation of model parameters513

The goal of inference is to estimate the factors of Bp and the ranks rp. Our proposed estimation strategy,514

for computational and statistical efficiency, is to estimate only one set of factors ({Wp} or {Sp}). This is515

possible when we integrate out one set of factors. For example, if we define a prior probability density516

over the mixing weights p(W), then for data likelihood p(Y|W,S) the marginal likelihood of the matrix517

of time-varying basis functions S can be obtained by518

p(Y|S,λ) =

∫ ∞
−∞

p(Y|W,S,λ)p(W)dW. (6)

In principle, either set of factors may be selected for marginalization. In practice however the set of519

factors with lowest dimension should be selected to keep computational costs low. In this paper we520

focus on the case where T � n and we therefore will estimate the set of weights {Sp} while integrating521

over {Wp}. The fact that either set of factors may be determined in this way means that there is522

a duality between rows and columns imposed by this model that is similar in principle to the duality523

between factors and latent states for probabilistic principle components analysis49.524

If we let the noise distribution and prior distribution of W both be Gaussian then we can use standard525
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Gaussian identities to derive the marginal density p(Y|S,λ) and the corresponding posterior density526

p(W|Y,S,λ). A simple starting assumption would be to let all elements of W to be independent527

standard normal, (i.e., w ∼ N (0, Ir̃n) where r̃ =
∑

p rank(Bp)). We therefore assume that the weights528

are a priori independent and that the noise variance is independent across both neurons and time. In529

principle, our framework supports the application of more structured priors and noise covariances, but530

we will not explore more elaborate models in this paper. Further details are developed in Supplemental531

Section S1532

Experimental details533

A detailed description of these data have been published previously1. Briefly, two adult male rhesus534

monkeys were trained to perform a context-dependent 2-alternative forced-choice visual discrimination535

task. At the beginning of each trial the monkeys were cued (Fig. 2a) to respond to either the motion536

or the color parts of the stimulus. After the context-cue presentation two targets appear for 350 ms,537

followed by 750 ms presentation of the stimulus. The stimulus was then followed by a randomized 300–538

1500 ms delay after which the monkey was cued to indicate its decision with a saccade to either of the539

two targets.540

Electrophysiological data were recorded from tungsten electrodes implanted in the arcuate sulcus in541

and around the frontal eye field (FEF). Electrodes were lowered two at a time into adjacent grid holes542

and were advanced until at least one single-unit could be isolated, although some trials yielded multiu-543

nit activity. All recorded units were included in the analysis. Spike sorting was conducted by clustering544

based on principle components analysis using the Plexon offline sorter (Plexon Inc., Dallas, TX). Each545

isolated cluster was functionally treated as a unit. Some clusters did not correspond to well discrimi-546

nated, single-unit activity and were therefor deemed multi-unit activity.547

All analyses presented in this paper used spike counts binned at 50ms (for model fitting and decoding)548

or 12.5 ms (for display of projections, jPCA, and PSTHs). All data were analyzed with custom scripts549

written in MATLAB (The MathWorks, Inc., Natick, MA).550

Model structure551

Examination of the PSTHs revealed that stimulus encoding was asymmetric (eg. unit 2 in Fig. 2c), such552

that the encoding of the stimulus strength was stronger in one direction than the other. This suggested553

that the absolute value of the stimulus strengths should be jointly modeled with the linear encoding of554

the stimuli. Model fits using terms for the absolute value of the stimuli resulted in smaller AIC than555

model fits with only linear terms (Monkey A: AIClinear = 9.79 × 107, AICabs = 7.33 × 107, Monkey F:556

AIClinear = 8.065× 107, AICabs = 8.0628× 107).557

22

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted October 21, 2019. . https://doi.org/10.1101/808584doi: bioRxiv preprint 

https://doi.org/10.1101/808584
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cross validated variance explained558

To asses the variance in the population responses that is explained by our method we conducted 4-fold559

cross-validation (CV) where, on each fold of CV, we used a randomly selected sample of 75% of the560

trials as training data to estimate the parameters of the model. Using the remaining 25% of the trials561

as test data, we made PSTHs for every possible task variable contingency for correct trials (total of 144562

conditions). The reported variance explained was averaged over the four CV folds.563

When assessing variance explained, the population PSTH’s for each condition was averaged over all564

extraneous task variables. For example, to assess the variance explained by the motion subspaces we565

averaged the PSTHs over all task variables except motion. We therefore had 6 sets of PSTHs for each566

neuron that were projected onto the motion subspace.567

To determine if the variance that was explained by the estimated subspaces was greater than chance568

we compared the observed variance explained to the distribution of variance explained obtained by569

random projections. As a serrogate null distribution we generated 500 samples for each task variable570

of random projection weights from a normal distribution and calculated the explained variance for each571

sample. We then asked what the probability was of the observed explained variance being larger572

than the explained variance of the random projections for each neuron. We found that many neurons573

exceeded the 95% Bonferroni-corrected significance threshold across nearly all dimensions.574

Sequential PCA (seqPCA)575

The seqPCA algorithm identifies an orthogonal basis on which variance of a D-dimensional trajectory576

is sequentially explained. The algorithm starts by calculating the variance explained by the first singular577

vector of a sequence of D× t data matrices Yt, where t indicates the number of time points included in578

the data. As the number of data points increases, the first singular vector explains a larger proportion579

of the variance,p1,t, until trajectories change direction, after which p1,t decreases. The t at which p1,t580

reaches its peak is considered a transition time and the left singular vector at this time is considered the581

first seqPC. Variability explained by this axis is subtracted from the data and the procedure is repeated582

to identify the 2nd seqPC, and so on. For details, see Supplementary Note S9.583

The seqPCA algorithm displays some sensitivity to noise by making peaks in p1,t, difficult to identify.584

However, moderate smoothing (Gaussian window, 50ms width) of the trajectories appeared to mitigate585

this effect. Greater robustness may be offered by translation of this algorithm into an optimization586

framework50. A related method has been developed for identification of sequential motifs of spike587

rasters51.588
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Supplementary Information

S1 Derivation of model likelihood747

The response of neuron i on trial k can be described by748

yi,k = x
(1)
k β1

i + . . . x
(P )
k βPi + bi + εi,k, (7)

where all vectors are of length T , bi is a constant vector representing a condition-independent mean,749

and εi,k is noise. The low-dimensional description of the response is represented by a factorization750

of the vectors βpi
> = Sp

>wp
i where, if rp is the dimensionality of the subspace for task-variable p751

then wp
i ∈ IRrp is a neuron-specific vector of weights and Sp ∈ IRrp×T is a matrix of rp time courses752

shared by all neurons. The basic model structure is graphically depicted in Fig. S1. If we let wi
> =753

(w1
i
>, . . . ,wp

i
>), and S be a block-diagonal matrix754

S =

 S1

. . .
SP

 (8)

then we can rewrite equation (7) as755

yi,k = (xk
> ⊗ IT )S>wi + bi + εi,k. (9)

If yi,k and xk are the observed response and task variables on trial k then the collection of all obser-756

vations for this neuron yi
> = (yi,1

>, . . . ,yi,Ki
>) can be described in terms of all corresponding task757

variables Xi
> = (x1, . . . ,xKi) by758

yi = (Xi ⊗ IT )S>wi + 1K ⊗ bi + εi, (10)

= Fiwi + b′i + εi, (11)

where Fi = (Xi
>⊗IT )S>, b′i = 1K⊗bi, 1Ki is a vector of 1’s of lengthKi, and εi

> = (εi,1
>, . . . , εi,Ki

>).759

Equation (11) has the form of a standard multivariate linear regression. Therefore, if we set the noise760

distribution to be εi,k ∼ N (0, λ−1i IT ) then we have the conditional distribution of yi as761

yi|S,wi,Di ∼ N (Fiwi + b′i, λ
−1
i IKiT ). (12)

S1.1 Reduced inference in terms of S762

Our strategy for accurate estimation is to focus on estimation of only one set of factors (w’s or S’s).763

In principle, either set of factors may be selected. In practice however the set of factors with lowest764

dimension should be selected to keep computational costs no higher than necessary. In the present765

case we have T � n and we therefore will estimate S’s after integrating over w’s. In general, if we766

define a prior over wi’s denoted by p(wi) then the marginal likelihood of s is given by767

p(yi|s, λi,bi) =

∫ ∞
−∞

p(yi|wi, s, λi,bi)p(wi)dwi. (13)
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Figure S1: Schematic of low-rank structure in proposed regression model a) The firing rates for n neu-
rons observed over T time point on a give trial can be concatenated into a n × T matrix Y. A characteristic
response for task variable and each neuron can also be described by a n×T matrix Bp where the model lin-
early scales the characteristic response by the task variable. This formulation is equivalent to parameterizing
each time point for each neuron as a separate linear regression problem. b) A low-dimensional description
of the neural responses is achieved by parameterized each of the characteristic response matrices B by a
small number of temporal basis functions. In the case of a 1D representation, a single temporal basis is
needed, which is weighted separately to provide the response for each neuron. In the case of a 2D repre-
sentation, two linearly-independent basis functions are needed, where each basis function gets its own set of
weights to construct the characteristic responses of each individual neuron. The low-dimensional description
is equivalent to a low-rank matrix factorization model for each Bp.

If p(wi) is Gaussian then we can use standard Gaussian identities52 to marginalize over wi and obtain768

an analytical expression for the marginal likelihood in terms of s. In the present study, we let wi ∼769

N (0, Ir̃), for all i, where r̃ =
∑

p rank(Bp). While this framework supports the application of a number770

of structured priors for p(wi), in the present work we utilize the conservative assumption of independent771

weights. While the scale of wi’s is inherently set by the prior, the scale of the βpi vectors will be learned772

by unconstrained estimation of S.773

For the given likelihood and prior, our marginal likelihood is given by774

yi|S, λi,bi ∼ N (b′i, λ
−1
i IKiT + FiFi

>). (14)

Assuming that noise correlations are negligible (in our case neurons are treated as having been recorded775

sequentially so that this is a reasonable assumption) we observe that neurons are conditionally inde-776

pendent given S. Thus, both the conditional and marginal distributions for the whole population factorize777
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across neurons. Therefore, the population log-likelihood is given by778

`(S,b,λ|w,y) =
1

2

n∑
i=1

TKi log |λi| (15)

− λi(yi − Fiwi − b′i)
>(yi − Fiwi − b′i),

=
1

2

n∑
i=1

`i(S,bi, λi|wi,yi) (16)

where Ki is the total number of trials observed for neuron i. The corresponding marginal log-likelihood779

is given by780

`(S,b,λ|y) =
1

2

n∑
i=1

log |λ−1i IKiT + FiFi
>| − (yi − b′i)

>(λ−1i IKiT + FiFi
>)−1(yi − b′i). (17)

S1.2 Reduced expression for likelihood781

It should be noted that the above marginal likelihood requires the log determinant and inverse of all n782

of the matrices λ−1i IKiT + FiFi
> which are KiT ×KiT . Thus, if all neurons are observed for K trials,783

then the determinant and inverse in general will have computational complexity O(nK3T 3), which can784

be prohibitively large for even moderately sized datasets. Luckily, the expression for `(S,b,λ|y) can785

be dramatically reduced.786

After some algebra, we can derive the following expression for the marginal likelihood in terms of S,787

λ> = (λ1, . . . , λn), and b:788

`(s,λ,b) = −1
2

n∑
i=1

(
−KiT log λi + λi(yi − b′i)

>(yi − b′i) + log |Ci| − λ2iTrace[RiS
>C−1i S]

)
, (18)

where789

Ci = λiS(Ai ⊗ IT )S> + Ir̃, where Ai =

Ki∑
k=1

xkxk
>, (19)

and the matrices Ri are defined by the outer product790

Ri = (Xi ⊗ IT )(yi − b′i)(yi − b′i)
>(Xi

> ⊗ IT ). (20)

This formulation reduces the computational complexity to O(nr̃3) where, in general, r̃ � min(n, T ).791

S1.3 Posterior distribution wi’s792

Common Gaussian identities can also be used to derive the posterior distribution over weights wi. As793

above, conditioned on S, the posterior distribution of all wi factorize over neurons and we can write out794

each distribution independently. For the above model we find that795

wi|yi,S, λi,bi ∼ N (mw,C
−1
i ), (21)
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where796

mw = λiC
−1
i S(Xi

> ⊗ IT )(yi − b′i), (22)

and Ci is defined in equation (19).797

S2 Parameter estimation798

We estimate parameters by obtaining maximum likelihood estimates of s, bi, and λ by maximiza-799

tion of the marginal likelihood (18). The above description of the marginal likelihood p(y|s,b,λ), the800

complete data likelihood p(y,w|s,b,λ) = p(y|w, s,b,λ)p(w), and the posterior distribution over w,801

p(w|y,b, s,λ), allows us to derive an efficient algorithm for iteratively estimating s, bi, and λ us-802

ing exclusively closed-form updates. The algorithm is essentially a special case of the “expectation-803

conditional maximization, either" algorithm (ECME)53 where parameters are block-wise estimated by804

either maximizing the conditional expectation of the complete data log likelihood or the marginal likeli-805

hood.806

S2.1 ECME for maximization of the marginal likelihood807

Each iteration of our ECME algorithm comes with a conditional EM step (ECM) where we block-wise808

estimate λ and s while holding all other parameters fixed, followed by a direct maximization of the809

marginal likelihood in terms of bi. The E-step is defined by forming of the so-called “Q-function" for810

each neuron, which is an expectation over the complete data log likelihood and is given by811

Qi(S, λi,S
−, λ−i ) ≡ Ewi|yi,bi,s−,λ

−
i

[log p(yi,wi|s,bi, λi)] (23)

= TKi log λi − λiyi>yi + 2λ−i λiTrace[RiS
−>C−−1i S] (24)

−Trace[CiC
−−1
i ]− λ−2i Trace[RiS

∗>C−−1i CiC
−−1
i S−],

where C−i is as given in equation (19) except812

C−i = λ−i S
−(Ai ⊗ IT )S−> + Ir̃. (25)

At each M-step we maximize Q ≡
∑

iQi in terms of λ and s sequentially. Using updated estimates of813

λ and s, we then update b by direct maximization of the log likelihood (18). An outline of the algorithm814

is given in Algorithm 1.815

The update for λi is obtained by setting ∂Qi(S, λi,S−, λ−)/∂λi = 0 and solving for λi. The resulting816

update is given by817

λ+i ←
TNi

(yi − b′i)
>(yi − b′i)− 2λ∗i c

1
i + c2i + λ∗2i c

3
i

(26)

where818

c1i = Trace[RiS
∗>C∗−1i ], c2i = Trace[S(Ai ⊗ IT )S>], c3i = Trace[RiS

∗>C∗−1i S(Ai ⊗ IT )S>.
(27)

Similarly, the update for S is obtained by setting ∂Q(S,λ,S−,λ−)/∂S = 0 and solving for S. The819
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Algorithm 1 ECME for parameter estimation

Initialize b−i , λ−i , S− for all i, θ− =
{
b−1 , . . . ,b

−
n , λ

−
1 , . . . , λ

−
n ,S

−}.
Set tolerance δ

1: procedure ECME(r0,Data)
2: repeat
3: Qi(S, λi,S

−, λ−i )← Ewi|yi,b
−
i ,s
−,λ−i

[log p(yi,wi|s,bi, λi)] . E-step for each i

4: λ+i ← arg max
λi

Qi(S, λi,S
−, λ−i ) . Conditional M-step for λi’s

5: S+ ← arg max
S

∑
iQi(S, λ

+
i ,S

−, λ+i ) . Conditional M-step for S

6: b+
i ← arg max

bi

log p(yi|bi,S+, λ+i ) . Max marginal likelihood estimate of bi’s

7: θ+ =
{
b+
1 , . . . ,b

+
n , λ

+
1 , . . . , λ

+
n ,S

+
}

8: until max |(θ− − θ+)/θ−| ≤ δ . Stop when parameters change sufficiently slowly
9: θ− ← θ+

10: return θ+

11: end procedure

estimator satisfies the equation820 ∑
i

λ2iC
−−1S−Ri =

∑
i

λiGiS(IT ⊗Ai) (28)

where821

Gi = λi

(
C−−1i + λ∗2C−−1i S−RiS

−>C−−1i

)
. (29)

The solution to (28) is the solution to a linear system of equations that can be efficiently solved inO(r̃3)822

time.823

Finally, the update for bi is obtained by setting ∂ log p(yi|bi,S+, λ+i )/∂bi = 0 and solving for bi. The824

solution is given by825

b+
i ←

(
IT + λiKi(x̄i

> ⊗ IT )SC−1i S(x̄i ⊗ IT )
)−1 (

ȳi − λi(x̄i> ⊗ IT )SC−1i S(Xi
> ⊗ IT )yi

)
, (30)

where x̄i and ȳi are the trial-averaged task variables and responses, respectively.826

S2.2 Using ECME and direct maximization827

While the EMCE method described above results in accurate estimates of parameters, the ECME828

method converges very slowly when it gets close to a local optimum. The problem of slow convergence829

is well documented among EM-type algorithms for related models like factor analysis53–55. On the other830

hand, the ECME method gets close to a local optimum extremely fast.831

Alternatively, we could directly maximize the marginal likelihood by gradient decent; an approach we832

will call maximum marginal likelihood estimation (MMLE). Although in principle the ECME method and833

the MMLE method should both be maximizing the marginal likelihood, they do so at different rates834

depending on distance from the optimum. In order to make best use of both methods we initialize using835

the ECME algorithm, which we parameterize with a liberal stopping criterion, and then complete the836

estimation procedure with MMLE. We observed this approach to provide faster convergence that either837
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the MMLE or EMCE methods alone.838

S3 A greedy algorithm for rank estimation839

While our model can identify low-dimensional subspaces of any dimension up to Dmax = min{n, T},840

the dimensionality of each subspace must be specified a priori. While we can use standard model841

selection techniques to compare the goodness of fit between models with alternative configurations,842

an exhaustive search would require searching over DP
max possible configurations. For our application843

this would mean estimating parameters for 157 = 170, 859, 375 different models. We therefore devel-844

oped a greedy algorithm for estimating the optimal dimensionality. A schematic illustration of the rank845

estimation procedure is depicted in Figure S2.846

Recall that the dimensionality of each task-variable encoding corresponds to the rank of the factorization847

of the matrix of characteristic responses Bp. We begin the algorithm by first estimating the model848

parameters with rank rp = 1 for all p, giving us a model with total dimensionality r̃ =
∑P

p rp at the849

first iteration (i.e. r̃1 = P ) (Fig. S2, Iteration 0). At the jth iteration we estimate the parameters of P850

models, each with the dimension of one of the task variables increased by 1, while keeping all other851

dimensionalities the same as in the previous iteration. We then get P models with total dimensionality852

r̃j+1 = r̃j + 1 (Figure S2, Iteration 1-4). We then evaluate the AIC of each of these P models and853

keep the model with lowest AIC for the next iteration. In this way we grow the total dimensionality of854

the model by one on each iteration. The sample path that the algorithm produced for estimation of the855

ranks for data from monkey A is shown in Figure S3.856

S3.1 Evaluation of dimension estimation with simulated data857

Here we demonstrate that our rank estimation procedure recovers the true rank of the model the vast858

majority of the time even under conditions of vary small numbers of trials number relative to the size859

of observations. We also achieve good dimensionality estimation under model misspecification where860

the observations are drawn from a Poisson distribution (Fig. S4). We also examined the quality of861

rank estimates compared to alternative procedures for fitting the parameters and found that our method862

dramatically out-performed the alternatives.863

We applied our greedy algorithm on simulated data in order to determine if it could accurately recover864

the true ranks using n = 100 neurons and T = 15 time points. For each run of our simulations865

we first selected a random dimensionality between 1-6 for each of P = 3 task variables (two graded866

variables with values drawn from {−2,−1, 0, 1, 2} and one binary task variable with values {−1, 1}).867

Using these dimensionalities, the elements of Wp and Sp were drawn independently from a N (0, 1)868

distribution. To give us heterogeneous noise variances, the noise variance for each neuron was drawn869

from an exponential distribution with mean parameter σ2 = 50. The resulting average SNR for any one870

task variable was -0.26 (±0.75, log10 units). We then simulated observations according to our model871

with varying numbers of trials (N ∈ {50, 200, 500, 1000, 1500, 2000}). In order to simulate incomplete872

observations, we set the probability of observing any given neuron on any given trial to πobs = .4.873

For each set of observations, we estimated the parameters of the model in one of three ways, which874

we describe below. In order to implement the AIC a likelihood and a degrees of freedom K must be875

specified. For all methods, on each iteration of the dimension estimation algorithm, we assumed a fixed876

dimensionality of the p-th characteristic response Bp to rp.877
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Figure S2: Graphical illustration of one possible sample path of algorithm for greedy estimation of
dimensionality. Each colored circle represents a different task variable. Numbers inside of circles indicate
dimensionality of the corresponding task variable at the current iteration. At iteration 0, the dimension of
all task variables is set to 1. At the next iteration, all possible models with total dimensionality r̃ =

∑P
p rp

increased by 1 are evaluated by an objective function ( in this case, the AIC). The configuration with the
smallest value of the AIC will be selected as the starting point for the next iteration in which all possible
models with r̃ increased by 1 are evaluated. This process continues until the AIC cannot be decreased any
further.

We considered the following four methods of parameter estimation:878

1. Linear regression and SVD879

The elements of Bp for all p were estimated by linear regression for each neuron and time point880

independently. Each estimate of the complete matrix Bp could then be expressed by its singular881

value decomposition (SVD) as Bp = UpDpVp
>, where Dp is the n × T diagonal matrix of882

d = min{n, T} singular values. We then set the smallest d − rp singular values to zero with the883

resulting matrix of rp nonzero singular values denoted by D
(rp)
p . The rank-rp estimates of Wp884

and Sp are then given by W
(rp)
p = UpD

(rp)1/2
p and S

(rp)
p = D

(rp)1/2
p Vp

>, with the corresponding885

rank-rp estimate of Bp given by B
(rp)
p = W

(rp)
p S

(rp)
p .886

The corresponding likelihood is given by887

`(Bp|Z,H′, D̂) ∝
∑
k

Trace[(Zk −
∑
p

x(p)Bp)
>H′DH′>(Zk −

∑
p

x(p)Bp] (31)

2. Bilinear regression888

After initializing with the rank-rp estimates of Wp and Sp from the SVD method, the parameters889

can be further refined by bilinear regression. On each iteration, the values of Wp’s are fixed,890

which leads to closed-form updates for conditional maximum likelihood estimates of Sp’s and vice891
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Figure S3: Sample path of rank estimation. On each iteration of the algorithm the total dimensionality of
the model is increased by 1. Each color indicates the dimensionality of a different task variable after every
iteration. The AIC on each iteration is shown in maroon.

versa. Thus, the algorithm will alternate between estimating Wps and Sps until convergence.892

The bilinear regression method uses the same likelihood as (31).893

3. ECME894

After initializing with the SVD solution we applied our ECME algorithm described in Section S2.895

4. Maximum marginal likelihood (MMLE)896

After initializing with the ECME estimates of Wp and Sp, we estimate Sp by direct maximization897

of the marginal likelihood given by (18). No estimation of the Wp factors is required since the898

marginal likelihood only depends on Sp.899

For each setting of trial number K, we repeated this process 100 times and evaluated how well our900

algorithm estimated the dimension of the task variables by evaluating the difference between the true901

and estimated dimension of each task variable and counting the number of times that difference was902

observed. The results are presented in Figure S4. We found that all three methods tended to under-903

estimate the dimensionality of the Bp’s as the number of trials decreased but that this underestimation904

was least pronounced with our MML method, for which the vast majority of estimates resulted in the905

correct ranks even in the case of K = 50. Note that not only is this half the number of trials as neurons906

but since each neuron was only observed on about 40% of the trials this gives an average of 20 trials907

per neuron.908

In order to evaluate the effects of model mismatch where the observations were drawn from a Poisson909

distribution, we repeated the above experiment using the MMLE method at K = 2000. We found no910

difference in the accuracy of the method between the case of Gaussian observations and the case911

where observations were Poisson (Fig. S4, dashed black line).912
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Figure S4: Simulation results for accuracy of rank estimation. Number of times (out of 100) that the
difference between the estimated and true dimensionality (dimest - dimtrue) of each of the P = 3 characteristic
response matrices Bp, giving a max count of 300.

S4 Specifying subspaces913

S4.1 Subspace Identifiability914

We note that the factorization Bp = WpSp is not unique and leaves the model parameters only iden-915

tifiable up to rotation and scalar multiplication. Specifically, note that we can define a orthonormal916

rotation matrix P and a scalar α to obtain a new pair of matrices W∗
p = αWpP and S∗p = 1

αP
>Sp917

such that Bp = WpSp = (αWpP)( 1
αP
>Sp) = W∗

pS
∗
p. This non-identifiability is identical to the type918

of non-identifiability inherent to other matrix factorization models such as factor analysis or probabilistic919

PCA56. Therefore, we require a way of uniquely identifying the subspace spanned by Wp.920

We can obtain a fully identifiable subspace by first reconstructing Bp from the estimated Sp, where the921

Wp is estimated from the expectation of the posterior of Wp given in (22). Each Bp will then have922

a unique singular-value decomposition (SVD) denoted by Bp = UpΣpVp
>. We then take the first rp923

columns of Up, denoted Up = (up,1, . . . ,up,rp), to define the encoding subspace of task variable p924

where we will refer to the jth vector in this subspace as up,j . In this way, we obtain an orthonormal925

basis whose orientation gives an ordered set of vectors where the order is with respect to the variance926

of Bp explained. We refer to this orientation as the principle components (PC) orientation due to its927

relation to principle components analysis.928

S4.2 Orthogonalization of Subspaces929

The mTDR model does not impose any orthogonality between task variables or task variable sub-930

spaces. This permits accurate recovery of subspaces even when the encoding dimensions are corre-931

lated, as we demonstrate in Supplementary section S8. It is desirable therefore to be able to visualize932

the part of the encoding of each task variable that is unmixed27. We therefore orthogonalize the sub-933

spaces with respect to correlated subspaces.934

To do this we first obtain the PC axes Up defined in Supplementary section S4.1. Orthogonalization of935

the basis Up with respect to some other set of basis vectors Uq was achieved by the Graham-Schmidt936

orthogonalization. For example, if we wished to orthogonalize a stimulus subspace with respect to937
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the choice subspace, we form the concatenated matrix [UchoiceUstim] and orthogonalize to obtain the938

orthogonalized basis [PchoicePstim] as in939

[PchoicePstim] = GS([UchoiceUstim]) (32)

where GS(M) indicates performing Graham-Schmidt on the matrix M . Thus, Pstim (where “stim" =940

color or motion), is a set of orthonormal vectors that define the part of the stimulus subspace defined941

by Ustim that is orthogonal to Uchoice.942

S5 Projections onto jPCA axes943

The low dimensional projections in Figure 4 exhibit rotation-like dynamics. In order to verify the rota-944

tional nature of these projections and identify the plane of most rotation-like dynamics, we used jPCA18
945

(calculated using Matlab code obtained from http://stat.columbia.edu/ cunningham/). Projections onto946

the first two jPCA axes are presented in Figure S10.947

In order to examine whether or not rotational structure was trivially present in our data we first examined948

projections of shuffled versions of the data. Each neuron’s PSTHs were shuffled with respect to trial949

type and projected onto the learned task variables axes. No clear sequential or rotational structure is950

observable (Figure S16). We performed jPCA on these projections and similarly found no qualitative951

evidence for rotations (Fig. S17).952

To test for the presence of rotations more rigorously, we used a sampling method developed by Elsayed953

and Cunningham29 in which we drew 100 samples from the maximum entropy distribution with the same954

second order moments as the data. We then learned a low-rank model for each sample, identified low-955

dimensional projections, learned a basis for the jPCA plane, and projected held-out trials onto this956

plane. From these projections we identified the angle of rotation and constructed a confidence interval957

(shown by the shaded regions in Fig. 4f).958

S6 Decoding959

S6.1 Unconditional decoding960

Once estimates of Bp and λ and obtained we can decode new trials using maximum likelihood. Be-961

cause most neurons were not observed simultaneously, the specification of our observations Yk in962

terms of the full set of neurons is incomplete. We accommodate non-sequential observations by speci-963

fying the true observations on each trial by Zk = HkYk where Hk is an observation matrix. Suppose964

nk < n neurons were observed on trial k, then Hk is a nk × n matrix where each row is a “one hot"965

vector indicating that the corresponding neuron was observed.966

If Z∗, H∗ and x∗ are new observations of the population response, observation matrix, and task vari-967

ables, then the likelihood of x∗, conditional on λ̂i’s, and B̂p’s is given by the data log likelihood defined968

by (14), which will be proportional to969

`(x∗|Z∗,H∗, D̂, B̂) ∝ Trace

[
(Z∗ −

∑
p

x(p)B̂p − B̂0)
>H∗>H∗D̂H>H∗(Z∗ −

∑
p

x(p)B̂p − B̂0

]
(33)
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where B̂p = ŴpŜp.970

Differentiating with respect to x(p) gives971

∂`(x∗)

∂x(p)
= −2Trace

[
(Z∗ − B̂0)

>H∗>H∗DH∗>H∗B̂p

]
+ 2

∑
q

x(q)Trace
[
B̂p
>H∗>H∗DH∗>H∗B̂q

]
.

(34)
If we let M∗ ≡ (IT ⊗D1/2H∗>H∗)

(
vec(B1), . . . , vec(BP )

)
and ỹ ≡ vec(D̂1/2H∗>H∗(Z∗ − B̂0)),972

then we can write the gradient of `(x) in vector form as973

∂`(x)

∂x
= −2M∗>ỹ + 2M∗>M∗x∗. (35)

Setting ∂`(x)
∂x = 0 therefore, yields a closed-form solution for the maximum likelihood estimator for x∗,974

x̂∗ = (M∗>M∗)−1M∗>ỹ. (36)

This formula is intuitive as we can see that ỹ is a precision-weighted vector of the new observations,975

M∗T ỹ is the projection of these observations onto each of the estimated task variable subspaces, and976

(M∗TM∗)−1 serves to whiten the projection, accounting for the fact that the estimated subspaces are977

not necessarily orthogonal. The decoding weights are defined as (M∗>M∗)−1M∗>D1/2.978

Instantaneous estimates of x∗ at time t can be obtained by simply restricting Bp and Z∗ to their tth979

columns and following the same inference procedure.980

S6.2 Conditional decoding981

If we want to consider some elements of x∗ to be known, then there is a straight forward way to do982

so. This may be the case, for example, when maximizing the log likelihood, conditioned on the animal’s983

choice when evaluating the log likelihood ratios.984

Suppose we let task variables p = 1, . . . , q be unknown and task variables p = q + 1, . . . , P be985

known, and let x1 ≡ (x1, . . . , xq)
>

and x2 ≡ (xq+1, . . . , xP )
>

. Furthermore, we can define matrices986

M∗1 = D1/2(B1, . . . ,Bq) and M∗2 = D1/2(Bq+1, . . . ,BP ). The maximum likelihood estimator for x1,987

conditioned on x2 is then given by988

x∗1 = (M∗1
>M∗1)

−1M∗1
>(ỹ −M2x

∗
2). (37)

S6.3 Decoding of discrete variables by log likelihood ratio989

The task variables in these data are a combination of discrete (choice, context) and continuous (color,990

motion) variables. It is therefore prudent to respect the domain of the discrete variable when decoding991

(xp ∈ {1,−1}). For example, when we decode for choice, we first calculate the MLE of the continuous992

variables, conditioned on the two possible choices (see Supplementary Section S6.2). This results993

in two vectors of task variable estimates (x+,x−), one for each choice. We then evaluate the log-994

likelihood at each of these vectors to calculate the log-likelihood ratio (LLR), which measures the relative995

information in favor of the two possible categories. For data given by Z∗, the LLR is given by996

LLRp = `(xp = 1|Z∗,x+)− `(xp = −1|Z∗,x−),
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where `(xp = 1|Z∗,x+) is the log likelihood evaluated at xp = 1, and x+ is the MLE of all other task997

variables, conditioned on xp = 1. The inferred probability on a given trial that the data were generated998

with xp = 1 is therefore given by999

P (xp = 1) =
exp(LLRp)

1 + exp(LLRp)
.

The value of this approach to decoding is that we obtain a probability of a trial category at each time1000

point, and not just a candidate category, conditioned on the neural activity. Evaluating the likelihoods1001

with the conditional MLEs (x+,x−) allows us to account for the confounding effects of the other task1002

variables. The LLRs for context were calculated in an analogous way.1003

For Figures 7, S21, S22, S20 we evaluated the log likelihoods with the MLE of the stimulus estimates,1004

conditioned on the corresponding discrete variable.1005

S7 Interpretation of projection vectors1006

In order to draw principled connections between the projected PSTH’s and the decoded values of task1007

variables, we adopted the following conventions for projections. We will carefully consider equation (37)1008

and assume that the time-dependent (i.e. task-variable independent) component is given by BP . For1009

simplicity, let us assume that all neurons have been observed.1010

First, recall from our description above on unconditional decoding that the projection of the data onto the1011

subspace of unknown task variables at time t is given first by the projection of the normalized quantity1012

ỹ ≡ D1/2(y(t)−B0(t))

onto the regression weights as in1013  B1(t)
>

...
BP (t)>

D1/2ỹ. (38)

We can write this same expression along with the decomposition of Bp, which is given by1014  s1(t)
>

. . .
sP (t)>


 W1

>

...
WP

>

D1/2ỹ, (39)

where sp(t) is a length-rp vector corresponding to the collection of all rp basis functions for task-variable1015

encoding P at time t.1016

Therefore, there are two projections that take place to convert the mean-subtracted data into time-1017

varying predictions of task variables. The first takes place by projecting the data onto the subspace1018

defined by (W1, . . . ,WP )>D1/2, which does not change with respect to time and preserves the di-1019

mensionality of encoding. The second projection is onto blkdiag(s1(t)
>, . . . , sP (t)>), which changes1020

over time and reduces the dimensionality from
∑P

p=0 rp to P . Since the encoding subspace should be1021
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independent of time we therefore defined the low-dimensional trajectories by1022  v1(t)
...

vP (t)

 =

 W1
>

...
WP

>

D1/2ỹ, (40)

where vp(t) ∈ Rrp is the low-dimensional trajectory for task variable p. Rotations of these projec-1023

tions, such as those plotted using seqPCA were obtained by first identifying the rotation matrix Rp and1024

projecting onto the rotation as in Rpvp(t).1025

Therefore, decoding by maximum likelihood (Supplementary section S6) requires a linear transforma-1026

tion of the low dimensional trajectories vp(t). Specifically, the decoded task variables x∗(t) are given1027

by1028

x∗(t) =


 B1(t)

>

...
BP (t)>

D (B1(t), . . . ,BP (t))


−1 s1(t)

>

. . .
sP (t)>


 v1(t)

...
vP (t)

 (41)

Therefore, because the decoding weights vary in time any variation associated with the encoding can1029

be counteracted by the decoding.1030

S8 Relationship between subspaces1031

We investigated the degree to which the characteristic responses reflected coordinated activity in two1032

ways. First, we examined the subspaces correlations and second, we examined the degree of agree-1033

ment between the subspaces thenselves using cannonical correlations analysis (CCA).1034

S8.1 Subspace correlations1035

Subspace correlations were calculated by taking the cross-correlations between characteristic responses1036

(Bp). Correlated responses imply that the population does not encode task variables independently and1037

the encoding of task variables occurs in a (at least partially) shared subspace.1038

We examined the cross correlation between characteristic responses of task variables to visualize the1039

change in correlations over time. The results of this analysis are displayed in Figure S5.1040

S8.2 Subspace agreement1041

We analyzed the overlap between task variable subspaces by performing CCA. We used CCA because1042

it allowed us to identify alignment between subspaces that do not have the same dimensionality. The1043

result is a sequence of correlation coefficients that describe mutually orthogonal directions where the1044

subspaces are at least partially aligned. The results of this analysis are presented in Figure S6.1045

Signifiant, multi-dimensional overlap for both monkeys were observed between the motion-choice and1046

color-choice subspace pairs. Smaller, but still significant overlap was also observed for motion-color,1047

abs(color)-context, and abs(color)-abs(motion), subspace pairs. Monkey F showed stronger correla-1048
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Figure S5: Cross correlation between characteristic responses of task variables. Motion and color
coherence encoding appears to be positively correlated with the choice encoding for both animals.

tions across subspaces than monkey A. Monkey A showed no overlap between the abs(mo) subspace1049

and the motion ,color, or choice subspaces.1050

S9 Sequential PCA (seqPCA)1051

The goal of seqPCA is to identify a subspace orientation that best describes the data via a sequence of1052

axes in which the order of the axes describes the order in time that each axis dominates the variance1053

of the data.1054

The basis for seqPCA is constructed as follows: Suppose we have D-dimensional observations yt at1055

each time t. We can arrange all of the observations up to time t into a D × t matrix Yc
1:t where the1056

index c may refer to trials or conditions. We can arrange the data for all c = 1, . . . , C, up to time t into a1057

D× tC matrix Y1:t = [Y1
1:t, . . .Y

C
1:t]. If the jth singular value of Y1:t is denoted by σj,t then the fraction1058

of variance that the jth singular vector describes for the first t time points is given by1059

pj,t =
σ2j,t∑D
i=1 σ

2
i,t

. (42)

If the singular values are ordered such that σ1,t ≥ σ2,t ≥ · · · ≥ σD,t, then the largest possible variance1060

captured by any single linear dimension at time t is given by p1,t.1061

This construction evokes a sequence of proportions such that p1,t will vary in characteristic ways ac-1062

cording to the specific dynamics of the data. For example, if the data project perfectly onto a single1063

dimension then p1,t = 1 for all t. If the data are unstructured then p1,t will decrease monotonically until1064

it converges to p1,t = 1/D. However, if the data are structured such that the sequential observations1065

progress linearly along a single direction up to time t′ and then change direction, then p1,t will increase1066

up to time t′ and then begin to decrease.1067

In the latter case we can identify the point at which the data begin to change direction as a peak in the1068
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Figure S6: Canonical correlations between task variable subspaces. Canonical correlations measure the
degree to which the subspaces overlap. Black lines indicate 95% confidence limit for canonical correlations
from 100 randomly permuted axes from the measured subspaces. Markers with “+" indicate the measured
canonical correlations that are significantly larger than expected by chance (permutation test, controlling for
false discovery rate at .01 level).

p1,t sequence. If t′ is the time of this peak then we can identify the first basis vector as the first singular1069

vector at time t′ (u1,t′). To identify the next sequential element to this basis we can subtract off the1070

projection onto the first basis as in1071

Y′1:t = (I− u1,t′u1,t′
>)Y1:t, (43)

and repeat the process on Y′1:t′+1. The process may be repeated D − 1 times with the Dth vector1072

being completely determined. An orthonormal basis can be constructed from this collection of vectors1073

by Graham-Schmidt orthogonalization.1074

While the method will always produce a basis for the data, the data never needs to load exclusively onto1075

a single axis at each time point. This is a crucial detail in that exclusive loading onto a single seqPCA1076

axis is a feature of the data, not the method.1077

We will illustrate the seqPCA method with the following 3D example. A sequential data set was gener-1078

ated by first generating 3 orthogonal vectors that were added. The coordinates of 10 points uniformly1079

spaced on each line were jittered by adding Gaussian noise (Fig. S7a).1080

The seqPCA algorithm starts by calculating the variance explained by the first singular vector. As the1081

number of data points increases, the first singular vector explains more of the variance until it reaches1082

the 10th data point, after which it decreases, followed a a second, smaller peak (Fig S7b, left). This1083

first peak represents the point at which the data matrix includes all of the first ten data points, shown1084

as the blue points in Fig. S7a. After these first 10 points all other points necessarily lie in an orthogonal1085

subspace and the amount of variance explained by any one axis necessarily decreases. Therefore, the1086
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first peak represents the number of datapoints to include to calculated the first seqPCA axies (seqPC1),1087

represented by the blue line in Fig. S7a. The index of this peak serves as the temporal boundary1088

between the seqPC1 and seqPC2 axes.1089

After the seqPC1 has been identified, the projection of the data onto seqPC1 is subtracted from the data1090

as described in (43) and the algorithm picks up the analysis using the residuals from the first temporal1091

boundary. We find a second peak around time index 20 (Fig. S7b, right). This peak correctly identifies1092

the transition between orange and yellow data points in Fig. S7a.1093

Figure S7: a) Example data (dots) and estimated seqPCA axes (colored axes). b) Example of seqPCA
vector selection process using motion subspace projections. Blue markers indicate the fraction of variance
explained by the first left singular vector (p1,t), compared to all remaining dimensions, at each time index. c)
Projection of data onto the estimated seqPC’s.

S10 Relationship between early/middle/late axes and TDR axes1094

We compared projections obtained through mTDR and the TDR method proposed previously1. While1095

the steps that lead to acquiring a projection axis in the two methods differ substantially, most of these1096

steps are aimed at denoising and regressing the data. The key features of each method is in the selec-1097

tion of the subspace to be analyzed once regression weights have been identified. The TDR analysis1098

chose a single axis for each subspace, corresponding to the regression coefficients at the time index1099

with maximum norm, and then performed an ordered orthogonalization of these axes. Formally, if Bp(t)1100

is the vector of regression coefficients for task variable p at time index t, then the non-orthogonalized1101

axes are identified by1102

bp =
D1/2Bp(t

max
p )

‖D1/2Bp(tmax
p )‖2

(44)

where1103

tmax
p = arg max

t
‖D1/2Bp(t)‖2

and D = diag(λ) is the diagonal matrix of noise precisions (see Supplementary Section S1). The axes1104

are orthogonalized by first arranging the vectors into a matrix as [bchoice bmotion bcolor bcontext] and then1105

orthogonalized by the Graham-Schmidt algorithm. We normalize the regression coefficients by D1/2 to1106

reflect the fact that the neurons were Z-scored prior to regression in the previous analysis1.1107
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We obtained projection weights for the mTDR method first by identifying the low-rank matrices of re-1108

gression coefficients by maximum likelihood (ML) as described in previous sections of this supplement1109

(Sections S2, S4.2, S7, and S9), performed an ad hoc orthogonalization on the stimulus and context1110

subspaces (see caption of Fig.4) and then rotated them (ML + rotation) to obtain the early, middle, and1111

late seqPCA axes for each subspace.1112

S10.1 1D TDR versus multidimensional mTDR and projection magnitudes1113

Encoding magnitudes were compared (Fig. 4e, S12) by comparing the projections obtained from the1114

TDR encoding axes (Supplementary noteS10) with those of the mTDR method where the mTDR projec-1115

tion was summed across early, middle, and late axes. This is appropriate since the three seqPCA axes1116

are orthogonal to each other. While Figures 4e, S12 only display the strongest encoding strengths,1117

statistical testing was conducted using pseudotrials drawn for all stimulus strengths. Paired, left-tailed1118

Wilcoxon signed-rank test was used to test whether mTDR more strongly encoded (i.e. projections are1119

further from zero) that those of TDR. The positive false discovery rate28 (pFDR, controlled at .01) was1120

used to control for multiple comparisons.1121

S10.2 Correlations between TDR and mTDR axes1122

We examined the correlation (i.e. the normalized inner product) between the early/middle/late axes and1123

the axis selected by the TDR max-norm approach described by equation (44). The correlations are1124

presented graphically in Fig.S8. Figure S8 shows that while the TDR axes are weakly correlated with1125

all three seqPCA axes, they are best aligned with the early axis, quantitatively confirming the qualitative1126

similarity between the trajectories from previous TDR analysis and the trajectories presented in Fig. 4.1127

Figure S8: Correlations between max-norm axes and early/middle/late axes for each subspace For
all subspaces the maximum correlation between the max-norm axis and the early axis is larger than the
correlation between the max-norm axis and the middle and late axes.
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S11 Supplementary figures1128

Figure S9: Projections of population PSTH’s onto the first, second, and third PC-axes for monkey A
a)The abs(motion) and b) abs(color) subspaces. Subspaces have been orthogonalized with respect to the
first dimension of the choice subspace. The monkey gave the correct response for all trials used. Colored
axes indicate dominant axes in the early, middle, and late periods of the stimulus epoch, as determined by
the methods described in Supplementary section S9. Purple vertical lines indicate transition from the early to
middle epochs. Yellow vertical lines indicate transition from the middle to late epochs as in Figure 4. Plotting
colors are the same as those in Figure 4. Units of the ordinate are arbitrary but all axes are on the same
scale.
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Figure S10: Projections of population PSTH’s onto jPCA axes for monkey A. Projections are onto the
first two jPCA axes identified by the trajectories shown in Figure 4. The jPCA axes reveal strongly rotational
dynamics for motion, color, choice, and context subspaces.

animal motion color choice context abs(motion) abs(color)
monkeyA 5 4 3 5 3 3
monkey F 5 2 3 4 3 2

Table 1: Summary of estimated dimensionality of each task variable subspace.
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Figure S11: Projections of population PSTH’s for monkey F onto the first, second, and third PC-axes
of all task variables subspaces. Plotting conventions and analyses are the same as those for Figure 4.
Projected data is averaged over 2-folds of cross validated projections where a random sampling of half of the
data was used to estimate parameters and the remaining half used to make projections.
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Figure S12: Encoding strength of population pseudosamples for monkey F onto the first three axes
of all task variables subspaces. Plotting conventions and analyses are the same as those for Figure 4.
Projected data is averaged over 2-folds of cross validated projections where pseudosamples were drawn
from held-out trials.

Figure S13: Distribution of variance among seqPCA axes. Monkey F Plotting conventions are the same
as for Figure 5
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Figure S14: Projections of population PSTH’s for monkey F onto the first, second, and third PC-axes
of all task variables subspaces. Plotting conventions and analyses are the same as those for Figure 4.
Projected data is averaged over 2-folds of cross validated projections where a random sampling of half of the
data was used to estimate parameters and the remaining half used to make projections.

Figure S15: Variance explained by jPCA axes
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Figure S16: Projections of shuffled population PSTH’s onto task variable subspaces. Monkey A

51

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted October 21, 2019. . https://doi.org/10.1101/808584doi: bioRxiv preprint 

https://doi.org/10.1101/808584
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S17: Projections of shuffled population PSTH’s onto jPCA axes. Monkey A

Figure S18: Angle of rotation over time for low-D trajectories of monkey F. Angle of rotation of the low-D
trajectories when starting from the start of the middle-axis epoch. Trajectories that are more rotational will
appear more monotonic.
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Figure S19: Instantaneous decoding of stimulus for monkey F. Plotting conventions and analyses are
the same as for Figure 6

Figure S20: Instantaneous decoding of decision for monkey F. Plotting conventions and analyses are
the same as for Figure 6
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Figure S21: Instantaneous decoding of context for monkey A. a) LLRs for monkey A in favor of the motion
context using single pseudotrials, sorted by color coherence. Shaded regions indicate 95% quantile intervals
for each stimulus strength. Solid lines indicate the median over correct trials. Dashed lines indicate median
of error trials. b) Probability of the motion context based on corresponding LLRs combined over all stimulus
strengths. Solid lines indicate median of correct trials. Dashed lines indicate median of error trials. Shaded
regions indicate quantile intervals of correct trials (light-to-dark: 50%, 75%, 95%). Color conventions are the
same as in Figure 4. 100 pseudotrials for each of 4-fold cross validation folds used for all analyses.
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Figure S22: Instantaneous decoding of context for monkey F. Plotting conventions are the same as in
Fig. S21. 100 pseudotrials for each of 2-fold cross validation folds used for all analyses.
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