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A complex nervous system requires precise numbers of various

neuronal types produced with exquisite spatiotemporal

control. This striking diversity is generated by a limited number

of neural stem cells (NSC), where spatial and temporal

patterning intersect. Drosophila is a genetically tractable model

system that has significant advantages for studying stem cell

biology and neuronal fate specification. Here we review the

latest findings in the rich literature of temporal patterning of

neuronal identity in the Drosophila central nervous system.

Rapidly changing consecutive transcription factors expressed

in NSCs specify short series of neurons with considerable

differences. More slowly progressing changes are orchestrated

by NSC intrinsic temporal factor gradients which integrate

extrinsic signals to coordinate nervous system and organismal

development.
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Introduction
Neural development is choreographed over space and

time to ensure that neurons form functional connections,

circuits and networks. One critical mechanism to accom-

plish this is temporal patterning, in which NSC progeny

change over time. Many essential genes discovered in the

fruit fly have been found to have analogous roles in

mammals; genes that confer neuronal temporal-fate spec-

ification are no exception [1–4]. Neuroblasts (NB), the

Drosophila NSCs, asymmetrically divide to self-renewal

and deposit intermediate precursors with more limited

potential (see Figure 1a–b). While the fates of individual

progeny are lineage-specific (due to spatial pattering [5]),

temporal fating mechanisms are widely shared between

lineages. The Drosophila central nervous system (CNS)
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consists of the ventral nerve cord (VNC), the central brain

(CB) and the optic lobe (OL) (see Figure 1a). There are

two phases of neurogenesis separated by a period of

quiescence (see Figure 1c). In embryonic stages, VNC

and CB NBs divide to produce the larval CNS. In post-

embryonic stages, these NBs plus the OL generate over

90% of the adult CNS. NB proliferation ceases in a

lineage-specific manner (see Lineage termination and
tumorigenesis) and embryonic and postembryonic-born

neurons reorganize to form the adult CNS. Here we

present the current state of the temporal patterning field

without going into much detail, as it has been recently

thoroughly reviewed [6]. We emphasize recent studies

with new mechanistic insights.

Temporal transcription factors
Temporal series of transcription factors are deployed to

create remarkable diversity in short or early lineages.

These so called temporal transcription factors (tTFs)

have expression windows in the NBs, usually lasting

1–2 cell divisions. tTFs specify birth-order cell fate,

independent of spatial cues. Embryonic VNC NBs, OL

NBs and the intermediate neural progenitors (INPs) of

type II NBs (mammalian-like NSCs) all utilize tTFs. As

NBs age, they often lose competence to respond to early

tTFs (reviewed in Ref. [7]).

Embryonic ventral nerve cord

The classic series of tTFs (see Figure 2a): Hunchback

(Hb) ! Krüppel (Kr) ! Pdm2 and Nubbin (together

called Pdm) ! Castor (Cas) ! Grainyhead (Grh) was dis-

covered in the embryonic VNC [8–10]. Additionally,

Seven-up (Svp) is described as a switching factor, turning

off Hb expression [11]. Many studies have examined the

ability of these tTFs to confer temporal fate in a large

subset of embryonic VNC lineages (reviewed in Ref. [6]).

NBs express tTFs, often passing them to their progeny. A

recent study suggests tTFs confer temporal fate within

the NB/GMC rather than the progeny. Two VNC

lineages require NB/GMC Hb to establish early temporal

fates [12]. How then are multiple fates specified within

the same tTF window, a process termed subtemporal

patterning? Within a Hb window, differential post-mitotic

levels of Hb can specify sequential neurons [13]. Addi-

tionally, the Thor lab describes subtemporal patterning of

a large Cas window via opposing feed-forward loops (

reviewed by Ref. [14]). Interestingly, Kr helps specify the

first fate [15] and Grh helps specify the fourth fate [16].
www.sciencedirect.com
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Figure 1

An overview of Drosophila CNS development. (a) Diagram of embryonic and larval CNS progenitors, neuroblasts (small yellow circles). The optic

lobe is dark gray. CB = central brain, VNC T = thoracic VNC, VNC A = abdominal VNC, OPC = outer proliferation center of the OL. (b) Proliferation

modes of neuroblast daughters. Type 0 division directly produces a single neuron, which is either Notch independent [32] or Notchoff (Noff) [64].

Type I division produces ganglion mother cells (GMC) which asymmetrically deposit the Notch inhibitor Numb, creating a Notchoff and a Notchon

(Non) neuron/glial progeny. Type II NBs produce intermediate neural progenitors (INP) which undergo 4–6 self-renewing divisions, generating

GMCs that produce two daughters. The type II mode yields roughly 5-fold more progeny per NB division than type I. (c) Time-course of NB
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Together these studies demonstrate that tTFs can be

utilized for both temporal and subtemporal patterning.

The question of how the same terminal phenotype can be

specified by different temporal windows was recently

elegantly examined with embryonic Nplp1 neurons (

Figure 2b). These neurons, born from two different

NBs, are specified by different temporal windows and

spatial cues. In these lineages, the same terminal-selector

cascade is activated by distinct combinations of temporal

and spatial patterning cues [17�]. Analysis of the cis-

regulatory information controlling the initial gene in

the cascade revealed that separate, cell type-specific

enhancers are utilized, each containing binding sites

for temporal and spatial transcription factors [18�].

Regulation of the classic tTF series is actively

researched. Cross regulation features sequential activa-

tion and complicated repression (see Figure 2a). tTF

binding sites within enhancers support some direct cross

regulation [19–21]. Robustness of the system can be seen

within tTF enhancers. For example, multiple unique

activation elements were found within a temporally

regulated core sequence of a nubbin enhancer [21].

Similarly, no single conserved sequence block (CSB)

could control temporal activity of a grh enhancer [20].

Intriguingly, embryonic CB and VNC NBs frequently

utilize different enhancers or CSBs within an enhancer

[20–22], suggesting that VNC and CB regulation of tTF

expression is not comparable.

Embryonic central brain

While many of the tTFs are expressed sequentially in CB

NBs [10], little evidence supports critical roles in CB

temporal fate. tTF function has only been comprehen-

sively examined in a single CB lineage, ALad1, where

only Kr plays a role in fate-dependent morphology, being

required for the 11th of 18 distinct embryonic fates [23].

Another recent study examined the NB that produces

lateral horn leucokinergic (LHLK) neurons. Pdm, Cas

and Svp (not Hb, Kr or Grh) are expressed in the NB, yet

it is unclear whether they exist as a temporal series [24].

Reported data implies specification of LHLK by Kr or

Cas, though more precise manipulations and phenotypic

analysis are needed [24].

The embryonic origin of the type II NBs was recently

determined by two labs [25,26]. The NBs delaminate

from the ectoderm in late embryonic stages expressing

the latter tTFs: Pdm ! Cas ! Grh. Studies have yet to

confirm whether the tTFs indeed confer temporal fate.
(Figure 1 Legend Continued) divisions. Proliferation mode is color coded (

the end of embryogenesis, while most other CB and VNC lineages undergo

NBs terminate by apoptosis or shrinking followed by nuclear entry of Prosp

terminates.
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Intermediate neural progenitors of the type II lineage

Type II NBs divide to produce intermediate neural pro-

genitors (INP), which themselves act similar to type I NBs

(Figure 1b). Initiated by the SWI/SNF complex [27], larval

born INPs express a series of transcription factors Dichaete

(D) ! Grh ! Eyeless (Ey), which specify the temporal

fates of their progeny [28] (Figure 2c). In embryonic born

INPs, one group found only D expression [25], while

another reported D and Ey [26]. It is unclear whether the

tTFs operate alike in embryonic and postembryonic INPs.

Optic lobe

The OL has two main proliferation centers, the inner

proliferation center (IPC) and outer proliferation center

(OPC) each with their own temporal regulation (30–34).

tTFs have been described in the main OPC and tips of the

OPC (tOPC). The main OPC NBs express Homothorax

(Hth) ! Klumpfuss (Klu) ! Eyeless (Ey) ! Sloppy

paired 1 and 2 (Slp) ! Dichaete (D) ! Tailless (Tll)

(Figure 2d) [29,30]. The Desplan lab elegantly described

the integration of temporal and spatial patterning [31�]. Six

spatial domains are defined by transcription factor expres-

sion. Following each NB division, neurons undergo binary

sister fate decisions of NotchON or NotchOFF fates. In

NotchON neurons, the spatial domains are apparently

ignored and each NB produces the same temporal series

of unicolumnar neurons. In the NotchOFF neurons, the

spatial information isused to create diverse, region-specific,

multicolumnar neurons. The tOPC NBs express the tTFs

Distalless (Dll) ! Ey ! Slp ! D (Figure 2e) [32]. IPC

NBs express D ! Tll, but these function as switching

factors for NB gene expression rather than as tTFs [33].

Temporal control of proliferation state

In addition to neuronal fate specification, tTFs can influ-

ence the proliferation state. As embryogenesis ends, VNC

NBs switch proliferation modes from Type I (producing

progeny that divide once) to Type 0 (producing progeny

that differentiate directly) (see Figure 1b) [34]. The Type

1 ! 0 switch is temporally and spatially coordinated

(Figure 1c) [35–37]. Also, spatiotemporally regulated is

the NB’s destiny to die or enter quiescence at the end of

embryogenesis (Figure 1c) (reviewed by Refs. [38,39]).

Further, Type II INPs divide only 4–6 times due to tTF

progression; the final tTF, Ey, diminishes the ability to

self-renew (Figure 2c) (reviewed in Ref. [7]). Addition-

ally, tTFs in the tOPC confer a Type 0 ! 1 proliferation

mode transition and temporal shifts in progeny apoptosis

(Figure 2e) [32]. Moreover, two phases of neuronal pro-

duction in the OL IPC are correlated with temporal

expression of proneural genes Asense and Atonal [40].

Although these genes do not confer neuronal fates, they
colors from b). A subset of abdominal VNC NBs undergo apoptosis at

 quiescence. The mushroom body neuroblasts (MB) are an exception.

ero leading to cell cycle exit. It is unknown how the tOPC lineage
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Figure 2

(a)

(b)

Hb Kr Pdm Cas Grh

Svp

Antp
Exd/Hth

Grn

Nplp Nplp

NB5-6TNB4-3 col gene 

enhancer 2enhancer 1

col
ap

eya dimm Nplp1

Exd/Hth
Cas

Grn
Kr

Pdm

Antp

Ey

Osa

GrhD

Ham(c) Hth Slp TllDEyKlu

DSlpEyDll

Hb competence

Kr competence

Svp

(d)

(e)

type II
NB

Osa
Ham

INP self  renewal 

Non Non NonNoff Noff Noff

Current Opinion in Neurobiology

Temporal transcription factors. (a) Left: Cross regulation of VNC tTFs Hunchback (Hb), Krüppel (Kr), Pdm2 and Nubbin (Pdm), Castor (Cas) and

Grainyhead (Grh). Seven-up (Svp) inhibits Hb. Right: Diagram of changes in tTF expression as NBs age. As the series progresses NBs loose

competence to early tTFs Hb [65] and Krüppel [66]. (b) Summary of Gabilondo et al. [17�] and Stratmann and Thor [18�]. Different NBs, expressing

different spatial (squares) and temporal (circles) code can produce similar Nplp neuron types. Spatiotemporal transcription factors bind to NB-

specific enhancers on the col gene, initiating a cascade leading to terminal selector gene Nplp1. (c) Cross-regulation of Type II INP tTFs: Dichate

(D), Grh and Eyeless (Ey). Initiation of D expression is prompted by SWI/SNF member Osa. Osa also activates Hamlet (Ham), which in turn inhibits

Grh, allowing Ey expression and the loss of INP self-renewal capability. (d) The tTFs of the optic lobe outer proliferation center (OPC) and their

cross regulation. Homothorax (Hth), Klumpfuss (Klu), Ey ! Sloppy paired 1 and 2 (Slp), D, and Tailless (Tll). (e) Left: the tTFs of the tips of the OPC

(tOPC) and their cross regulation. Right: tTF transitions alter the progeny division mode from type 0 to type 1, and modes of apoptosis from

Notchon to Notchoff.
alter the proliferation state of the NBs from asymmetric to

symmetric divisions [40].

Temporal patterning in extended linages
The postembryonic NBs (pNB) of the VNC and CB

divide �50 times and over 4 days to produce the adult
www.sciencedirect.com 
CNS. Such protracted postembryonic lineages raise

doubts that a series of tTFs could control temporal fating.

Indeed, while Grh, Cas and Svp are expressed in a

majority of pNBs, they seem to have functions other than

defining temporal windows (see Seven-up promotes early to
late transition and Figure 3a) [28,41,42�,43–45]. Instead,
Current Opinion in Neurobiology 2019, 56:24–32
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Figure 3
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Lineage progression, termination and tumorigenesis. (a) Lineage progression and decommissioning in type II postembryonic neuroblasts. Summary

of findings from Syed et al. [49], Ren et al. [42�] and Yang et al. [46��]. Each illustrated NB division represents the passing of approximately 12 h.

The diagram starts after NBs reactivate from quiescence (approximately 12 h after larval hatching). In the seven-up mutant, the Imp/Syp gradient

does not proceed and there is no decommissioning; high Imp inhibits the mediator complex (MedC), the ecdysone receptor EcRB1 is not

expressed, NBs do not shrink, and Prospero does not accumulate due to lack of Syp. (b) Summary of findings from Narbonne-Reveau et al. [48��].
Knocking down prospero ( pros RNAi) results in dedifferentiation of GMCs. Inducing pros RNAi at early stages (young L1/L2, teal) leads to

malignancy (orange cells), whereas the tumorigenic potential decreases with age (benign tumors form with pros RNAi in old L3, purple). Early

factors Imp and Chinmo promote malignancy; also arresting the temporal progressing by mutating svp promotes malignancy. Inset: Chinmo and

Imp produce a feedforward loop that together with Lin-28 act as an oncogenic module to drive tumor growth. Chinmo overexpression alone in

young NBs leads to malignancy.
slowly progressing, hierarchical gradients lead to two

major temporal windows, subdivision of which has not

been described.

RNA binding protein gradients

Atthe top of thehierarchy ofpostembryonic temporal factors

are a pair of RNA-binding proteins (RBP) that regulate

mRNA stability/translation. IGF-II mRNA-binding
Current Opinion in Neurobiology 2019, 56:24–32 
protein (Imp) and Syncrip (Syp) are expressed in opposite

temporal gradients in pNBs (high-to-low and low-to-high,

respectively) (Figure 3a). Opposing Imp/Syp temporal gra-

dients may be universal in postembryonic CB and VNCNBs

[42�,46��,47,48��]. In MB NBs, Imp and Syp are reciprocally

regulated; eliminating one causes upregulation of the other

[47]. Imp inhibition of Syp may be NB-specific or Syp may

be independently regulated in some NBs, as a subset of
www.sciencedirect.com



Drosophila neuronal temporal patterning Miyares and Lee 29
Imp�/� type II NBs (DM1–DM6) did not precociously

express Syp [49] and DL1 NBs expressing Imp RNAi

had increased rather than precocious Syp expression [42�].

The opposing Imp/Syp gradients govern the timing of

temporal fate transitions and/or expression of temporal

factors. Imp loss or Syp overexpression results in expan-

sion of late temporal fates at the expense of early fates;

the opposite is true for Imp overexpression or Syp loss.

The clearest example is the MB, which encompasses

three main sequentially generated neuron types,

g ! a’b’ ! ab [50]. Imp defines g, Imp and Syp together

denote a’b’ and Syp designates ab [47]. Imp/Syp

together help form the descending gradient of Chinmo

[47], which is essential for g and a’b’ specification [51].

Chinmo also specifies early fates in type II and ALad1

lineages [23,42�]. However, Imp/Syp exert broader

effects on temporal fates [23,42�], suggesting that Imp

and Syp regulate additional factors. Notably, perturbing

Imp/Syp gradients in the rapidly changing ALad1 line-

age can alter the ratio of young and old temporal fates

without losing gross diversity [47].

Seven-up promotes early to late transition

Svp and Cas are expressed early in many pNBs [41,49].

The transition of VNC neurons from early-born to late-

born requires Svp and Cas in �70% and �20% of lineages,

respectively [41]. Both the Doe and Lee labs recently

examined the role of Svp in the temporal progression of

type II pNBs (Figure 3a). Ren et al. found that Svp is

required to initiate Imp/Syp gradient progression;

svp�/� NBs maintained high Imp levels and kept Syp

levels essentially nonexistent [42�]. Syed et al. showed

that Svp is required for ecdysone receptor (EcR-B1)

expression in pNBs around the early-to-late temporal

transition and confirmed persistent expression of early

factors and loss of late factors in svp�/� pNBs [49].

Neither group demonstrated a requirement for Cas, how-

ever Cas overexpression delayed progression of the Imp/

Syp gradients [42�], suggesting closure of the Cas expres-

sion window is essential for proper temporal progression.

Ecdysone signaling facilitates proper temporal

progression

One critical question is how intrinsic clocks can be tuned

by extrinsic signals which control developmental timing.

Removing ecdysone signaling from developing larval

brains maintained early factors (Imp and Chinmo) while

the late factor, Syp, was expressed in fewer pNBs (from

100% to 50–90%) at 72 hours after larval hatching [49].

While ecdysone may direct the early-to-late transition, it

is possible that the transition was simply delayed as

Dillard et al. show with Chinmo downregulation following

similar manipulations of ecdysone signaling [52]. The

relationship between Chinmo and ecdysone signaling

was recently examined in MB neurons [53], revealing a

feedback loop where ecdysone initiates let-7 expression to
www.sciencedirect.com 
downregulate chinmo [53]. The let-7 microRNA is a con-

served hetereochronic gene that coordinates hormone

signaling and temporal transitions (reviewed by Ref.

[54]). Intriguingly, in mouse NSCs, let-7b downregulates

IMP1 expression [4].

Lineage termination and tumorigenesis: two sides of the

same coin

The same temporal factors that control lineage progres-

sion also guide lineage-specific pNB termination

(Figure 3a). Toward the end of neurogenesis, pNBs

are actively decommissioned; they undergo an ecdysone

and mediator directed metabolic switch that results in

pNB shrinking, nuclear Prospero accumulation and cell

cycle exit (reviewed in Ref. [55]). Temporal progression

is essential for decommissioning, as mutating svp, knock-

ing down syp, or overexpressing imp all result in NBs

lasting into adulthood [41,46��]. Early Imp inhibits

mediator complex components and late Syp promotes

Prospero accumulation, thus enabling lineage-specific

NB termination. Indeed, high Imp levels in MB NBs

allow them to avoid the otherwise universal early pupal

decommissioning [46��].

Predictably, the same temporal factors are implicated in

tumorigenic potential (Figure 3b). NB tumors can be

induced by dedifferentiating INPs or GMCs by a num-

ber of manipulations including loss of Prospero, induc-

tion of Notch signaling, or loss of Brain tumor (Brat). As

type II INPs age, they lose competence to be dediffer-

entiated by Notch signaling [56]. Similarly, the potential

for dedifferentiated NBs to become malignant depends

upon the expression of early temporal factors

(Figure 3b). Investigating the features that cause ded-

ifferentiated cells to become malignant revealed the

continued expression of early factors Chinmo [48��]
and Imp [48��,57]. Curiously, in brat RNAi dedifferen-

tiated NBs, the late factor Syp was still expressed, but it

was sequestered to the cell cortex [57].

Conclusions
Two mechanisms of neuronal temporal patterning are

described. First, rapidly changing series of tTFs specify

embryonic VNC lineages, OL lineages, and type II INP

sublineages. Second, slower progressing hierarchical gra-

dients pattern postembryonic VNC and CB lineages. It is

probable that tTF cascades are used to specify discrete

temporal fates, whereas slowly progressing gradients

generate more closely related cell types. The idea that

postembryonic cell types are closely related is supported

by single-cell RNAseq of olfactory projection neurons

[58]. Nevertheless, multiple cell types can be specified

within a tTF window. Despite reports of tTF expression

increasing over time and differentially specifying cell

fates [13,16], tTF gradients have largely been ignored.
Current Opinion in Neurobiology 2019, 56:24–32
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tTF cascades are intrinsically controlled with little to no

plasticity in response to organismal development, a fea-

ture which ensures that all neuron types are created [59].

Postembryonic VNC and CB NBs, on the other hand,

coordinate NB proliferation and temporal transitions with

organismal development—particularly with the hormone

signal that helps initiate NB decommissioning.

Neuronal phenotypes are specified in a combinatorial and

context-dependent manner, merging spatial and tempo-

ral-fating mechanisms as well as binary-fate decisions.

Together these mechanisms serve not only to enrich the

number of neuron types, but to do so in a particular order.

Recently, a number of studies examined associations

between birth-order and circuit assembly [60–63], help-

ing paint a picture where relatively simple spatiotemporal

codes can lead to development of complex circuitry.
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