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Abstract
Lysosomes are central to the maintenance of protein and
organelle homeostasis in cells. Optimal lysosome function is
particularly critical for neurons which are long-lived, non-
dividing and highly polarized with specialized compartments
such as axons and dendrites with distinct architecture,
cargo, and turnover requirements. In recent years, there has
been a growing appreciation for the role played by axonal
lysosome transport in regulating neuronal development, its
maintenance and functioning. Perturbations to optimal axonal
lysosome abundance leading to either strong accumulations or
dearth of lysosomes are both linked to altered neuronal health
and functioning. In this review we highlight how two critical
regulators of axonal lysosome transport and abundance, the
small GTPase Arl8 and the adaptor protein JIP3, aid in main-
taining axonal lysosome homeostasis and how alterations to
their levels and activity could contribute to neurodevelopmental
and neurodegenerative diseases.
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Introduction
Lysosomes, the terminal degradative compartments for
endocytic, phagocytic and autophagic pathways, are
essential for normal protein and organelle turnover in all

cells, and thus necessary for the cell’s health and survival.
Optimal lysosome function is particularly critical for
neurons as these are long-lived, morphologically complex,
and post-mitotic in nature, and thus without the ability
to dilute toxic aggregates in their cytoplasm by cell di-
vision. In fact, neurodegenerative diseases are often
www.sciencedirect.com
characterized by the aggregation of large populations of
proteins that would normally be catabolized by two major
proteostasis pathways; the autophagic-lysosomal pathway
and ubiquitin proteasome system [1]. The contribution
of protein aggregates and their propagation and involve-
ment of ubiquitin-proteasomal system in neurodegener-
ative diseases has been reviewed extensively elsewhere
[1,2]. Lysosome dysfunction is associated with several

neurodegenerative diseases whose pathologies include
accumulation of protein aggregates, such as Alzheimer’s
disease (AD) and Parkinson’s disease [3]. In addition to
their role in maintaining protein and organelle homeo-
stasis, lysosomes play an important role as hubs for several
signaling pathways including nutrient sensing [3]. There
is growing evidence over the last several years that the
movement and positioning of lysosomes within a cell is
intimately tied to its functioning and cell physiology [4].
This is particularly relevant for neurons where the nature
of cargo and cellular demands in the soma, dendritic and

axonal compartments are distinct [5]. Evidence from
several elegant studies suggests that mechanisms
involved in the transport and consumption of cargo in
lysosomes are also likely to be differentially regulated in
these compartments [5e7]. Here, we review the evi-
dence linking perturbed axonal lysosome transport and
abundance to neurological diseases. We highlight the
involvement of two key regulators of axonal lysosome
transport, the small GTPase Arl8 and the adaptor protein
JIP3/MAPK8IP3 to these diseases and discuss potential
mechanisms by which their altered activity could

contribute to disease pathology.

Axonal lysosomes: their origin,
composition and transport
Studies in rat and mouse brain tissue as well as cultured
neurons indicate that axons contain relatively fewer ly-
sosomes than neuronal cell bodies or dendrites [6e10].
Several lines of evidence suggest that this might arise
primarily from a predominantly retrograde transport and
clearance of progressively maturing endolysosomes in
axons to the neuronal cell body [11e14]; Figure 1. This
retrograde movement plays a critical role in bringing
back signaling components, autophagic as well as
endocytosed material intended for turnover [11e14].
Given this progressive maturation, axons are largely
devoid of fully mature, degradative lysosomes which are
highly concentrated in the soma and proximal dendrites
[6,7,15,16]. The origin, transport mechanisms of these
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Figure 1
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Schematic summarizing axonal lysosome transport and maturation. Organelles arising from fusion of autophagosomes with endo-lysosomes un-
dergo progressive maturation along with their retrograde movement towards the soma. Small GTPases, downstream effectors as well as adaptor proteins
are involved in the coordinated dynein-mediated retrograde transport of these organelles. Golgi-derived transport carriers carrying lysosomal proteins
move anterogradely to deliver cargo to retrogradely moving organelles as they get closer to the soma.
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organelles and their interaction with the closely linked
autophagic pathway has been reviewed extensively
[17,18]. Ultrastructural studies performed on mouse
saphenous nerves where axonal transport was acutely
interrupted by local cooling revealed that the cargo that
primarily built up distal to the blockade (and thus
representing retrograde transport blockade) were
multivesicular and multi-lamellar organelles that

resemble late endosomes and lysosomes [14]. In
contrast, the predominant cargo that accumulated
proximal to the site of blockade (and thus representing
the anterogradely moving cargo) consisted of clear,
smaller vesicles, 50e80 nm in size, some of which were
continuous with axonal smooth endoplasmic reticulum
[14]. Live imaging studies carried out in primary cul-
tures of hippocampal, DRG neurons over the last few
decades as well as in iPSC-derived neurons more
recently, examining distinct components of lysosomes
and fluorescently tagged autophagy proteins have also

corroborated that distally forming endo-lysosomes pro-
gressively mature and acidify on their retrograde
movement back to the soma [11e13,19]. Likewise, the
autophagosomes formed primarily in the distal axons in
several neuronal sub-types, fuse with these endo-
lysosomal organelles and thus depend on and move
processively with the endolysosomal organelles in a
retrograde direction [11,13]; Figure 1. While the pre-
dominant population of axonal lysosomes are not
enriched in proteases and thus not fully mature/degra-
dative and move retrogradely towards the soma, a study

carried out in cultured DRG, and cortical neurons has
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revealed that a small pool of potentially degradative ly-
sosomes (containing fluorescent reporters that bind
active cathepsins) move in an anterograde direction
towards distal axons [20]. Interestingly, these appear to
enrich in the distal tips of these DIV 7 neurons [20],
raising the possibility that these anterogradely moving
lysosomal populations may be more prevalent during
neurodevelopment. Indeed, kinesin-mediated antero-

grade axonal lysosome transport in rat hippocampal
cultured neurons was found to be essential for normal
growth cone dynamics strengthening a potential role for
these anterogradely moving vesicles in neuro-
development. However, these vesicles were found to be
less acidic, suggesting these may not be degrada-
tive [21].

Axonal lysosome transport abnormalities in
Alzheimer’s disease
Studies in both human AD brain tissue and mouse
models of AD have revealed the massive accumulation
of lysosomes in swollen axons near extracellular amyloid
aggregates, forming part of the neuritic plaque [22];
Figure 2. These organelles were observed to be multi-
lamellar and multivesicular in nature by electron mi-
croscopy studies [22], reminiscent of the axonal
organelles that build up due to retrograde transport
blockade [14]. In further support that these organelles

may arise due to a failure of optimal retrograde axonal
lysosome transport near the amyloid plaques, these or-
ganelles were found to be relatively deficient in multiple
lysosomal proteases [9], consistent with the
www.sciencedirect.com
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Figure 2

Axonal lysosome pathology in Alzheimer’s Disease. Schematic
showing the massive accumulation of LAMP1-positive, protease-poor
lysosomal precursors that build up in dystrophic or swollen axons sur-
rounding amyloid plaques. These organelles are enriched in Amyloid
Precursor Protein (APP) as well as BACE1and PSEN2 (components of
APP processing machinery). Lysosomal GTPase Arl8 has been shown to
be highly enriched around plaques, though its membrane association and
activity have not been elucidated yet. Increasing axonal lysosome abun-
dance exacerbates amyloid plaque pathology.
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composition of less mature organelles normally observed
moving retrogradely along axon rather than protease-
enriched organelles coming in from the soma. The
stalled transport in turn would affect lysosome matura-

tion and protein turnover, leading to more prolonged
encounters between APP and BACE1, both of which
have been observed to accumulate in these axonal dys-
trophies [9,23,24]. Indeed, loss of JIP3, a regulator of
retrograde axonal lysosome transport, from both murine
and human neurons, led to a similar focal accumulation
of axonal lysosomes and also increased production of Ab
peptides in the neurons, suggesting that stalled axonal
organelles are sites of APP processing and Ab production
[15,19]. Better understanding of mechanisms that
control normal axonal lysosome transport as well as ef-

forts to enhance this process or prevent axonal lysosome
accumulation could open new therapeutic avenues for
AD. Interestingly, a compound identified in a screen for
autophagy modulators was observed to enhance net
retrograde lysosome movement in human iPSC-derived
neurons and interact with LAMP1 [25]. It will be
interesting to evaluate the ability of such a compound in
clearing axonal lysosome accumulations and modulating
Ab production. Lysosomal phospholipase, PLD3 is also
enriched in dystrophic axons around plaques in human
AD and mouse models of the same [26,27]. Of func-

tional relevance, AAV-mediated expression of PLD3 in
5xFAD mice led to an increase in size of plaque-
associated axonal dystrophies and of individual LAMP1
vesicles inside the swollen axons, which affected axonal
www.sciencedirect.com
conduction but not amyloid plaque size [28]. This
effect of PLD3 expression was only observed in lyso-
somes at the plaques and not in adjacent neuronal soma,
suggesting that the extracellular Ab deposits play a role
in PLD3-mediated changes in axonal lysosomes [28].
Further strengthening the connection of lysosomes with
amyloid plaques in AD, a study that used laser-capture
microdissection of plaques from a small set of EOAD

human brain sections in combination with label-free
LCeMS, identified endolysosomal proteins including
the lysosomal small GTPase Arl8 to be enriched in the
plaques [29]. The Arl8 enrichment in axonal dystro-
phies was subsequently validated in the same study
using immunohistochemistry in human AD brain sec-
tions [29].
Role of Arl8 in regulating axonal lysosome
transport and its involvement in
neurological diseases
Studies from almost two decades ago localized the small
GTPase Arl8 to lysosomes [30,31] and demonstrated a
role for this GTPase in regulating spatial distribution of
these organelles [30]. Arl8 has since been demonstrated
to play a critical role in endolysosomal maturation as well

as multiple fusion events at the lysosome, both homo-
typic and heterotypic ones with late endosomes and
autophagosomes [3,32]. Since then, the mechanism by
which Arl8, its effector SKIP and the octameric complex
BORC regulate anterograde kinesin-mediated lysosome
transport in non-neuronal cells has been extensively
worked out [3,4,32]. Studies in mammalian hippocam-
pal neuronal cultures revealed that Arl8, BORC and
SKIP work in conjunction with Kinesin 1 to promote
anterograde lysosome transport into axons but not
dendrites, and perturbation to this process by removal of
BORC function led to reduced growth cone dynamics

[21]. It is possible that some of these anterogradely
moving LAMP1 vesicles are Golgi-derived biosynthetic
intermediates/transport carriers. These intermediates
would potentially deliver lysosomal proteins to the
retrogradely moving and maturing lysosome as similar
anterogradely moving LAMP1-positive organelles were
positive for TGN38 in a different study [33]. Thus, the
anterogradely moving LAMP1 compartments may be a
heterogenous population that include some degradative
lysosomes as well as TGN-derived carriers of lysosomal
proteins that fuse with incoming retrogradely moving

vesicles [33]. Consistent with a role for axonal lysosomes
in neurodevelopment, compound heterozygous variants
and homozygous variants in BORCS8 were identified in
five children with severe early onset-neurodegeneration
characterized by severe intellectual disability, global
developmental delay, thin corpus callosum, among other
features [34] (See also Table 1). Heterologous expres-
sion of the mutant BORCS8 resulted in both reduced
assembly of the BORC and lysosome movement to the
periphery, consistent with them being loss of function
Current Opinion in Cell Biology 2024, 89:102382
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Table 1

Disease-linked mutations in genes encoding lysosome transport regulators.

Gene/Protein Mutations Function Disease Clinical presentation Reference

BORCS8/BORCS8 S29P
N26Wfs*51 T66P
S42P

Anterograde
axonal Lysosome
transport

Early-infantile
neurodegenerative
disorder

Severe to profound
intellectual disability,
Dysmorphic features,
hypotonia, Muscle
weakness and atrophy,
Microcephaly, Thin
corpus callosum

[34]

MAPK8IP3/JIP3 G22Afs*3
E27*
Y37*
G400R
L444P R525Q
R578C
H994Q R1146C

Retrograde
axonal lysosome
transport

NEDBA
(Neurodevelopmental
disorder with or without
brain anomalies)

Intellectual disability,
Facial dysmorphism.
Muscular hypotonia,
Cerebellar atrophy, Thin
corpus callosum, white
matter volume loss

[45,46]

D1237N Severe muscle
hypotonia with
micrognathia and
clenched hands, G-tube
feeding

[63]

TMEM106b/TMEM106b Common
variants at 7p21
containing
TMEM106b
(GWAS)

Lysosome
transport (in
axons and
dendrites)

Frontotemporal lobar
degeneration (FTLD)

Atrophy of the frontal
temporal lobes,
Dementia

[62]
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alleles, and reiterating the importance of lysosome
movement for normal development and functioning of
the CNS [34]. A recent study revealed that loss of

BORC led to selective depletion of axonal mRNAs of
ribosomal and mitochondrial proteins and was also
accompanied by mitochondrial defects [35]. Pathway
analysis of the depleted mRNAs suggested a potential
connection between BORC deficiency and common
neurodegenerative disorders [35]. While the role of Arl8
in regulating kinesin-mediated anterograde transport
has been well documented [3], its involvement in
dynein-mediated retrograde lysosome transport through
two effector proteins RUFY3, RUFY4 (RUN and FYVE
domain-containing protein) has only recently been

elucidated [36,37]. Both studies found that RUFY3 and
RUFY4 interact with GTP-bound Arl8 and dynein-
dynactin to effect perinuclear lysosome clustering.
Consistent with a potential role in regulating axonal
lysosome transport, exogenously expressed RUFY3 and
RUFY4 colocalize with Arl8 and LAMP1 vesicles in
axons of rat hippocampal neurons [36]. Additionally, one
study also demonstrated that RUFY3 mediates this
retrograde movement through recruitment of
JIP4edyneinedynatcin complex [37]. Thus, much like
the GTPase Rab7 [3,17], Arl8 also associates with

distinct effectors/adaptors to mediate both anterograde
and retrograde transport. The mechanisms and condi-
tions including cell types that may skew Arl8-interaction
with one effector over the other need to be further
Current Opinion in Cell Biology 2024, 89:102382
studied. As described previously, Arl8, was found to be
enriched in dystrophic axons at AD amyloid plaques
[29]. A second study that focused on identifying pro-

teins changing in both human AD brains and in mouse
hippocampal lysates in an Ab-correlated fashion also
homed in on Arl8 [38]. They found that Arl8 levels were
increased in the hippocampus of 8-month-old 5xFAD
animals compared to their littermate controls and
localized Arl8 enrichment to axonal dystrophies around
Ab aggregates. Interestingly, the authors of this study
propose that the Arl8 accumulation may be a compen-
satory response to lysosome accumulation potentially to
even facilitate lysosomal exocytosis [38]. Given the
newly elucidated role of Arl8 in regulating retrograde

lysosome transport [36,37], and the lack of clarity as to
whether the Arl8 is localized on the surface of lysosomes
building up at the plaques, it is also possible that inac-
tivity of Arl8 and/or RUFY3/4 contribute to this pa-
thology (Figure 1). Further studies examining lysosomal
recruitment of Arl8 as well as that of its effectors at
amyloid plaques, should shed more insight on this.

Involvement of JIP3/MAPK8IP3 in axonal
lysosome transport and neurological
disorders
A role for JIP3 in regulating axonal lysosome transport
was first indicated from studies in Caenorhabditis elegans
and Danio rerio models where loss of functional UNC16
and zebrafish JIP3 respectively, led to aberrant axonal
www.sciencedirect.com

www.sciencedirect.com/science/journal/09550674


Axonal lysosome transport in health and disease Paumier and Gowrishankar 5
lysosome buildup [39,40]. JIP3/MAPK8IP3 was also
shown to be a critical regulator of axonal lysosome
transport and abundance in mammalian neurons, with
loss of JIP3 in primary mouse cortical neurons and
human iPSC-derived neurons leading to large, focal ac-
cumulations of lysosomes within axonal swellings
[15,19]; Figure 3a. These accumulating lysosomes were
deficient in lysosomal proteases and revealed through

ultrastructural studies [15] to be electron-dense,
multivesicular and multilamellar organelles, highly
reminiscent of the organelles that built up on blockade
of retrograde transport in the study from Tsukita and
Ishikawa [14], as well as those observed around amyloid
plaques in AD [9,22]. These results supported a major
role for JIP3 in the retrograde movement of these ly-
sosomes out of axons. Consistent with the organelles
lacking strong proteolytic activity, the axonal lysosomes
in JIP3 KO showed accumulation of lysosomally
degraded cargo, BACE1 [15], a critical secretase

involved in the amyloidogenic processing of APP.
Indeed, both primary mouse neurons and human iPSC-
derived neurons lacking JIP3 were observed to have
higher levels of intraneuronal Ab42 [15,19], suggesting
that increased axonal lysosome accumulation is a pro-
amyloidogenic event. In further support of this model,
haploinsufficiency of JIP3 in an Alzheimer’s disease
mouse strongly enhanced amyloid plaque burden,
plaque size as well Ab42 production [15]. Of relevance
to human disease, a study that carried out WES on a
well-defined cohort of 60 Austrian Early-onset-dementia

patients proposed MAPK8IP3 as a potential candidate
gene linked to dementia [41]. The authors cross-
checked their rare gene variant list from the WES data
Figure 3

Axonal lysosome accumulation under different conditions. (a–c) Schema
(b) and TMEM106B KO (c) neurons. APP processing machinery is enriched in
(b) neurons, while surprisingly, there are higher levels of JIP3 in axonal swell
increase is a compensatory response and if so, is JIP3 unable to associate w
mulating in the axonal swellings of TMEM106B KO neurons are enlarged, les
accumulate the lysosomal cargo BACE1. These axonal swellings are presen
other two conditions.

www.sciencedirect.com
with a curated neurodegeneration candidate gene list
and identified two variants in JIP3 amongst their
cohort [41].

Interestingly, loss of Adaptor protein (AP-4) complex-4
in human iPSC-derived neurons causes a similar
buildup of axonal lysosomes [42]; Figure 3b. The AP-4
complex acts by sorting of transmembrane cargo at the

Trans-Golgi Network (TGN) [43]. Unlike with JIP3,
the molecular mechanism by which the AP-4 complex
regulates axonal lysosome distribution is not fully un-
derstood. Based on its role in cargo sorting, it is possible
that AP-4 regulates the sorting of a lysosomal protein
that is involved in its retrograde transport. Intriguingly,
the axonal swellings arising from AP-4 loss were also
enriched in JIP3 [42]. Given the role of JIP3 in mobi-
lizing lysosomes out of axons, it is possible that the JIP3
enriched here is unable to efficiently engage with the
lysosomes and effect their retrograde transport. Future

studies on AP-4 interactors in neurons may thus reveal
new regulators of the lysosome retrograde transport
machinery. Interestingly, despite the difference in terms
of JIP3 enrichment at these axonal swellings, studies in
AP-4ε KO mouse brains indicate that these lysosome-
filled axonal dystrophies are also enriched in APP-
processing machinery, BACE1 and PSEN2 [44]. It re-
mains to be determined if they contribute to amyloid
production. Recently, multiple heterozygous de novo
variants in MAPK8IP3 linked to intellectual disability
along with variable brain anomalies have been identified

[45,46]. Overexpression of human JIP3 carrying the
R578C or the R1146C mutations in zebrafish embryos
led to axonal varicosities in the posterior lateral line
tic showing axonal lysosome build up in JIP3 KO (a), AP-4 loss of function
axonal organelles building up in both JIP3 KO (a) and AP-4 loss of function
ings of AP-4 depleted neurons. It remains to be determined if this JIP3
ith the accumulating lysosomes in this condition. The organelles accu-
s acidic and low in protease content (c), suggesting they may also
t in the Axon Initial Segment (AIS) in TMEM106B KO neurons unlike the

Current Opinion in Cell Biology 2024, 89:102382
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Table 2

Outstanding questions and future directions for the field.

1. Identification and characterization of the distinct endo-
lysosomal and autophagic intermediates along the retrograde
axonal lysosome transport pathway.

2. What are the different populations of anterogradely moving
lysosome-related vesicles and how and where do they inter-
sect with retrogradely moving endo-lysosomal organelles?

3. How are lysosomes recognized by distinct adaptors and how
are they coordinated to effect processive movement along
axons?

4. How do the de novo JIP3 mutations alter axonal lysosome
transport?

5. What are the differences and similarities in the composition of
the endo-lysosomal organelles that accumulate upon loss of
JIP3, AP-4 complex and in Alzheimer’s disease neurons? Do
these differences contribute to selective vulnerability of the
neuronal populations in the disease states?
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nerve, suggestive of deleterious effect on developing
axons [45]. It remains to be determined if the missense
mutations are indeed loss of function mutations and
cause similar axonal lysosome buildup as observed in the
JIP3 KO neurons. A recent study utilized in vitro
motility assays as well as cryo-electron microscopy
studies to reveal JIP3 to be an autoinhibited, activating
adaptor for dynein [47]. Interestingly, mutations in both

dynein heavy chain [48] and dynactin [49] have been
linked to motor neuron diseases such as dominant spinal
muscular atrophy with lower extremity predominance
(SMA-LED) and axonal Charcot-Marie-Tooth (CMT)
disease. Additionally, de novo mutations close to and in
the motor domain of dynein heavy chain have been
identified in patients with major intellectual disability
[50]. In vitro and animal model studies have revealed
that these mutations are associated with reduced
retrograde axonal transport. The effects of these muta-
tions and the insights these provide into the role of

dynein in the nervous system have been reviewed in
depth elsewhere [51]. It will be interesting to deter-
mine if any of the de novo JIP3 mutations affect its ability
to activate dynein.

While JIP3 is now an established activator of dynein
[52,53], JIP3 also binds kinesin [54,55]. Expression of a
mutant form of JIP3 abrogating its interaction with
DLIC led to endo-lysosomal intermediates building up
in neurite tips instead of in focal axonal swellings,
suggesting some bidirectional transport of JIP3-bound

endo-lysosomes [54]. One of the human mutations is
predicted to disrupt JIP3 binding to KLC [46] raising
the possibility of distinct lysosomal pathologies with the
different JIP3 mutations.

While a role for JIP3 in regulating axonal lysosome
movement is now well-established, phenotypes arising
from loss of UNC16 (JIP3 ortholog) in C. elegans are more
complex, and include large accumulations of Golgi and
endosomes in the axon in addition to the lysosome
buildup [40]. This led the authors to propose an
organelle gate-keeper function for UNC16/JIP3 that

controls their entry into axons. UNC16 was also shown
to negatively regulate actin and microtubule dynamics
in C. elegans regenerating neurons [56]. Loss of JIP3 in
human neurons is also associated with disruption to the
axonal periodic scaffold of actin and spectrin, as well as
local microtubule disruption [57]. Given these complex
phenotypes arising from perturbations to JIP3, it is
possible that alterations to these processes could also
contribute to JIP3-linked neurodevelopmental disorder.

Thus, interestingly, alterations to both Arl8 (via BORC)

and JIP3 function are linked to neurological disorders
characterized by developmental delay, intellectual
disability as well as other shared brain anomalies
including thin corpus callosum (see Table 1). Likewise,
changes in their levels are linked to axonal lysosome
Current Opinion in Cell Biology 2024, 89:102382
buildup around plaques and increased amyloidogenesis
[15,38]. Given the structural similarity of JIP3 and JIP4
[58], and the newly described interaction of Arl8 with
the JIP4edynein complex [37], it is possible that an
interplay between JIP3 and Arl8 and their different
interactors may function to maintain axonal lysosome

homeostasis. In further support of a role for normal
axonal lysosome homeostasis in maintaining neuronal
health, axonal dystrophies filled with autophagic vacu-
oles were observed in npc1�/� mice [59]. Intriguingly,
restoring Arl8 and Kinesin-1 mediated anterograde
lysosome transport rescued this pathology in npc1�/�
neurons, suggesting that either degradative lysosomes
and/or LAMP1 vesicles carrying key material for
restoring clearance and maturation of AV can restore
axonal homeostasis under this pathological condition
[59]. In addition to the strong connection between JIP3,

Arl8/BORC to neurological disease, TMEM106B, a
membrane protein implicated in regulating lysosome
transport [60,61], is linked to frontotemporal lobar de-
mentia and Parkinson’s disease [62]. Interestingly, loss
of TMEM106B in mice led to swellings at the Axon
Initial Segment (AIS) that contained enlarged LAMP1-
vesicles (Figure 3c) that are poor in proteases and less
acidic suggesting they are immature lysosomes [60].
Whether TMEM106B acts in the same pathway or in-
teracts in any way with JIP3 and Arl8 remains to be
determined. Further studies (see Table 2) into the

mechanisms of action of these proteins in regulating
axonal lysosome transport will be vital from both a basic
cell biology perspective and in understanding dis-
ease mechanisms.
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