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Summary/Abstract 

 

The development of successful therapeutics for dementias requires an understanding of their shared and distinct 

molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer 

disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 

participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden.  

We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously 

identified in AD. Disease-specific cell states represent molecular features of disease-specific glial-immune 

mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 

intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-

associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that 

causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal 

cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of 

glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic 

targets by revealing shared and disease-specific cell states.   
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Introduction 

 

Alzheimer Disease (AD), Frontotemporal Dementia (FTD) and progressive supranuclear palsy (PSP) are clinical 

syndromes involving distinct neuropathologically defined conditions that involve different forms of tau pathology 

(Chung et al., 2021). AD and PSP are canonically defined by tau pathology, whereas FTD may display either 

TDP (FTLD-TDP) or Tau (FTLD-Tau) pathological inclusions in post-mortem brain, the latter of which is 

typically observed in case with the behavioral variant of FTD (bvFTD) (Bahia et al., 2013). Combined, these 

three disorders affect over 28 million people worldwide (Young et al., 2018). Compared to AD where 143 drugs 

are in active clinical trials in 2022, PSP and FTD have only a handful of drugs in development (Boeve et al., 

2022). Contributing to the challenge of therapeutic development is a limited molecular understanding of FTD and 

PSP, coupled to not knowing what neuroinflammatory or neurodegenerative features are similar or distinct in in 

each disorder. 

 

A foundational observation in dementia is the presence of selective neuronal vulnerability, wherein 

neurodegeneration, tau pathology and neuroinflammation impact specific cell types and brain regions in 

temporally and spatially distinct patterns in each disorder, leading to distinct clinical syndromes (Fu et al., 2018; 

Rexach and Geschwind, 2020). In addition, both AD and bvFTD have distinct patterns of cortical layer-specific 

pathology (Santillo and Englund, 2014), superficial layer cortical projection neurons being more vulnerable in 

bvFTD (Kersaitis et al., 2004) whereas in PSP, frontal cortical and subcortical motor pathways are more 

vulnerable (Chung et al., 2021; Kovacs et al., 2020).  In bvFTD, the insular cortex and salience network are 

differentially vulnerable (Zhou et al., 2010).  Furthermore, the genetic architectures of AD, PSP and bvFTD are 

distinct, highlighting differential contributions of neuronal and glia cell types to disease risk (Cooper et al., 2022; 

Endo et al., 2022; Huang et al., 2017; Rexach et al., 2020; Swarup et al., 2020; Swarup et al., 2019). Despite these 

differences, all three disorders involve tau pathology that begins in more vulnerable areas and then progresses, 

potentially through shared prion-like spreading phenomena and/or additional unknown mechanisms (Chung et 

al., 2021; Kaufman et al., 2016; Kim et al., 2020; Kovacs et al., 2020).  

 

Advances in single-cell sequencing have revealed initial candidate markers of selective vulnerability in AD, 

including regulators of neuronal transcription (Leng et al., 2021; Morabito et al., 2021), gene signatures of neurons 

containing hyperphosphorylated tau (Otero-Garcia et al., 2022) and sex-specific glial vulnerability patterns 

(Mathys et al., 2019). Neural-immune activation is another universal early and persistent feature in dementia and 

heterogenous glial types have been described in post-mortem AD brain (Grubman et al., 2019; Mathys et al., 

2019; Morabito et al., 2021; Nguyen et al., 2020; Olah et al., 2020; Patrick et al., 2021; Sadick et al., 2022; Zhou 

et al., 2020). Despite these advances (Grubman et al., 2019; Leng et al., 2021; Mathys et al., 2019; Otero-Garcia 

et al., 2022; Zhou et al., 2020), studies have yet to formally compare across disorders involving tau. Thus, much 
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remains unknown, including the specificity of changes observed in AD compared with other disorders, their role 

in selective neuronal vulnerability, or glial diversity. We address these important gaps in knowledge through 

direct comparison of post-mortem brain at the single cell level across three major disorders involving tau 

pathology, AD, bvFTD and PSP, using both snRNAseq and snATACseq to validate shared and specific disease-

associated cell states and their predicted regulatory drivers. Our design enables identification of new shared and 

distinct markers of neuronal vulnerability, glial states that vary across disease and disorder-specific cellular 

differences in the expression and regulation of known risk genes.   

 

Results 

 

We compared three disorders that are collectively referred to as tauopathies, but that display different regional 

and laminar patterns of neuronal loss and glial activation (Figure 1A): AD, bvFTD and PSP (Chung et al., 2021; 

Leng et al., 2021) using single nuclear sequencing of mRNA (snSeq) in conjunction with the Assay for 

Transposase-Accessible Chromatin (ATACseq; Buenrostro et al., 2015; Stuart et al., 2019). Using a well curated, 

neuropathologically-characterized brain collection (Methods), we selected three cortical brain regions with 

differential vulnerability to disease (Braak et al., 2006; Kim et al., 2020; Kovacs et al., 2020) and prospective, 

semi-quantitative ratings of burden of tau protein hyperphosphorylation (tau score) and microvacuolations, 

astrogliosis, and neuronal loss (neurodegeneration score) per sample using a published grading scale ((Kim et al., 

2020; Lin et al., 2019); see Methods). The distribution of pathology scores matched the expected distribution of 

pathology in each disorder based on published annotations (Figure 1B, Table S1). For example, the insular cortex 

showed the highest disease burden in bvFTD (Kim et al., 2020) and moderate burden in PSP and AD.  In all three 

disorders, the motor cortex (primary motor cortex (M1; BA4) had comparable, moderate levels of tau pathology, 

which in PSP was the highest of the three cortical regions profiled, as expected (Kovacs et al., 2020).  In contrast, 

the primary visual cortex (V1), a relatively spared region, had low levels of tau pathology in all three disorders, 

and we hypothesized that it would have higher expression of cellular resilience factors compared to the more 

vulnerable brain regions.  

 

We generated 880,000 single nuclear mRNA expression profiles from 120 brain samples representing 40 subjects 

(10 from each disorder and 10 control subjects), with three cortical regions from each (Figure 1, Figure S1, 

Methods).  Following stringent quality control and outlier removal (Methods), 590,541 high quality cell profiles 

from 107 patient samples remained (Table S1). Confounding variables of age, sex, postmortem interval and RIN 

were not significantly different between control and subjects (p < 0.05, Wilcoxon, Table S1).We used human 

primary motor cortex for reference-based single cell analysis (Methods, Figure S1C,D,E, Figure 1D, Table S2) 

because it has been deeply profiled as part of the BRAIN initiative to establish conserved clusters with 

standardized nomenclature (Bakken et al., 2021; Network, 2021). We identified  9 canonical cell classes, 
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including both abundant and rare cell subtypes (excitatory neurons (EX), inhibitory neurons (IN), astrocytes 

(AST), oligodendrocytes (OL), oligodendrocyte progenitor cells (OPC), microglia (MIC) , endothelial cells 

(END), pericytes and lymphocytes (Hodge et al., 2019; Kelley et al., 2018; Mathys et al., 2019; Sweeney et al., 

2016) and 24 canonical cell subclasses (Figure 1C, Figure S1C), which overlap with established subclasses from 

human brain (Bakken et al., 2021; Network, 2021) (Figure S1E). 

  

Molecular taxonomy of CNS cell types across brain regions in dementia 

  

With robust identification of all major CNS cell types and subclasses, we leveraged our multi-region, multi-

disease design to identify both shared and novel disease and brain region associated cell states. We reasoned that 

integration and re-clustering of each of the 9 major cell types independently in each of the three brain regions 

would maximize the likelihood of finding novel disease associated cell-states.   We identified 181 clusters among 

9 major cell types from 4 conditions (3 disorders and controls, excluding lymphocytes for low abundance), and 3 

brain regions (Methods). The 181 clusters include 33 excitatory neurons, 26 inhibitory neurons, 56 

oligodendroglia, 28 astrocytes, 18 microglia, 13 endothelial and 5 pericyte clusters.  We then performed 

hierarchical clustering within major cell classes and used marker genes to group clusters from different brain 

regions to define an unbiased nomenclature based on the condition, region, cell type and cluster number that 

distinguishes each cluster. For example, an excitatory neuronal cluster from BA4 is labeled BA4_EX-numeric, 

ending with a unique numeric identifier that was assigned during clustering based on relative cluster size 

(BA4/V1/INS- EX/IN/OL/AST/OPC/MIC – 0-15 (Figure 1, Figure S2; Methods). As expected, the first order of 

clustering was driven predominantly by cell subclass, such as parvalbumin interneuron (Pvalb), or protoplasmic 

astrocyte (Figure 1D, Figure S2A-H, Table S2). At the next branch, clusters were divided further by brain region, 

with the majority of clusters identified in multiple brain regions (94%), with only 3 states restricted to only one 

region, one representing AST, one IN, and one MIC (Figure S2). 

 

The 33 excitatory and 26 inhibitory neuronal clusters represent all canonical neuronal subclasses (Figure 1D, 

Figure S1A, Table S2, (Bakken et al., 2021)). 56 oligodendroglia clusters all belong to the three known subtypes 

of OL i.e early myelinating (Fard et al., 2017) BCAS1+ OL, as seen adjacent to chronic MS plaques (Figure S2B), 

and more mature OL expressing either high PLP1 or RBFOX1, separated into 37 clusters based on brain region 

and state. We identify 2 subclasses of immature and differentiating OPC, clustered into 17 state- and region-

dependent groups based on their distinct expression of known markers of proliferation, NMDA-directed migration 

(Xiao et al., 2013), neuroprotection (Rupnik et al., 2021) and axon interaction and myelination (Huang et al., 

2020), (Figure S1D).  The 28 astrocyte clusters are divided across 2 canonical subtypes, protoplasmic and fibrous 

astrocytes.  Protoplasmic astrocytes exist in 4 transcriptomically-distinct groups suggestive of functionally 

variable states, and fibrous astrocytes in 1 group (Figure S2C, Table S2). The 18 microglial clusters are grouped 
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into six transcriptomically distinct states (Figure S1G; methods; Table S2). Reassuringly, each of these six 

transcriptomically-distinct microglial states overlapped significantly with those previously profiled from fresh 

human brain tissue (Olah et al., 2020), supporting the quality of our data (Table S4). Among these, five overlapped 

significantly with microglia clusters previously identified in frontal cortex in AD (Mathys et al., 2019) (Table 

S4), including a distinct cluster marked by neuropathologically validated “motile” microglia markers 

NEAT1/FDG4 compared to the “dystrophic” microglia marker FLT (Nguyen et al., 2020). The 13 clusters of 

endothelial cells are divided into two major groups marked by either higher expression of immune signaling genes 

or genes involved in angiogenesis and endothelial maintenance (Figure S2E) (Fan et al., 2014; Zhao et al., 2015) 

and 5 clusters of pericytes (Figure S2F; Table S2). In summary, we performed a systematic classification and 

annotation of 181 cell states representing all established neuronal and glial cell types and subclasses, their regional 

localization in three human brain regions, their distinguishing marker genes, associated biological pathways, 

transcriptional regulators, and differential gene expression (DGE) across disorders (Table S2, S3, S5).   

We first identified genes that were significantly differentially expressed (DE) in major cell types across 

subjects by disorder, using a stringent model to correct for multiple comparisons (Methods).  It was notable that 

disorder-specific differentially expressed genes were a minority; the vast majority of DE genes were shared by 

more than one disorder (95% of 6,081 genes; FDR <0.05 and Log2FC>0.1, Cross-Disorder LME, Table S5), 

indicating that these tauopathies have substantial shared molecular pathology.  Of the 5% of genes detected as 

DE in only one of the disorders, the majority (92%; 280 genes) were DE in only a single cell type (Table 

S5).  Notable examples of such disorder specific DE genes in microglia include PTPRG and IL15 in AD (BA4-

microglia, INS-microglia; respectively), consistent with recent observations (Wendimu and Hooks, 2022). Other 

genes DE in microglia in a disease-specific manner include VPS54, increased in bvFTD (BA4-microglia) and 

SLCO1A2, a GWAS hit in PSP (Chen et al., 2018) increased in PSP (INS-microglia).  Thus, disorder-specific 

DGE identifies genes previously associated with disease-relevant neurodegenerative phenotypes in bvFTD and 

PSP, as well as previous disease-associated microglial markers in AD (Wendimu and Hooks, 2022), which our 

cross-disorder design now shows were specific to AD. 

 

 Patterns of shared and distinct composition of transcriptomic cell states across brain regions in dementia 

 

We next systematically characterized the shared and distinct disorder-associated changes of 181 cell states across 

brain regions and different dementias to characterize new molecular markers and drivers of neuronal vulnerability, 

neuroinflammation and resilience. We used multivariate analysis (Methods) to rigorously identify changes in 

abundance of cell states across disorders within each brain region and cell type (Figure 2A, 2B, 2C).   

 

Shared disease-associated cell states in dementias 
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We observed 49 subclusters out of 181 (27%) that showed differential composition in one or more diseases (FDR 

<0.1), with nineteen depleted and thirty-one enriched in one or more disease conditions, the majority of which 

were observed across multiple disorders (66%; n = 33; Table S3). These shared disease-associated states include 

interneurons, astrocytes, microglia and OPCs that show robust changes in composition across all three disorders, 

and that have not been previously implicated in either AD, bvFTD or PSP (Figure 2B, 2C; Table S2, S3).  A 

summary of clusters significantly enriched or depleted across disorders and brain regions and their markers is 

presented in Figure 2 and Supplementary Table 3, demonstrating a wide spectrum of glial and neuronal subtypes 

that are similarly depleted or enriched in brain samples from all disorders.  

 

Novel shared cross disorder changes in neuronal cell states  

 

Taking advantage of robust markers from the BICCN reference atlas, we were also able to identify previously 

unknown robust disease-associated changes across multiple cell types and disorders (Summarized in Tables S3, 

S5). One such cell was a recently described population of white matter interneurons (Bakken et al., 2021) marked 

by MEIS2/ADAMTS19 (Figure S3E, Figure 2B, Table S2, Table S3).  These interneurons were spilt into two 

clusters in the insula, one composed predominantly of control cells (INS_IN-6), and one enriched for patient cells 

(INS_IN-0) (Figure 3E). The disease-enriched MEIS2 neurons (INS-IN-0) showed transcriptional evidence of 

cell stress and injury response, including downregulation of DNA repair genes (ATM and ELOVL4) (Xiao et al., 

2019) and upregulation of genes involved in protein folding and amyloid (Figure S3E). This reflects a previously 

unrecognized change in state between disease and controls, rather than an actual depletion of MEIS2 interneurons, 

since the total number of MEIS2 cells was not significantly different between cases and controls (Figure S3E).  

 

Another salient example involves APOO, previously reported as upregulated across multiple regions in AD (Liu 

et al., 2021). We identified a specific population of layer III/IV RORB+ excitatory neurons marked by APOO 

(V1_EX-3) that is significantly upregulated in the visual cortex in AD, bvFTD and PSP (Figure S3D).  This 

distinct transcriptomic signature of APOO neurons from disease brain specifically overlaps with that of cultured 

IPSC-derived neurons expressing MAPT mutations compared to controls (Bowles et al., 2021) (Figure S3D). 

Since IPSC neurons are relatively immature (Gordon et al., 2021) and do not manifest neurodegenerative 

phenotypes in vitro, we hypothesize that these APOO neurons in vivo represent an early, relatively resilient 

neuronal disease state that is shared across disorders, given the relative sparing of neurons in visual cortex across 

all disorders (Braak et al., 2006; Kim et al., 2020; Kovacs et al., 2020). 

 

Novel shared cross disorder changes in glial cell states 
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We also observed shared changes involving glial states not previously associated with AD or any other dementia 

(Figure S2, Figure 2C). Notable examples include an astrocyte state depleted across disorders and regions and 

marked by MACF1, PRKCA and AHCYL1 (INS_AST-1, BA4-AST-1, V1-AST-1) (Figure 2C, Table S2, Table 

S3) and cross disorder depletion of OPC populations (BA4_OPC-1; Figure 2C, Table S3) that are specifically 

marked by genes involved in injury response (Table S2).  A population of microglia from the insular cortex was 

enriched in all disorders (INS_MIC-3) (Figure 2C, Figure S3F), overlapping significantly with disease-associated 

microglia described in MS brain (Figures S3G), suggesting that it may be a generalizable activated state. Other 

microglial states observed in insular cortex across disorders include depleted homeostatic states (Figure 2C, 

Figure S3F-G) and up-regulated states representing specific pathway perturbations (Figure S3H-I), including 

PI3K loss-of-function (LOF) (INS_MIC-0), Apoprotein and WNT LOF (INS_MIC-1), V-type ATPase LOF, 

PPAR-receptor agonist with WNT and PI3K pathway dependence (INS_MIC-3), or V type ATPase LOF with 

WNT LOF (INS_MIC-11) (Figure S3H). 

 

We also reproduce previously observed changes in glial types in AD, including increases in QDPR OL (INS_OL-

7, BA4_OL-6, V1_OL-4) and decreases in PDE1A OL (INS_OL-2), both of which are also shared with bvFTD 

and PSP (Figure 2C, Figure S2B, Table S3, Table S4). Among astrocytes, we observe reproducible 

downregulation of SLC1A3 (Leng et al., 2021; Mathys et al., 2019), a marker of protoplasmic astrocytes, shared 

in all disorders and brain regions as a common feature of the total astrocyte pool (INS_AST, V1_AST, BA4_AST) 

(Figure S3C).  Finally, we observe reproducible enrichment of SEMA3E OPC (INS_OPC-0) and depletion of 

GPC5 OPC (INS_OPC-1) that are shared in all disorders and occur in proliferating OPCs in disease regions, 

including the insular cortex (Figure 2C, Table S3, Table S4) (Mathys et al., 2019). 

 

Disorder-specific changes in cell composition in dementias       

 

Next, we analyzed clusters differentially enriched or depleted in a single disorder and region to leverage the 

differential vulnerability of each region in the different disorders. Using a strict statistical cut off, we identified 

three AD, eight PSP and six bvFTD clusters with disease-specific trends (Figure 2B, 2B, Table S3). We 

summarize these findings in Figure 2, including differential abundance and markers of shared and distinct 

neuronal and glial clusters. We then used these clusters to further define how cell reactivity and function among 

discrete classes and subclasses of cells can vary across disorders and regions with similar and 

different  pathological burdens. Notable examples of disorder-specific cell states are described below. 

 

AD-specific compositional changes in neuronal and glia cell states 
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We first assessed the extent to which our findings from AD reproduce previously reported cell states in AD 

snRNAseq studies (Grubman et al., 2019; Mathys et al., 2019; Olah et al., 2020; Otero-Garcia et al., 2022; Zhou 

et al., 2020).  Reassuringly, we identify previously reported patterns of cellular responses to AD, showing that 

our data set is consistent with others in AD (Leng et al., 2021; Mathys et al., 2019).  This includes changes 

involving excitatory neurons, interneurons, astrocytes, OL, OPC, and microglia in both AD datasets (Figure S3A-

C, Table S4, Methods).  We validate robust AD associated cell states and clarify their variable expression across 

brain regions with differing degrees of AD pathology and across AD, bvFTD, and PSP (Figure S3A-S3D, Table 

S3). This includes AD-associated depletion of layer 4/5 excitatory neurons marked by RORB and NEFM 

(BA4_EX-4) (Leng et al., 2021), which we now show are specific to AD and not observed in the other two 

disorders (Figure S3A).  Among interneurons, we replicate the observed enrichment of a cluster of parvalbumin 

interneurons (INS-IN-10) in AD samples (Mathys et al., 2019) compared with controls that is greater than in 

bvFTD and PSP samples (Figure S3B, Table S3). This is of interest because disease affects involving interneurons 

have potential to alter neuronal circuit functions and affect connectivity, which has been reported in AD cases in 

the insular cortex (Zhou et al., 2010).    

 

An AD-specific amyloid-associated microglia marked by ITM2B 

 

We also observed changes in the motor cortex that have not previously been reported from snRNAseq of human 

AD brain tissue in regions with more advanced pathology.  Of note, we observe a microglia cluster (BA4_MIC-

7; Figure 2D, Table S3) whose signature genes share significant overlap with those of amyloid plaque-associated 

microglia in AD brain (Figure 2E) (Chen et al., 2020), and are further distinguished by their up-regulation of 

ITM2B (Figure 2F), a gene harboring mutations that cause a dominantly-inherited AD-like dementia (Ghiso et 

al., 2000). This cluster also corresponds to a highly AD risk gene-associated and age-associated microglial type 

from the ROSMAP database (Patrick et al., 2021; Figure 2E), confirming its AD association. We used IHC to 

validate that indeed ITM2B is more abundant in AD than bvFTD in microglia (Figure 2G), confirming its relative 

AD specificity.  To further test the enrichment of genetic risk for AD within BA4_MIC-7, we performed LD-

score regression of AD GWAS summary statistics, which indeed demonstrated that the upregulated genes in this 

AD-associated microglia were significantly enriched for common genetic risk variants (Figure 3H, Methods), 

including genes involved in amyloid processing and cellular response to oxidative stress (Figure 3I). The 

enrichment of genetic risk for AD within these BA4_MIC-7 genes supports their potential as therapeutic 

candidates.   

 

PSP- and bvFTD-specific compositional changes in neuronal and glia cell states 

Astrocyte depletion in PSP  
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Canonical cell proportions were largely similar across disease conditions and brain regions at the level of major 

cell classes, and relative brain cell proportions also matched those reported in published reference data (Bakken 

et al., 2021). A singular, notable exception was the total count of astrocytes in the PSP brain. We observed that 

total astrocyte counts were significantly depleted in the visual cortex (FDR<0.05; astrocytes, Methods) of PSP 

cases compared with controls, which has not previously been recognized (Figure 3A). We therefore used two 

methods to robustly classify cells to confirm reproducibility including cell annotation by reference-based mapping 

(log2FC -2.04, FDR 0.07) and by published markers with bootstrap analysis (Methods; log2FC -1.29, FDR 

0.023; Table S3). To consider the potential mode of PSP-specific astrocyte depletion, we performed disorder-

specific differential gene expression and found 55 genes differentially expressed in astrocytes in the visual cortex 

from PSP cases compared with controls (FDR <0.1) (Figure 3B; Table S5, Methods).  Of note was REST, which 

was downregulated specifically in PSP and bvFTD astrocytes in V1 (Figure 3B, Table S5). REST is a major 

regulator of the integrity of astrocyte-specific gene expression that suppresses neuronal gene expression in non-

neuronal cells (Masserdotti et al., 2015). Similarly upregulated in PSP astrocytes was ASCL1 (Figure 3B, Table 

S5), a chromatin remodeling factor that is sufficient to drive non-neuronal cells, including cultured astrocytes, 

towards a neuronal fate (Masserdotti et al., 2015) (Figure 3B). In both cases, the direction of changes in both of 

these major transcriptional drivers of cell fate is expected to reduce astrocyte-specific identity, which may 

contribute to their depletion in the PSP visual cortex, which has not previously been recognized.   

Increased expression of MAPT in PSP astrocytes  

Astrocytic tau aggregation is a prominent feature of PSP (Chung et al., 2021), but it is not known how astrocytes 

differ in PSP compared to other disorders, including whether they are more vulnerable to cell death in PSP.   We 

observed higher expression of MAPT mRNA in PSP astrocytes compared to controls, more so than for bvFTD 

and AD (Figure 3C, Table S5).  In addition, astrocytes in PSP were further distinguished from those in AD and 

bvFTD by having lower expression of genes that reduce the expression of MAPT or its PSP-associated 4R 

isoforms. These genes reduced in astrocytes include MAPT-AS1, NPEPPS, a major cytosolic peptidase that 

directly degrades tau (Karsten et al., 2006;(Sengupta et al., 2006), and the MAPT exon 10 splice modifier, SRSF6 

(Yu et al., 2004) (Figure 3D, Table S5).  These data indicate that accumulation of tau in PSP astrocytes likely 

involves post-transcriptional mechanisms.  

Excitatory neuron clusters specifically enriched in PSP and bvFTD  

We also identified two clusters of excitatory neurons with significant disorder-specific enrichments, one in bvFTD 

(INS_EX-5; Figure 3E-H) and the other in PSP (V1_EX-2; Figure 3I-J).  In bvFTD, in addition to the depleted 

cell class INS_EX-2 described below in the section on selective vulnerability, we observe enrichment in EX-5, 

which comprises a layer 2/3 excitatory neuronal cluster in the insular cortex (INS_EX-5) that was more 
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significantly enriched in bvFTD compared to other disorders (Figure 3E, Table S3). INS_EX-5 neurons in bvFTD 

uniquely manifested increased expression of multiple bvFTD/ALS risk genes (LME, T-statistic >3), 

including OPTN, TUBB1A, SOD1, and TMEM106B (Figure 3G), and genes that function in associated pathways 

including macro-autophagy, stress response and vacuole organization (Figure 3H), which is especially remarkable 

because this is the most vulnerable cortical layer in the region in our study with the highest pathological burden 

(Kersaitis et al., 2004). 

The PSP-enriched neuronal cluster was marked by RORB/IL1RAPL1/UNC5D in layer 3/4 excitatory neurons in 

the calcarine cortex (V1_EX-2) (Figure 3I, Table S3), a relatively spared region. This cluster overlaps with PSP-

associated changes previously identified in bulk tissue from PSP (Allen et al., 2018) (Figure 3I), which we now 

localize to a distinct PSP-enriched neuronal cluster within superficial layer excitatory neurons. Pathway analysis 

of genes up-regulated identified cholesterol biosynthesis, WNT signaling, and synaptic vesicle cycle, including 

NSF, a PSP risk gene within the major 17q21.3 PSP risk haplotype (Chen et al., 2018; Sanchez-Contreras et al., 

2018) (Figure 3J, Table S3, Methods); other PSP associated genes, WNT3 and STX6 (Chen et al., 2018; Cooper 

et al., 2022; Pittman et al., 2004) were also significantly enriched in superficial neurons, compared to layer 5-6 

neurons in control cells (Table S5; Figure 3K). These neurons in a relatively spared region, the visual cortex, 

appear to be up-regulating risk genes that may be related to their resilience (Figure 3J). 

Disorder-enriched glial states 

We also observed several distinct glial states involving astrocytes, oligodendrocytes, and microglia, that are 

specifically enriched in one disorder, including AD-enriched microglia described above (BA4_MIC-7), bvFTD-

enriched oligodendrocytes (INS_OL-14) and astrocytes (BA4_AST-8), and PSP-enriched oligodendrocytes 

(BA4_OL-11) (Figure 2C, Tables S2, S3; Figure S4A).  In addition to the AD-specific microglia, BA4,MIC-7, 

we observed two other distinct disease-associated microglia clusters in BA4 (Table S3, Figure S4B-D).  One 

population, BA4_MIC-4, was most abundant in the cases with higher tau pathology (Figure S4E). This population 

likely represents dystrophic microglia, showing high FLT and up-regulation of senescence-associated genes 

(Figure S4B,F). We also observed a microglia population most enriched in bvFTD (BA4_MIC-1; Figure S4G-J). 

This cluster was marked by ATP2C1, SORL1, PLXDC2, HDAC9, and tau modifier genes HS3ST4 (Ferreira et al., 

2022; Wang et al., 2020) and FRMD4A (Figure S2G, Figure S4B, Table S5) (Morita et al., 2017; Lambert et al., 

2013; Yan et al., 2016). These ATP2C1 microglia uniquely up-regulated pro-inflammatory signals (Guler et al., 

2015; Freeman et al., 2017) (Figure S4H) and abundant in BA4 and INS, vulnerable regions in bvFTD (Table 

S3).  

 

Molecular markers of selectively vulnerable projection neurons in AD, bvFTD and PSP 
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We next mobilized the cross-disorder design to understand factors driving differential vulnerability of specific 

neuronal subtypes. We observed notable layer-specific depletion of disorder-specific neuronal subclusters in 

regions with moderate to high neuropathology scores (AD: BA4_EX-4; bvFTD: INS_EX-2; PSP: INS_EX-13; 

Figure 4A, 4B; Figure S5A; Table S3). The depleted populations we identified matched known expected patterns 

of vulnerability based on prior neuropathological data (Kersaitis et al., 2004; Leng et al., 2021) but have not been 

identified in PSP and have not previously been characterized at the molecular level in any disorder. As expected 

in bvFTD, the selectively depleted layer 2/3 cortical neurons (INS_EX-2; Figure 4A-B, Figure S5A) were found 

in the insular cortex and marked by layer-specific marker genes CBLN2, CUX2, and RASGFR2 (Figure S5B) 

(Kersaitis et al., 2004).  Similarly, in AD, the selectively depleted layer 4/5 EX neuronal population (INS_EX-4; 

Figure 4A-B, Figure S5A) was found in the motor cortex and marked by layer-specific marker genes TSHZ2, 

FOXP2, and IL1RAPL2 (Figure S5B), together with previously reported markers of AD vulnerability, including 

RORB and NEFM (Figure S5B) (Leng et al., 2021; Zhou et al., 2020).   

In PSP, where cortical laminar vulnerability patterns have not been fully established (Ohm et al., 2022), we 

observed a selectively depleted population of a layer 5/6 near-projecting neuronal cluster (INS_EX-13; Figure 

4A-B, Figure S5A-B).  Based on brain connectivity maps (Gehrlach et al., 2020; Ghaziri et al., 2018), these near-

projecting (NP) neurons in the insula may innervate nearby subcortical structures with high tau pathology burden 

in PSP (Kovacs et al., 2020), including the striatum and globus pallidus. We next assessed whether these layer 

5/6 NP neurons differentially express genes involved in PSP pathogenesis compared to other layer 5/6 excitatory 

neurons. Indeed, we identify expression of PSP risk genes, including RUNX2, STX6, MOPB and EIFAK3 (Chen 

et al., 2018; Sanchez-Contreras et al., 2018) in this class of vulnerable neurons (Methods, Figure S5C, Table S5).    

To further investigate the enrichment of PSP risk variants in this vulnerable class of INS_EX-13 neurons, we 

analyzed 27 genes whose expression was recently shown to be regulated by functionally validated PSP genetic 

risk variants that underlie the major PSP GWAS signals (Chen et al., 2018; Cooper et al., 2022). We compared 

expression of the risk genes implicated by these variants between layer 2/3/4 and layer 5/6 neurons, finding 

evidence of significant DGE of multiple PSP risk genes, with the majority enriched in deep layer neurons 

compared to superficial layer neurons, including RUNX2, KANSL1, ARL17B, MAPT, ASAP1, LINC02210-

CRHR1 and SP1 (13 out of 15 risk genes significantly different at FDR<0.05, test, Table S5).  This indicates that 

known PSP risk genes are enriched in layer 5/6 near projection neurons that are depleted specifically in PSP cases 

relative to controls (INS_EX-13), supporting a causal link between PSP genetic risk (Table S5) and this uniquely 

vulnerable cell population identified by cross-disorder differential cell composition analysis (Figure 4A-B, Figure 

S5A-B, Table S3). 
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Disorder-specific depleted neurons expressed additional genes other than their canonical marker genes that 

distinguished them from non-depleted neurons in the same cortical layer (Figure 4B). We first compared markers 

of selectively depleted neurons across disorders and found examples of both disorder-shared and disorder-distinct 

genes (Figure 4B, Figure S5D). KCNH7, OPCML, PDE1C and NLGN1 were notable as shared markers of 

selectively vulnerable neurons in bvFTD (INS_EX-2, Layer2/3 IT), AD (INS_EX-4, Layer4/5 IT) and PSP 

(INS_EX-13, Layer5/6 NP). Remarkably, a recent study identifies OPCML and KCNH7 (Kv11.3) as genes 

conferring resilience in mouse lines and nominates KCNH7 as a druggable target (Telpoukhovskaia et al., 2022) 

and PDE1C and NLGN1 are known drivers of neuronal toxicity (Hollerhage et al., 2017; Kattimani and Veerappa, 

2018). We extend these observations to human brain here and further validate that KCNH7 marks vulnerable, 

depleted neurons identified in an independent dataset in AD (Leng et al., 2021).  GRM8 (Sanchez-Juan et al., 

2014) and GPC6 are shared markers of PSP- and bvFTD-depleted neurons, RORA of PSP- and AD- depleted 

neurons, and RORB of AD and bvFTD depleted neurons (Figure 4B-D).  However, AD vulnerable neurons 

express high levels of RORB at baseline in controls (Figure S3A), whereas bvFTD-depleted neurons only up-

regulate RORB in disease cases and not in controls (Figure 4D), suggesting that RORB may be an inducible marker 

of bvFTD-vulnerable neurons. Lastly, in AD-depleted neurons, GPC5 was up-regulated, which we validated 

using IHC, showing that GPC5 is a new marker of AD vulnerable neurons that has not been previously recognized 

(Leng et al., 2021; Mathys et al., 2019). GPC5 shows increased expression in AD relative to controls, localizes 

to the surface of layer 4/5 neurons where it is depleted in AD cases, and it colocalizes with hyperphosphorylated 

tau (Figure S5E).   

 

snATAC seq validates RORB as a shared transcriptional driver of selective vulnerability in AD and bvFTD 

 

Our analysis shows that RORB, a previously established marker of neuronal vulnerability in AD (Leng et al., 

2021), was also upregulated in bvFTD-depleted neurons (Figure S3A, Figure 4C-D).   To experimentally confirm 

if RORB TF binding activity was increased in excitatory neurons from the insular cortex in bvFTD samples, we 

performed snATACseq in insular cortex of 9 bvFTD, 8 control, 10 AD and 11 PSP subject samples, and 

conducted chromatin footprinting of RORB targets among selectively vulnerable layer 2/3 excitatory neurons in 

bvFTD (Methods; Figure 4E). As expected, RORB gene regulatory activity, as measured by gene promoter 

occupancy, was higher in bvFTD cases compared to controls in INS_EX-2, Layer 2/3 IT neurons, but not in AD 

or PSP samples (Figure 4E). Thus, RORB expression and its activity is increased in bvFTD vulnerable INS_EX-

2, Layer 2/3 IT neurons. 

 

We further explored the functional implications of increased RORB activity in selectively depleted neurons by 

broadening the analysis to all annotated RORB-target genes that show differential RORB binding in open 
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chromatin peaks of selectively vulnerable excitatory neurons in bvFTD and AD. We found two genes, TMEM196 

and NPTX2, whose promoters include a RORB binding motif and showed reduced chromatin accessibility and 

down-regulated gene expression in vulnerable neuronal populations in both disorders (bvFTD samples, layer 2/3 

depleted neurons (INS_EX-2 vs EX-5); AD samples, layer 4/5 depleted neurons (BA4_EX-4 vs EX-7); Figure 

4H, Table S5, Table S7). Consistent with our prediction that RORB represses NPTX2 expression (Figure 4F) we 

observe an inverse correlation between RORB expression and NPTX2 expression across disorders within this class 

of layer 2/3 neurons (Figure 4G; INS_EX-2 and INS_EX-5; Methods). This finding is notable because NPTX2 

functions in synapse homeostasis (Galasko et al., 2019) and is a prognostic biomarker whose expression anti-

correlates with disease progression in AD and bvFTD (Libiger et al., 2021; van der Ende et al., 2020).  In bvFTD, 

we find that the majority of the annotated RORB targets were primarily downregulated in selectively vulnerable 

neurons (Methods; 120 downregulated, 14 upregulated, FDR < 0.05; INS_EX-2 relative to INS_EX-5 in bvFTD). 

These down-regulated genes form a highly significant PPI network (direct PPI enrichment p-value 1.3E-05; 

Methods) reflecting a coordinated stress response, and its down-regulation here indicates a relative dampening of 

this protective pathway (Figure 4I).  In contrast, upregulated RORB-bound target genes in bvFTD-depleted 

neurons included BICC1, an RNA binding protein that controls protein synthesis and stress granule formation 

(Table S5) (Estrada Mallarino et al., 2020; Iaconis et al., 2017)). These findings support a potential for RORB to 

promote neuronal vulnerability in bvFTD by driving deleterious alterations in the coordinated cellular stress 

response and RNA solubility.     

  

Transcriptomic drivers of shared and distinct disease-associated cell states   

 

The identification of RORB as a potential driver of neuronal vulnerability in both AD and bvFTD suggested that 

analysis of additional TF mediated drivers of disease-associated cellular states would be of value. Moreover, 

identification of gene regulatory networks (GRNs) places DGE as components of known coherent biological 

processes (Network, 2021). We used single-cell regulatory network inference and clustering analysis (SCENIC) 

(Figure 5A, Methods; Aibar et al., 2017; Polioudakis et al., 2019) to identify cell-type specific GRN regulons for 

excitatory neurons, astrocytes, oligodendrocytes, and microglia, and define the disease specificity of cell-type 

specific regulons (Figure 5A-B, Figures S6A-C, Table S6)  We validated snRNAseq based SCENIC predictions 

of cell type- and disease-specific regulon activity by snATAC-seq, assessing TF binding site enrichment as well 

as TF footprinting in 78 disease and control samples (Methods), focusing our analysis on excitatory neurons 

(114,6872 nuclei) and microglia (15,715 nuclei) (Figure 5D-E, Figure S6 D-E, Table S7, Table S1).   

  

First, we empirically defined 1332 cell context-specific regulons driven by 250 TFs, 65% of which were active 

in only one cell type, including TFs well known to be cell type-specific, such as TBR1 and SCRT1 in EX (16 total 
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unique); SOX9 and NFAT in AST (82 unique) and PRMD1, SPI1, TAL1 and IRF8 in MIC (57 unique) (Table S6, 

Figure S6A-C). More than half of the 10 most active TF regulons in each disorder were highly active in multiple 

disorders (Table S6).  We  highlight the 10 most specifically active TF regulons in each disease (Figure S6C), 

which revealed a core set of TF regulons that were consistently active in multiple disorders compared to controls 

in more than one cell type or brain region, including TFs previously implicated in 

neurodegenerative diseases such as CEBPB (Tittelmeier et al., 2020) (Dent et al., 2021), YY1, a regulator of cell 

death (Chen and Chan, 2019), HDAC2, an AD associated gene whose suppression reverses cognitive decline in 

AD models (Gediya et al., 2021), and NFE2L1, a neuroprotective gene (Katsuoka et al., 2022). In contrast, TF 

regulons more active in control samples have known functions in supporting learning and memory and cellular 

maintenance (CREB, EGR1, SOX8) (Turnescu et al., 2018); Figure S6C, Table S6).  

 

In addition, we identified TF regulons more specific to one disorder and or region (Figure S6C, Table S6), 

particularly among astrocytes and microglia where over 50% of the top 10 active TFs were exclusive to one 

diagnosis group.  In microglia in particular, distinct clusters of TFs co-varied by diagnosis and brain region 

(Figure 6A), suggesting distinct TF networks likely contribute to the diverse microglial transcriptomic states 

observed in this dataset (Figure S2G). 

 

We confirmed increased chromatin accessibility at TF binding sites with high regulon specificity scores (Figure 

5D-E, Figures S6D-E; Methods).  Across each of the top 10 TFs for INS_EX, we observed a consistent correlation 

across disorders between ranked differences in regulon specificity and chromatin accessibility (Figure 5D-E). 

Notable ALS/bvFTD disease genes OPTN and FUS were targets gene of YY1 (Figure 5F), whose regulon activity 

ranked highest in in bvFTD (Figure 5C-E), while AD disease genes APP, ITM2B and PICALM were target genes 

of DBP (Figure 5G) whose regulon ranked highest in AD samples (Figure 5C-E).  

 

Next, we identified combinations of regulons that reflected the majority of the gene expression difference 

associated with disorder-specific clusters (Figure S7A-D, Figure 6B), including RELA and NELFE in bvFTD INS 

OL (INS_OL-14), ATF4 and SOX10 in PSP BA4 OL (BA4_OL-11), SOX5 and NFAT5 in bvFTD astrocytes 

(BA4_AST-8), RUNX1 and IKZF1 in bvFTD microglia (BA4_MIC-1), and SPI1 and NR3C1 in AD microglia 

(BA4_MIC-7) (Figure 6B-D). We confirmed disorder-specific increase in chromatin accessibility at binding sites 

of RUNX1 in bvFTD and NR3C1 in AD (Figure 6C-D). Orthogonal experimental data from gene knockout studies 

allowed us to independently confirm that both RUNX1 and IKZF1 are functional drivers of the bvFTD-enriched 

ATP2C1 microglia signature (BA4_MIC-1; Table S6, Methods; (Subramanian et al., 2017)). Furthermore, 

validated IKZF1 regulon target genes were upregulated in bvFTD microglia relative to controls (Figure 6D).  

These data support a potential role for RUNX1 and IKZF1 in bvFTD-specific reactive microglial states observed 

in a brain region with moderate bvFTD pathology (BA4_MIC-1). 
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AD disease genes engage combinatorial TF programs regulating AD-specific microglia 

 

Of interest was an AD-specific microglial TF network comprised of SPI1, NR3C1, MXI1 and USF2 based on high 

regulon specificity, and high overlap with gene expression changes; their combined targets were responsible for 

a remarkable 60% of up-regulated genes in the amyloid associated, AD-specific cluster (Figure 6B). Therefore, 

we examined the AD-specific TF program identified in microglia to understand the combinatorial regulation of 

disease-specific microglia states both at the RNA and chromatin-level. For example, we observed that SPI1, which 

is known to govern the expression of AD disease genes in myeloid cells (Pimenova et al., 2021),  drives expression 

of a distinct gene set involved in lysosome and Fc-gamma receptor mediated phagocytosis, including multiple 

AD risk genes including APOE, INPP5D, GRN, and the AD biomarker, IL15 (Figure 6D-E, Figure S7E) (Popp 

et al., 2017; Wightman et al., 2021). We validated the AD specific increase in IL15 promoter accessibility at the 

SPI1 binding site by footprinting (Figure 6F). In contrast, the genes regulated by another TF driver, NR3C1, 

participate in amyloid processing and microglial reactivity (Figure 6E; (Baik et al., 2019)), including the marker 

gene ITM2B, the marker of BA4_MIC-7 in AD brain (Figure 2G; Table S7), which we validated by footprinting 

(Table S7). This demonstrates that the effects of NR3C1 and SPI1 direct discrete, biological pathways that act 

combinatorially to modulate the BA4-7 microglial neuroinflammatory state in AD. 

 

Astrocytes in PSP ectopically express neuronal TFs and disease related pathways 

 

As described above, a prominent pathological feature of PSP is astrocytic tau inclusions (Chung et al., 2021). We 

observed that astrocytes in PSP downregulate REST (Figure 3B) and found that four predominantly neuronal TFs 

appeared to be uniquely active in astrocytes in PSP: CUX1, CUX2, ZMAT4, and FOXP1 (V1_AST-3, Figure 6G). 

As CUX1 regulated genes are typically neuronally expressed (Cubelos et al., 2015; Rodriguez-Tornos et al., 

2016), we tested the prediction that it was ectopically expressed in astrocytes in PSP. We confirmed that 

CUX1 selectively stains neurons in control brain tissue, but robustly stains S100b-positive astrocytes in PSP 

samples (Figure 6H).  In PSP, the V1_AST-3 cluster gene expression signature significantly overlapped with 

these regulons (Figure 6I) and showed disease-specific up-regulation of ZMAT4 (log2FC 0.24, FDR 0.023, Table 

S5) and a broad trend of increased expression of their targets (Figure 6J).  These targets include several 

Parkinson’s Disease (PD) disease genes, such as PARK7 and SNCA (Corti et al., 2011), regulators of autophagy 

and the unfolded protein response (Figure 6K). Therefore, ectopic expression of neuronal transcription factors 

specific to PSP astrocytes underlie PSP-specific transcriptomic changes in changes involving both neuronal genes 

and known causal pathways in PD.   
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MAFG-NFEL2L1 regulates PSP disease genes and neuroprotective pathways in excitatory neurons that are 

selectively dampened in PSP vulnerable neurons   

 

It was intriguing that our GRN analysis identified NFE2L1 and MAFG as manifesting higher activity in more 

vulnerable neurons, because NFE2L1 and MAFG are known to cooperate to regulate gene programs involved in 

proteostasis, antioxidant response and xenobiotic stress factors (Katsuoka et al., 2022). Evidence for NFE2L1 

activity was markedly increased in all disorders in visual cortex, which is relatively spared from 

neurodegeneration in all disorders (Figure 7A).  NFE2L1 and MAFG regulons both included genes involved in 

iron sequestration (FTH1 and FTL), and the protective ALS/bvFTD gene SQSTM1 (Figure 7B, C, Table S6).  In 

addition, the MAFG regulon includes VCP, another ALS/bvFTD disease gene that reduces tau proteopathic 

seeding (Zhu et al., 2022), the PD risk gene SCNA, and genes involved in the regulation of selective autophagy, 

proteostasis, RNA stabilization, and synaptic vesicle exocytosis (Figure 7D). We confirmed that VCP expression 

is positively correlated with MAFG expression across EX in the insular cortex (Figure 7E).  We validated several 

targets by direct chromatin footprinting, including UBE2N, KIF5C, RARB and VCP (Figure 7D, Table S7).  These 

findings suggest a model whereby the MAFG/NFE2L1 regulon protects neurons from tau aggregation (Figure 

7F). Indeed, we find that tissue samples containing more neurons with high regulon activity have lower tau 

pathology scores (cor -0.57 p=0.04; Methods, Figure 7G).  Moreover, neurons that are selectively depleted in one 

disease also lose their regulon activity in a disorder-specific fashion (Figure 7H), consistent with the known 

function of MAFG/NFE2L1 in cellular resilience.  

 

Discussion 

Several studies have illustrated the power of single cell RNA sequencing to elucidate pathways dysregulated in 

AD (Grubman et al., 2019; Mathys et al., 2019; Morabito et al., 2021; Otero-Garcia et al., 2022; Sadick et al., 

2022; Zhou et al., 2020), but whether these changes are specific to AD is not known. By employing a cross 

disorder design and by profiling multiple regions with differential vulnerability, we characterize both cross-

disorder and disease specific pathways underlying differential susceptibility and resilience. Our analyses strongly 

support the value of direct cross disorder comparative analysis for defining disorder-associated cellular 

trajectories. Notably, we were able to replicate several previous observations in AD single cell data including the 

association of RORB with AD vulnerable neurons and disease effects involving interneurons, OPCs, and 

astrocytes, providing additional confidence that our data and analyses are robust.  We also identify multiple novel 

disease-specific homeostatic and pro-inflammatory states, including depleted astrocyte populations marked by 

MACF1, shared disease effects involving changes in the state of MEIS2 white-matter interneurons, shared 

depletion of ENPP6/RBFOX1 expressing oligodendrocytes (Hughes and Stockton, 2021; Xiao et al., 2016), and 

OPC populations marked by genes involved in migration and NMDA sensing (Xiao et al., 2013). We annotate 
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shared and distinct disease states comprehensively to provide an extensive resource, which we use to understand 

the molecular features and transcriptional drivers of selective vulnerability and resilience, including the role of 

disease-specific risk genes. We identify specific transcriptional programs representing coherent biological 

processes that define the single cell pathophysiology of these disorders. By coupling snRNAseq with ATAC-seq 

we experimentally validate the bio-informatically predicted regulatory drivers of these altered cell states.  

Despite recent progress (Leng et al., 2021; Roussarie et al., 2020), the molecular basis of selective neuronal 

vulnerability in neurodegeneration is relatively uncharacterized. Such factors might be divergent in different 

disorders, or shared. Here, we identify four genes that are reproducibly identified in multiple classes of depleted 

neurons across all three disorders, including OPCML and KCNH7, which have also been identified experimentally 

in mouse models of AD (Libiger et al., 2021; van der Ende et al., 2020). Given the consistency of this observation, 

we interpret these to be shared components of differential neuronal vulnerability. Other components of neuronal 

resilience across disorders include upregulation of the transcriptional regulators, MAFG/NFE2L, which 

coordinate the proteostatic stress response (Katsuoka et al., 2022) including the expression of VCP, an 

bvFTD/ALS risk gene (Ling et al., 2013). Although known to be neuroprotective, the relationship of 

MAFG/NFE2L to vulnerability in neurodegenerative dementias was not previously known. The upregulation of 

MAFG/NFE2L1 and their targets with binding to cis-regulatory regions confirmed by single cell TF footprinting, 

in specific spared populations of excitatory neurons in AD (INS_EX-3,4,7,13), bvFTD (INS_EX-3,7,13) and PSP 

(INS-EX-3,4,7), illustrates how cell intrinsic differences in injury response may also be a major determinant of 

vulnerability in dementia. This includes differentially affected neuronal subtypes that match expected patterns of 

selective vulnerability, such as those harboring gene regulatory programs driven by RORB in AD and bvFTD 

depleted neurons, and GRM8, a candidate genetic risk modifier for CJD (Sanchez-Juan et al., 2014), in PSP- and 

bvFTD-depleted neurons. Moreover, we were able to identify the specific molecular programs underlying 

superficial projection neuron vulnerability in bvFTD and identify for the first time an additional class of projection 

neurons, INS_EX-13, selectively depleted in PSP. These pathways that vary across spared and dying/depleted 

cell populations become potential therapeutic targets based on the supposition that restoring or boosting 

resilience-associated factors present in spared neurons may be protective (Karsten et al., 2006).  

In this regard, glial subtype heterogeneity in the brain is increasingly appreciated (Chen et al., 2020; Endo et al., 

2022; Grubman et al., 2019; Mathys et al., 2019; Olah et al., 2020; Rexach et al., 2020; Sadick et al., 2022; Zhou 

et al., 2020). But how this heterogeneity corresponds to specific neurodegenerative conditions is not understood. 

We replicate previous findings of a dystrophic microglial state in post-mortem brain from patients with AD 

(Nguyen et al., 2020; Olah et al., 2020). We also find evidence of microglia heterogeneity relative to pathology 

and disorder, including an amyloid-associated microglia state unique to AD (BA4_MIC-1), a bvFTD-enriched 

state with up-regulation of genes involved in sterile inflammation (BA4_MIC-1;(Freeman et al., 2017) and a cross 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.09.29.560245doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.560245


disorder state with high levels of WNT signaling genes (INS_MIC-3). This implicates both shared and distinct 

neural immune pathways in each disorder, which may specify disorder-specific therapeutic targets. 

We also uncover previously unrecognized glial diversity correlated with the degree of tau pathology, such as 

BA4_MIC-1 and INS_MIC-1). Furthermore, we defined and validated a combinatorial TF gene regulatory 

network underlying the AD specific microglial state, BA4_MIC-7, that includes SPI1. It is notable that a recent 

study demonstrated that SPI1 represses AD risk genes in late-stage AD (Morabito et al., 2021), and is a risk locus 

whose reduced expression is associated with delayed AD onset (Huang et al., 2017), nominating it and 

downstream pathways as potential therapeutic targets. Disease associated glial states involve differential 

expression of genes that have been associated with AD or pathological tau burden, including AD risk genes in 

AD-specific microglia (ITM2B, APOE) and two modifiers of tau burden (FRMD4A, HS3ST4 (Ferreira et al., 2022; 

Wang et al., 2020; Yan et al., 2016)) marking microglia enriched in bvFTD brain. These data support suggest that 

disease-specific genetic risk variants influence microglial states observed in the brain in patients with these 

dementias, which in turn differentially modulate distinctive aspects of AD and bvFTD pathology. 

In the case of PSP and bvFTD, we observe distinct changes involving astrocyte and oligodendrocyte clusters 

V1_AST-3 in PSP and INS_OL-14 in bvFTD.  PSP is pathologically defined by its unique pattern of neuronal 

and astrocytic tau pathology (Chung et al., 202; (Roemer et al., 2022), but its molecular correlates have not been 

well-defined. In PSP, we find that astrocytes (V1_AST-3) are uniquely depleted in the visual cortex where they 

down-regulate REST, which represses neuronal gene expression, while upregulating transcription factors typically 

observed in neurons, including CUX2 and ZMAT4 (Cubelos et al., 2015; Weed et al., 2019), as well as MAPT 

itself. We hypothesize that the loss of factors driving astrocyte identity or self-maintenance is related to their 

reduction in the primary visual cortex in PSP; which is consistent with the trend towards increased neurons in the 

primary VC (Table S3).  Since this is the first time this has been observed in PSP, this observation enabled by 

unbiased molecular profiling is exciting, but warrants additional confirmation studies. 

Tying molecular phenotypes such as gene expression to causal factors requires understanding how they are related 

to genetic risk. In this regard, we provide several examples of AD, bvFTD, or PSP risk genes that are enriched in 

specific cell types that are preferentially observed in that disease, suggesting a causal link. This includes AD risk 

genes such as ITM2B, APOE, BIN1, and SPI1 in microglia that are enriched in AD brain, bvFTD/ALS risk genes 

including OPTN, CTSF, TPRM7 and TMEM106B enriched among layer2/3 neurons that are specifically 

vulnerable in bvFTD (INS_EX-2), and PSP associated genes such as WNT3 and RUNX2 that were differentially 

expressed in layer 2/3 neurons (e.g. V1_EX-2) that are more abundant in PSP, or layer 5/6 neurons that are 

depleted in PSP (e.g. INS_EX-13).  These data show that known risk genes act in specific neuronal and glial 

states or cell types that differ across related disorders, primarily non-neuronal cells in AD and specific neurons in 

bvFTD and PSP.  Moreover, causally associated disease states are not broadly distributed in the brain, but rather 
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are limited to specific cell types and brain regions. This further underscores the importance of examining multiple 

brain regions to understand causal disease pathways at the cellular level, which we show can provide a clearer 

picture of cross-disorder and disease-specific aspects of resilience and vulnerability, thus informing the 

therapeutic roadmap.    
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Figure Legends 

Figure 1: Comparison of cell types, subclasses and disease states across brain regions with variable disease 

vulnerability across neurodegenerative tauopathies.  (A) Schema depicting cross-disorder multiomic analysis 

of post-mortem human brain tissue from three neurodegenerative tauopathies (AD, bvFTD, PSP, controls; 120 

samples, Table S1) including three cortical brain regions (INS, BA4, V1) using single nuclear RNA-seq (snRNA-

seq) and ATAC-seq (1.4M cells) to define and distinguish disorder-specific and shared changes in cellular 

molecular composition, gene expression and gene regulatory networks. (B) Cartoon with heatmap showing 

average neuropathology scores for neurodegeneration (blue, below) and tau (red above) measured across subjects, 

by region and disorder (Methods; (Table S1). (C) UMAP of snRNA-seq clusters separating into 11 major cell 

types (colored per legend; Methods) and including nuclei from each disease condition (AD, bvFTD, PSP, control; 

right top) and brain region (V1, INS, BA4; right lower).  (D) Hierarchical clustering of excitatory neuron clusters 

from different brain regions (INS in black; BA4 in grey, and V1 in white; as shown in key) into reference-based 

subclasses and related clusters, showing 8 example marker genes variable expressed by groups including markers 

separating neuronal layers (L2/3; L4/5, L5/6) and markers of neurons bearing tau neurofibrillary tangles 

(AD_NFT) defined in AD brain (Otero-Garcia et al., 2022) (Methods, Figure S1C-E for cluster assignment to 

reference human motor cortex cell subclasses (Bakken et al., 2021); IT = intratelencephalic NP = near projecting, 

CT = corticothalamic, L2/3, L4/5, L5/6 refers to layer-specific neuronal classes; extratelencephalic (ET) neurons 

contribute cells to BA4_EX3 and BA4_EX-1 as shown in Figure S2E but do not populate a distinct cluster).  

Clusters significantly depleted (-) or enriched (+) in disease cells are indicated with a colored line (AD red; bvFTD 

blue, PSP gold; (limma, FDR <0.1, see Table S3 for complete differential cluster composition results;  bvFTD 

abbreviated to “FTD” throughout figures). 

Figure 2: Shared and distinct neuronal and glial disease states in disorders versus controls (A) Schema of 

analysis strategy for identifying shared and distinct disease-associate neuronal and glial states based on 

proportional differences in cluster composition of disease and control nuclei. (B,C) Heatmap of selected (B) 

neuronal and (C) glial clusters depicting the relative proportion of disease compared to control cells for each 

cluster and disorder shown, with colors ranging from red where disease cells are enriched, and blue where disease 

cells are depleted, based on compositional analysis (shown is log10(FDR) x sign(log2FC); with multiple testing 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2023. ; https://doi.org/10.1101/2023.09.29.560245doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.560245


correction applied within cell type and brain region, limma, Table S3), with boundary thickness and color 

indicating clusters with statistically significant enrichment (FDR<0.05 (thick) or FDR <0.1 (thin), comparing 

disease to control with multiple testing correction applied within cell type and region (black), or comparing one 

disease with all other conditions with multiple testing correction applied across brain regions (EX) or cell type 

and region (MIC) (see Table S3).  Above each cluster are marker genes shared by related clusters based on 

hierarchical clustering (Figure 1, S2) and below are cluster-specific marker genes based on differential expression 

(Table S2), and putative associated functions based on gene ontology and literature review (Methods).  AD-

specific microglia state from motor cortex (BA4_MIC-7), showing (D) differential composition of BA4 microglia 

clusters in AD vs other samples (bvFTD, PSP, control) (Log2FC, limma, **FDR = 0.009, 4 comparisons), (E) 

Fisher’s exact test of overlap between genes differentially expressed (up or down regulated) in BA4_MIC-7 in 

AD cases, and BA4_MIC-1 in bvFTD cases (Table S5) compared to genes up-regulated in AD-associated 

microglia based on published reports (MIC1(Mathys et al., 2019), amyloid plaque associated microglia (Chen et 

al., 2020) and PU.1 and TYROBP associated microglia module mm116 (Patrick et al., 2021) (Table S4), * FDR 

< 0.05 corrected for 12 comparisons. (F) Heatmap showing cluster-specific differential up-regulation compared 

to controls of ITM2B in BA4_MIC-7 microglia from AD cases, compared to all other BA4 microglia clusters and 

disorders (LME; t-stat shown; **** FDR<0.001, FDR corrected over 3,135 genes; Table S2B).  (G)  IBA1+ 

microglia demonstrate increased ITM2B protein staining in microglia in AD brains compared to bvFTD brains 

(frontal cortex, unpaired T-test, ***p = 0.0009, n = 4), but there is no change in the overall density of ITM2B 

stained neurons.  (H) Enrichment of AD GWAS variants among genes up-regulated (up) in AD cases compared 

to control in BA4_MIC-7 microglia but not in genes down-regulated (down) or in other BA4 microglia clusters 

(MAGMA p-value with FDR over 8 comparisons). (I) Direct PPI network among genes up-regulated in 

BA4_MIC-7 in AD samples vs all other conditions (Table S5) highlighting in large circles AD disease genes and 

in colored circles genes that participate in significant gene ontology categories (FDR p-values for enrichment 

shown to right) as shown.  

Figure 3: Disease-specific neuronal and glial states. PSP-specific astrocyte changes (A) Boxplot of cell 

proportions by subject in V1 for astrocytes, interneurons and excitatory neurons, showing significant depletion of 

astrocytes in PSP samples (limma with sample bootstrapping, FDR over 72 comparisons (3 diagnosis groups, 3 

brain regions, 9 cell classes; Table S3). (B) Heatmap showing genes differentially expressed in PSP V1-AST 

(FDR<0.05 across 12677 genes, cross-disorder LME, Table S5).  (C) Differential expression of MAPT in 

astrocytes (all regions combined) from AD, bvFTD and PSP compared to control cases (Table S5, Wilcoxin test, 

Seurat package, ***FDR<0.001 over 29 genes x 3 diagnosis groups = 87 comparisons).  (D) Differential 

expression of MAPT, MAPT-AS1, NPEPPS and SRSF6 in astrocyte compared to excitatory neurons within each 

disorder (all regions combined, Wilcoxin test comparison of mean percent cells with gene detected (Seurat, 

FindMarkers), n = 27; Table S5, quantified within subjects to eliminate possible effects of variable genetic 
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background at the chromosome 17q21.31 locus). bvFTD-enriched neuronal state from insular cortex (INS_EX-

5), showing (E) differential composition vs control of nuclei in INS_EX-5 from bvFTD, PSP and AD cases 

(Log2FC, limma, *FDR = 0.02 over 11 comparisons Table S3). (F) OPTN protein staining of layer 2 excitatory 

neurons (TUJ1+) in bvFTD insular cortex. (G) Cross-disorder differential gene expression of bvFTD/ALS risk 

genes and PSP risk genes showing higher expression of multiple genes in INS_EX-5 neurons compared to other 

INS_EX clusters in bvFTD vs control cases; with AD or PSP vs control cases at right for comparison (Z-score, 

LME; * for Z -score > 3). (H) Functional PPI network among genes up-regulated in INS_EX-5 in bvFTD samples 

vs all other conditions (Table S5) highlighting ALS/bvFTD disease genes in large circles, and genes that 

participate in gene ontology categories with significant enrichment with colored circles as shown (FDR p-values 

for enrichment at right of each GO term). PSP-enriched neuronal state in visual cortex (V1_EX-2), showing (I) 

(top track) V1_EX-2 is enriched in nuclei from PSP cases vs other conditions based on differential composition 

analysis of V1-EX clusters (-log10(FDR p-value) x sign(log2FC) of PSP vs. all, p-value based on limma, Table 

S3, FDR over 14 comparisons), and (below track) comparison of PSP-brain specific modules described in Allen 

et al (Allen et al., 2018) with gene up-regulated in PSP vs control cases in each V1_EX cluster, showing 

significant overlap for clusters V1_EX-2, -16, and -0 (Fisher’s exact test, FDR correction over 14 comparisons) 

(* < 0.05, ** < 0.01, *** <0.001).  (K) Stacked barplot showing differential expression (T-statistic, LME), 

measured within diagnosis group, of PSP risk related genes (Chen et al., 2018; Cooper et al., 2022) in layer 2/3/4 

EX compared to layer 5 EX from calcarine cortex (LME, FDR * < 0.05, ** < 0.01, *** <0.001, n = 27,000 genes; 

Table S5). (J) Functional protein-protein interaction network that combines genes up-regulated in V1_EX-2 

neurons in PSP samples (top 200 genes ranked by T-statistic >2, PSP vs all, LME, Table S5) with PSP disease 

genes enriched in layer 2/3/4 neurons (WNT3, STX6; in rectangle), indicating genes involved in gene ontology 

categories by color as shown (with FDR p-value for enrichment to right of GO term), and additional PSP disease 

genes by large size (Methods).   

Figure 4: Cross-disorder comparisons of selectively depleted neuronal clusters identify RORB as shared 

repressor of disease-associated genes. (A) Differential cluster composition by diagnosis group across all 

excitatory neuronal clusters, based on proportion of nuclei from each diagnosis category relative to all other 

groups combined.  Clusters group by cortical layer, which is indicated, below which brain region of origin is 

labeled and colored (black =insula; grey = BA4; and white = V1). Below each cluster, colored by disorder (AD 

in red, bvFTD in blue, PSP in yellow), is the differential composition score (Methods; -log10(FDR) x sign 

(log2FC)) for each cell type cluster, showing one different depleted clusters for each disease. (B) Differential 

composition in diagnosis indicated vs all other samples (left, limma, *FDR<0.1 over 2 comparisons) and 

differential gene expression within diagnosis group (right, LME; Methods) comparing each disorder-specific 

selectively depleted cluster with a matched cluster that is not depleted in disease, but shares overlapping subclass-

specific markers (see Figure S4C; Table S5; FDR correction > 23,365 genes). (C) RORB immunostaining in layer 
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2/3 cortical neurons in bvFTD insular cortex. (D) Differential expression of RORB in disease vs control cells from 

INS_EX-2 (LME, *FDR<0.05 corrected over 3 disorders). (E) Differential RORB binding in layer 2/3 excitatory 

neurons (ATAC INS_EX subcluster C8) in bvFTD, AD and PSP vs controls based on chromatin footprinting 

(Methods). (F) Model showing RORB as a candidate repressor of NPTX2 in selectively depleted neurons. (G) 

Differential expression of RORB relative to NPTX2 in INS_EX-2 neurons in bvFTD vs control, AD vs control 

and PSP vs control samples (LME, Table S5). (H) Chromatin accessibility peaks based on snATAC-seq at the 

RORB binding site in the NPTX2 promoter of INS_EX (ATAC cluster C2).  (I) Protein-protein interaction plots 

highlighting genes with enriched gene ontology among genes relatively downregulated in bvFTD-depleted 

neurons relative to other layer 2/3 neurons (INS_EX-2 vs INS_EX-5, bvFTD samples, t<-2, LME, Table S5) that 

are also bvFTD-specific RORB target genes based on chromatin footprinting (bound in bvFTD but not control, 

PSP or AD samples) (showing direct protein-protein interaction (PPI) p-value, and gene ontology enrichment p-

values from String (Methods)).   

Figure 5: Transcription factor network inference (SCENIC) identifies transcription factor regulons active 

across cell types, disorders and brain regions. (A) Workflow for validation of SCENIC TF results using 

snATAC and chromatin footprinting. (B) Schema of strategy for cross-disorder comparison of TF activity within 

cell type and brain region. (C) Heatmap comparing INS EX neuron regulon specific scores across disorders, 

showing relative rankings across disorder of the 10 regulons per disorder.  (D) Scatterplot of validated disease 

trends among top 10 most disease associated TF for each disorder, based on regulon specificity score, by 

comparing cross-disorder differences in regulon specificity score (gain in rank vs control) vs cross disorder 

differences in differential chromatin accessibility (refers to Table S6). (E) Validation of differential chromatin 

accessibility at DBP and YY1 binding sites in AD, bvFTD and PSP vs control INS EX (C2; ChromVar) compared 

to ranked regulon specificity score (RSS rank (SCENIC) for AD, bvFTD, PSP; respectively; DBP ranked 2, 10, 

18; YY1 ranked 13, 3, 6). (F,G) Direct PPI and associated pathways enriched among (F) YY1 and (G) DBP regulon 

target genes from INS EX (STRING). 

Figure 6: Distinct transcription factor networks drive disorder-specific glial states in AD and PSP. (A) 

Multidimensional scaling plots using Sammon projections (Methods) showing relatedness of transcription factor 

regulons specific score ranks across diagnosis within microglia (MIC) comparing three brain regions, and 

highlighting distinct and shared TFs across disorder based on ranked differential entropy score (Methods).  (B) 

Gene overlap enrichment in AD BA4 MIC between specific regulons and genes up-regulated in AD-associated 

BA4_MIC-7 (T-statistic >2, LME), comparing regulons with high regulon specificity for AD microglia (USF2 

(ranked 2) NR3C1 (ranked 4), MXI1 (ranked 6), SPI1 (ranked 7) and low regulon specificity for AD microglia 

(RUNX1 (ranked 44) and NFKB1 (ranked 48)) (Fisher’s exact test, ***FDR<0.001 over 5 comparisons).  (C) 

Validation of differential chromatin accessibility at NR3C1 and RUNX1 binding sites in AD, bvFTD and PSP vs 
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control BA4 MIC (C7; ChromVar, *FDR<0.05 over 453 TFs measured per disorder) compared to ranked regulon 

specificity score (SCENIC; for AD, bvFTD, PSP; respectively: NR3C1 ranked 4, 9, 7, RUNX1 ranked 13, 3, 6,). 

(D) Differential expression of SPI1 and RUNX1 regulons target genes BA4 MIC comparing AD and bvFTD 

samples vs, controls (LME; Table S5).  Black boxes below each SPI1 target gene indicated binding in AD samples 

based on chromatin footprinting (BA4 C7; Table S7). White boxes below each RUNX1 target gene indicated 

binding in bvFTD samples based on chromatin footprinting (INS C7, Table S7).  (E) TF regulon plot showing 

target genes for USF2, NR3C1, MX11 and SPI1 regulons upregulated in AD BA4_MIC-7 with edge length 

proportion to (1-GRN) score (Table S6) and node color proportion to differential expression in AD BA4_MIC-7 

(LME, AD vs all conditions, Table S5, Methods). Key indicates specific genes in major enriched GO pathways 

with FDR corrected p-values shown to their right.  (F) Differential chromatin accessibility (peak density) at SPI1 

binding site on IL15 promoter in AD compared to bvFTD, PSP, control BA4 microglia (BA4 C7, snATAC, 

Methods).  (G) Multidimensional scaling plots using Sammon projections (Methods) showing transcription factor 

regulons specific score ranking across diagnosis within AST from V1 (Table S6).  (H) Immunohistochemistry 

showing CUX1 in PSP and control astrocyte and neurons, with quantification showing great percent of astrocytes 

positive for CUX1+ in PSP V1 samples (unpaired T-test, *p = 0.023, n = 5).  (I) Heatmap showing that TF 

regulons with high and low specificity for PSP V1 astrocytes (relative specificity score RSS) significantly overlap 

with genes specifically up-regulated in PSP-in V1_AST-3 astrocytes (T-statistic > 2, LME) (Fisher’s exact test, 

FDR applied over 14 comparisons, **<0.01,***<0.001). (J) Heatmap showing higher expression in PSP 

V1_AST-3 astrocytes of regulon target genes of ZMAT4, RORB, NR3C1, FOXP2, CUX1 and CUX2 (T-statistic, 

LME, Table S5).  (K) Combined PPI and TF regulon network plots, showing targets of ZMAT4, RORB, NR3C1, 

FOXP2, CUX1 and CUX2 regulons from V1-AST with direct PPI and their significantly enriched GO terms, 

including PD and unfolded protein binding.   

Figure 7: MAFG/NFE2L1 drives a resilience program of proteostasis across disorders with inversed 

expression relative to selective neuronal loss.  (A) Cross-cluster comparison between NFE2L1 regulon activity 

score (colored by scaled RAS, Key; see Methods, SCENIC) and the expression of NFE2L1 and selected target 

genes in V1 EX neurons (each cluster vs all remaining V1-EX neurons; LME, Methods; * T-statistic > 2; Key = 

T statistic, Table S2). (B) Direct PPI plot of NFE2L1 regulon (top 250 genes) showing genes participating in 

enriched disease related gene ontology pathways, such as mitophagy and cell death (STRING, FDR of enrichment 

versus genome as background).  (C) Cross-cluster comparison among INS EX of MAFG regulon activity score 

(see Methods SCENIC)), and the expression of MAFG and selected target genes (each cluster vs all remaining 

INS-EX neurons; LME, * T-statistic > 2; Key = T statistic, Table S2). (D) Direct PPI plot of the MAFG regulon 

(top 250 genes) showing genes participating in enriched gene ontology pathways (STRING, FDR of enrichment 

versus genome as background). (E) Scatterplot showing change in expression of NFE2L1 compared to VCP in 

each INS_EX cluster across PSP, AD, and bvFTD samples relative to controls with trendline (Pearson’s 
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correlation, p-value = 2.9e-13, n = 42). (F) Model showing a neuroprotective gene program induced by 

MAFG/NFE2L1 complex in cells otherwise vulnerable to neurodegeneration, including PSP disease genes.  (G) 

Scatterplot and correlation trendline showing sample level counts of INS_EX-4 neurons compared to Tau 

neuropathology score (Pearson’s correlation and p-value calculated across all disorders shown with trendline. 

Correlations calculated within each diagnosis are also shown in key. (H) Differences in percent cells expressing 

MAFG, NFE2L1, (left) select target genes, and (right) the entire MAFG regulon in INS_EX-13 neurons comparing 

AD and PSP samples.  

Supplementary Figure 1: (A) Boxplot of sample characteristics measured across nuclei used in final analysis 

separated by brain region and disease condition, including subject data (post-mortem interval (PMI), age), and 

data measured per single nuclear library (number of unique molecular identifiers (UMI), percent reads mapped 

to mitochondrial genome (mito-DNA); mean +/- quantiles). (B) Box plot showing percent of each of the 9 most 

prominent cell types averaged over each sample (mean +/- quantiles). (C) UMAP based on reference-based 

mapping of motor cortex samples (BA4, all conditions, Azimuth (see Methods), Human Motor Cortex as 

reference (BICCN)) demonstrating 100% of reference cell subtypes ((Bakken et al., 2021)). (D) UMAP showing 

results of unsupervised clustering of excitatory neurons from one brain region (BA4) and all disease conditions 

(LIGER subclusters; Methods). (E) Sankey plots showing assignment of clusters to matched reference cell 

classes, and, for excitatory neurons, inhibitory neurons and astrocytes, to reference cell subclasses (Azimuth (see 

Methods), Human Motor Cortex as reference (BICCN)).   

Supplementary Figure 2: (A-G) Hierarchical clustering for 7 major cell types, showing grouping of related 

clusters from three brain regions based on marker gene overlap within cell type (Methods, Table S2).  As shown 

in legend, clusters are colored and labeled based on their brain region of origin (V1 white, BA4 grey, INS black; 

as shown in key), and their numeric cluster identifier (matching unique cluster identifier “brain region_ celltype_ 

numeric”), for (A) IN = inhibitory neurons, (B) OL = oligodendrocytes, (C) AST = astrocytes, (D) OPC = 

oligoprogenitor cells, (E) END = endothelial cells, (F) Pericytes, and (G-H) MIC = microglia. IN, OL and AST 

subclasses are labeled based on reference-based classifiers (Methods; for example OLIGO L3-L6 ENPP6 

(Bakken et al., 2021), Table S2).  For each cell type, we include a heatmap indicating cluster-specific differential 

expression of a selection of reference-based classifier genes and genes that distinguish related clusters (log2FC 

vs other clusters from same brain region and cell type, LME; Table S2).  Representative marker genes that 

distinguish cluster groups are also shown and used to label groups of related clusters for each cell type (see Table 

S3 for markers listed with references).  For example ENPP6, a marker of putative newly formed OL (Xiao et al., 

2016), RBFOX1, PLP1 indicating myelinating OL, and BCAS1 marking early pre-myelinating and/or disease 

associated OL (Fard et al., 2017; Hughes and Stockton, 2021; Xiao et al., 2016) (See Table S3 and S2 for 

additional markers). Clusters significantly depleted (-) or enriched (+) in disease cells are indicated with a colored 
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line (AD red; bvFTD blue, PSP gold; all disorders black) based on strict criteria (LimmaVoom (Methods); see 

Table S3 for differential cluster composition summaries and complete results). For example, two OL clusters in 

B are upregulated in bvFTD specifically while another is upregulated in PSP specifically, one MIC cluster is 

upregulated in AD specifically, and one AST cluster is upregulated in bvFTD specifically. Statistical criteria for 

disorder-distinct results shown are abs(beta) > 0.75 and FDR<0.1 for one diagnosis vs all other conditions (no 

star), or FDR <0.1 in only one diagnosis vs control (indicated by *).  For selected trends reported in Table S3 that 

do not meet these strict significance thresholds, FDR corrected p-values are shown.  Statistical criteria for shared 

disease-associated findings shown are abs(beta) > 1 for each disorder vs control, and FDR <0.05 for all disorders 

combined vs controls. FDR corrections were applied across clusters of the same cell type and brain region (see 

Table S3).  For (H) the cluster DGE results compare markers previously associated with homeostatic microglia 

(Chen and Colonna, 2021) and related markers, demonstrating broad expression of some markers across multiple 

clusters (CSF1R, P2YR12), and more discrete expression of SLCO2B1, EIF4G3, TGFBR1 in microglia depleted 

in disease (INS_MIC-0). 

Supplementary Figure 3: Reproducible and shared disease associated cell types in AD compared to bvFTD and 

PSP. (A) Reproducible depletion of RORB+ NEFM+ layer 4/5 excitatory neurons is specific to AD samples and 

not observed in PSP or bvFTD in BA4, and in control samples, neurons selectively depleted in AD (BA4_EX-4) 

show higher expression of RORB compared to layer 4/5 neurons that share subclass specific marker genes but are 

not depleted in AD (heatmap showing differential expression of layer specific marker genes; bar plot showing 

differential composition of BA4_EX-4 neurons in AD, bvFTD and PSP samples vs control (LME) and bar plot 

showing differential expression of RORB in BA4_EX-4 neurons compared to BA4_EX-7 neurons in control and 

AD samples (***FDR<9e-10 corrected for 26,084 transcripts). (B) INS_IN-10 are of the same subtype as AD-

affected interneurons reported in prior work (Mathys et al., 2019) based on high differential expression of cluster-

specific marker genes compared to other INS interneurons (LME), and they are differentially enriched in AD 

samples more than PSP, bvFTD and controls (limma *p-value =0.48, Table S3). (C) Astrocytes in total robustly 

downregulate SCL1A3 in all disease conditions and brain regions, similar to what has been previously reported in 

AD (Leng et al., 2021); LME T-statistic shown, Methods). (D) Characterization of a shared disease associated 

excitatory neuronal clusters from V1 based on differential composition analysis (limma, ***FDR <0.001 with 12 

comparisons (V1_EX clusters), Table S3), differential expression of layer specific marker genes (Methods), direct 

PPI plot showing enriched gene ontology and PPI enrichment p-value (STRING, showing enrichment FDR 

corrected p-values compared to whole genome), and overlap with gene expression signatures of excitatory 

neurons present in iPSC-derived organoids generated from V337M patient lines (Bowles et al., 2021)(Fisher’s 

test, ***FDR<0.001 over 6 comparisons shown). (E) Characterization of shared disease-associated genes in 

MEIS2 interneurons (INS_IN0,6) including differential expression of marker genes (LME, normalized expression 

t-statistic, Table S2), differential composition across disorders compared to controls (limma, *FDR<0.1 corrected 
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for comparison across 11 INS_IN clusters), and genes up- and down-regulated in INS_IN-0 samples in all 

disorders (below, showing Log2FC vs controls per diagnosis group, *FDR <0.05 corrected over 10,772 genes 

(INS_IN-0) and 10,432 genes (INS_IN-6), Table S5), and their functional PPI plots showing enriched gene 

ontology and PPI enrichment p-value (STRING, showing enrichment FDR corrected p-values compared to whole 

genome).  (F) Characterization of shared disease-associated microglia including differential composition by 

disorder (limma; top, * indicates FDR < 0.05 for differential composition in all diseases vs control, corrected over 

10 INS MIC clusters) differential expression of marker genes (Log2FC vs other clusters from same brain region 

and cell type, LME; Table S2), (G) overlap of cluster-specific markers with published disease-associated 

microglia clusters defined in AD (Mathys et al., 2019) and MS (Schirmer et al., 2019) (Fisher’s exact test, FDR 

over 20 comparisons *<0.05, **<0.01, ***<0.001), (H) overlap of cluster-specific marker genes with functional 

gene perturbation class signatures (CMAP connectivity score (Subramanian et al., 2017), Methods), showing 

INS_MIC-3 specifically inversely correlated to WNT and PI3K pathway loss-of-function (LOF) and (I) disease-

associated changes in gene expression shared across disorders in INS_MIC-3 showing up-regulation of WNT and 

PI3K pathways (top 100 genes ranked by t-statistic, LME, Table S5) and functional PPI plots of significantly up-

regulated genes in disease (Log2FC > 0.2 and *FDR < 0.05 measured for each disease vs control, corrected over 

8,220 genes) showing their enriched gene ontology and PPI enrichment p-value (STRING, showing enrichment 

FDR corrected p-values compared to whole genome). 

Supplementary Figure 4 (A) Boxplot showing proportion of cells in a given cluster per cell type and brain 

region, per sample library, for clusters with differential compositions in disease cases (boxplot shows mean +/- 

quartile). (B) Marker gene expression distinguishing microglia clusters from BA4 (Log2FC vs other clusters from 

same brain region and cell type, LME; Table S2; *FDR<0.05, **FDR<0.01, *** FDR<0.001, corrected over 

1942 genes, Table S2). (C) Overlap of cluster-specific marker genes with functional gene perturbation class 

signatures (CMAP connectivity score, Methods). (D) Overlap of cluster-specific markers compared to published 

disease-associated microglia clusters defined in microglia isolated from fresh brain tissue (Olah et al., 2020) and 

AD prefrontal cortex (Mathys et al., 2019); Fisher’s test, left 27 comparisons, right 12 comparisons, as shown). 

(E) Correlation between percent BA4_MIC-4 in disease samples (vs total BA4 microglia counts) per library 

compared to sample qualitative tau neuropathology score (n = 15, samples colored by diagnosis; controls excluded 

from analysis).  (F) Functional PPI plots showing enriched gene ontology and PPI enrichment p-values of genes 

upregulated in BA4_MIC-4 in bvFTD samples (cross disorder LME, top 150 genes ranked by t-statistic, Table 

S5; STRING FDR corrected p-values compared to whole genome). (G) Differential composition of BA4 

microglia clusters in bvFTD samples compared to all other conditions (limma, *FDR=0.025 corrected over 4 

clusters).  (H) Differential gene expression in BA4_MIC-1 in bvFTD vs other conditions as indicated (LME, FDR 

corrected for 2,612 genes detected). (I) Correlation between percent BA4_MIC-1 in disease samples (vs total 

BA4 microglia counts) per library compared to sample qualitative tau neuropathology score (n = 10, controls 
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applied over number of 5 comparisons).  Regulons are ordered from left to right based on specificity score rank 

(Table S6), with highest ranking (most disease associated) TF regulons list to left. RSS ranks are as follows: 

BA4_AST for bvFTD (SOX5 (1), SOX12 (3) , NFAT5 (5), SREBF1 (38) , TCF7L2 (40)), V1_AST for PSP 

(ZMAT4 (1), NR3C1 (3), CUX2 (5), FOXP1 (38) , JUN (40)), INS_OL for bvFTD (RELA (1), NEFLE (2), ELK4 

(3), FOXN3 (57) , STAT1 (71)), BA4_OL for PSP (ATF4 (1), NFE2L1 (2), OLIG2 (3), SOX10 (4) , STAT3 (60)), 

BA4_MIC for bvFTD (IRF8 (1), RUNX1 (2), NRC31(9), IKZF1 (21) , SPI1 (24)). (D) TF regulon plot showing 

regulon target genes (edge length proportion to (1-GRN score) that are up-regulated (log2FC) in clusters in which 

they are enriched. Here nodes are colored scaled to their disorder-specific differential gene expression (log2FC, 

LME, Table S5). (E) Overlap of genes in SPI1 regulons comparing the regulon from V1 (blue) and BA4 (red) 

microglia.  SPI1 regulon genes that overlap between regions are listed at the intersection, and those that are unique 

to each brain region are shown as part of functional PPI networks. Enriched gene ontology pathways are colored 

as indicated in the legend.  The legend also shows enrichment p-values listed to the right of each GO term 

(STRING FDR corrected p-values compared to whole genome).  

Methods 

Human Tissue Samples 

Freshly frozen human brain tissue (BA4: precentral gyrus, V1: calcarine cortex, INS: insular cortex) were 

obtained from the UCSF Neurodegenerative Disease Brain Bank and University of Pennsylvania Center for 

Neurodegenerative Disease Research Brain Bank. We obtained samples from 40 total individuals, including 10 

subjects with clinical diagnosis of bvFTD and neuropathological diagnosis of Pick’s disease (FTLD-tau), 10 

subjects with clinical diagnoses of AD-type dementia and a neuropathological diagnosis of Alzheimer’s disease, 

and 11 subjects with a clinical diagnosis of PSP-RS and a neuropathological diagnosis of PSP (FTLD-tau), and 

and 10 non-demented controls, sex-matched to the patients (Table S1). All procedures involved the use of 

postmortem human brain were conducted after obtaining the written informed consent, and approved by the 

Committee on Human Research at the University of California San Francisco and University of Pennsylvania. 

IRB exemption was obtained from the UCLA IRB to authorize use of de-identified human postmortem brain 

single nuclear sequencing data in this study. Neuropathological diagnoses were made prospectively at the 

contributing brain banks following standard criteria(Mackenzie et al., 2010; Montine et al., 2012).  Of 120 

samples used as input for snRNA-seq, 118 passed nuclear isolation of which 12 failed library synthesis and 5 

were removed as sample outliers (Table S1) leaving 101 final samples. For snATAC-seq, 80 samples yielded 78 

final libraries post quality control, filtering and outlier removal (Table S1).  

 

Neuropathological scoring and brain region selection 
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Patients autopsied at UCSF underwent a standardized, semi-quantitative scoring of various pathological features 

(Table S1). These assessments were carried out prospectively, at the time of autopsy. Frozen tissue blocks were 

taken from the same regions that underwent scoring; these regions were taken from an adjacent frozen slab whose 

tissue face fell across the plane of the dissection blade from the scored region.  Scoring for neurodegenerative 

features and tau burden were carried out using methods previously described (Lin et al., 2019).  Briefly, 

morphological and immunohistochemical analyses of glial and neuronal tau pathomorphologies were performed 

in 40 regions of 13 cases with progressive supranuclear palsy (PSP), 5 with Pick’s disease (bvFTD with tau 

pathology), and 20 with Alzheimer’s disease. Nonspecific features of neurodegeneration were scored based on 

the hematoxylin and eosin stain and included microvacuolation, astrogliosis, and neuronal loss, each graded on a 

0 to 3 scale (absent, mild, moderate, severe). Tau aggregates were visualized using a monoclonal anti-phospho-

tau (pS202) antibody CP13. Pathomorphologies were assessed using the same 0-3 scale and included 

neurofibrillary tangles, Pick’s bodies, neuronal cytoplasmic inclusions, globose tangles, astrocytic plaques, tuft-

shaped astrocytes, thorn-shaped astrocytes, tau-positive threads and grains in the gray and white matter, and glial 

cytoplasmic inclusions. To analyze the pattern of tau-related pathomorphologies of the three patient groups, we 

calculated a composite score by adding tau and neurodegeneration scores. The composite score was used to 

prioritize brain regions from mild to severe stage of tau inclusions in each patient group of tauopathies. Overall, 

three cortical brain regions were selected across three patient groups to reflect selective regional vulnerability of 

tauopathies for this study, including middle insula (INS), precentral gyrus (BA4), and calcarine cortex (V1). 

Immunofluorescence  

IHC-P human brain slides were deparaffinized by being placed in a Clarity™ oven for 15-30 minutes then 

submerged in Citrasolv (Cat# c9999, Sigma) to graded ethanol washes. Primary antibodies were tagged with 

Alexa Fluor® fluorescent secondaries, Alexa Fluor™ 555 Tyramide SuperBoost™ Kit (B40923) or Opal™ 

system fluorophores (NEL861001KT). All slides were treated with 0.3% Sudan Black in 70% EtOH for 2 min to 

reduce autofluorescence before imaging. Sections prepared for Alexa Fluor™ antibodies were heated in 1x Citrate 

Antigen retrieval (Cat #c9999, Millipore Sigma) before blocking (5% Donkey serum cat#NC1697010, Fisher) 

for 1 hour at room temperature. Primary antibodies (CUX1-1:150, Cat #ab54583, abcam; S100beta-1:2000 Cat 

#ab41548, abcam; NeuN-1:100, Cat #266004) were incubated at 4°C overnight. Secondary antibodies (Donkey 

anti-mouse 488, Cat#A-21202, Invitrogen; Donkey (Dk) anti-Rabbit 555, Cat#A31572; Goat anti-guinea pig 647, 

Cat#A21450) were diluted 1:500 and incubated for 1 hour.  GPC5 staining used tyramide amplification, wherein 

sections were incubated in 3% hydrogen peroxide for 1 hour at room temperature and washed (1X PBS 

Cat#10010049, Fisher) before blocking (C2-kit) for 1 hour at room temperature. GPC5 (1:250 Cat# ab124886, 

abcam) primary incubation was followed by an HRP secondary incubation for one hour and a Tyramide 

amplification step. Sections were then stripped and reheated for 12 minutes in 1x Citrate Antigen retrieval. After 
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rinsing with 1X PBS, a blocking step (5% Dk Serum) for 1 hour followed and then a 1 hour incubation of primary 

antibodies or counterstain (Phospho-Tau (AT8)-1:100, Cat#MN1020, Fisher; nissl N-21479-1:20). Secondary 

antibodies (Donkey anti-mouse 488, Cat#A-21202, Invitrogen.) were diluted 1:500 and incubated for 1 hour. For 

ITM2B staining and quantification we used the OPAL system, wherein slides were heated in kit’s (Antigen 

Retrieval pH6) buffer and directly placed in blocking buffer after 1X PBS rinses. Each primary antibody 

incubation (ITM2B-1:200 Cat# PA5-31441, Invitrogen; Iba1-1:200, Cat# ab5076, abcam; Bioss; IBA1 (ab5076), 

and amyloid (1:200 ab201060)) was preceded by 10 minutes of kit’s blocking buffer, followed by rinses in TBST, 

10 minutes in secondary HRP and a ten minute RT incubation in respective opal fluorophore (480, 520, 570, 620, 

690) diluted to 1:100 in appropriate 1x Amp diluent. DAPI (Anti-fade Cat#H-1800-10, VECTASHIELD®) was 

used to stain the nuclei.  

 

Image Quantification 

 

All imaging and data analysis was completed in a blinded fashion.  For CUX1 quantification, images were taken 

with upright scope using Zeiss software. The number of CUX-positive and S100beta-positiveF cells were blindly 

quantified in PSP and control cases (n=5) using a series 5 randomly selected, representative regions magnified at 

20X. For ITM2B and GPC5 quantification analysis, we used the Vectra® Polaris™ microscope to scan slides 

with Opal™ system-tagged fluorophores antibodies and remaining stained sections. Using Qupath (v0.2.0-m5), 

4 images from representative 40X magnified regions were quantified to measure ITM2B positive, IBA1 positive 

cells and total number of ITM2B positive DAPI positive cells, using across AD cases (n =4). To quantity GPC5 

positive neurons, nissl staining was used to first distinguish upper vs deep cortical layers, as well as neurons. 

From a series of randomly selected images, we quantified the number of GPC5 positive neurons in layer ⅘ in AD 

and control cases (n=7,6), as well as the proportion of neurons staining for hyperphosphorylated tau (AT8). 

Single nucleus isolation  

Nuclei were prepared from 60–70mg of frozen brain tissue per sample, with all procedures carried out on ice or 

at 4°C with RNase-free reagents. Briefly, postmortem frozen brain tissue was gentle lysed in 3mL homogenization 

buffer (250mM sucrose, 150mM KCl, 30mM MgCl2, 60mM Tris, 0.01% v/v Triton X-100, 0.001% v/v Digitonin, 

0.01% v/v NP40, 1µM DTT, supplemented with 0.2U/mL RNase Inhibitor (NEB, M0314), Complete protease 

inhibitor cocktail (Roche, 11697498001)) using a Wheaton Dounce Tissue Grinder (30 strokes with pestle B). 

The lysate was filtered through a 40µm cell strainer and centrifuged at 1000xg for 8 minutes to obtain a nuclear 

pellet. To remove debris, the nuclear pellet was resuspended in 350µL homogenization buffer and 1:1 with an 

equal volume of 50% iodixanol buffer (Iodixanol 60% v/v combined with buffer of 250 mM sucrose, 150mM 

KCl, 3mM MgCl2, 60mM Tris), then layered over 600µL of 29% iodixanol buffer (Iodixanol 29% v/v combined 
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with buffer of 250mM sucrose, 150mM KCl, 3mM MgCl2, 60mM Tris) and centrifuged at 13500xg for 20 

minutes. The supernatant was discarded, and nuclei gently resuspended and washed in 1mL of 1% BSA/PBS. 

The nuclei were visually inspected to confirm complete lysis and nuclear integrity. Nuclei were manually counted 

and diluted to a concentration of 1000 nuclei/µL in 1% BSA/PBS. For single-nucleus RNA sequencing (snRNA-

seq), libraries were prepared using the Chromium Single Cell 3’ Reagent Kits (v2 for BA4 and V1, v3 for INS) 

according to the manufacturer’s protocol (10X Genomics).  For snATAC-seq, libraries were prepared using the 

Chromium Single Cell Next GEM Single Cell ATAC kit (v1.1). RNA-seq libraries were sequenced on a Novaseq 

S2 or S4 sequencer with paired end reads (read 1: 26 bp, read 2: 96 bp) targeting over 50,000 paired reads per 

nucleus.  ATAC-seq libraries were sequenced on a Novaseq S4 with paired end reads (2x50 bp) targeting 25,000 

paired reads per nucleus.   

Single nucleus RNA-seq Alignment and Filtering 

Raw single-nuclei RNA-seq data was processed using the 10X Genomics Cell Ranger (v3.0) pipeline. Reads were 

aligned to the Ensembl release 93 Homo sapiens genome. Cells were selected for downstream analysis using the 

cell barcodes associated with the most UMIs. We estimated the number of cells expected to be captured based on 

input nuclei concentration and retained this many cell barcodes for downstream analysis. Cells with < 200 unique 

genes detected were removed (gene detection: > 1 count). Cells with > 8% of their counts mapping to MT genes 

were removed. Genes detected in < 3 cells were removed. Normalization was performed using Seurat (v3.1(Butler 

et al., 2018). Briefly, raw counts are read depth normalized by dividing by the total number of UMIs per cell, then 

multiplying by 10,000, adding a value of 1, and log transforming (ln (transcripts-per-10,000 + 1)). Raw UMI 

counts data were assessed for the effects from biological covariates (clinical diagnosis, anatomical region, donor, 

age, sex), and technical covariates (RIN, PMI, library batch, number of UMI, number of genes detected, 

percentage MT). The effects of the number of UMI (sequencing depth) were removed from the read depth 

normalized expression values using a linear model. Outlier samples were identified based on abnormal 

frequencies of major cell types and divergent gene expression patterns, and were removed from the analysis 

(Table S1).  Doublet cells were removed using Doublet Finder (McGinnis et al., 2019). As doublets should be 

limited to within one sample library, each library was run independent scaling, principal component analysis, and 

clustering through Seurat.  pK was estimated using paramSweep_v3 on the first 40 principal components. The 

homotypic doublet proportion was initially estimated at 7.6% and refined through modelHomotypic.  Per-library 

doublet determination was performed using doubletFinder_v3.   

Annotation of major cell types, subtypes and states 

All samples (BA4, INS, V1; all diagnoses) were jointly clustered in Seurat (v3.1). Each cluster was then annotated 

as a major cell type using mean expression of groups of cell type marker genes.  Canonical genes were selected 
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based on mouse and human studies as well as published reference atlas enriched genes (Astrocyte 

GFAP/SLC1A2/AQP4/SLC14A1, Endothelia VWF/CLDN5/FLT1, Ependymal ARMC3/SPAG6/DNAH11, 

Inhibitory neurons GAD1/GAD2, Excitatory neurons SATB2/SLC17A7/NRGN/SNAP25, Oligodendrocyte 

MOBP/MOG/TF, Microglia CD47/CSF1R/C3, OPC VCAN/PDGFRA/CSPG4, Pericyte ACTA2/RGS5/PDGFRB, 

Lymphocyte CD247 taken from (Hodge et al., 2019; Kelley et al., 2018; Mathys et al., 2019; Sweeney et al., 

2016) also confirmed all major cell type classifications used human motor cortex reference dataset using Azimuth 

(Bakken et al., 2021), a web-based portal from the Allen Brain Atlas (https://azimuth.hubmapconsortium.org).  

Neuronal layer-specific markers were assigned based on (Lake et al., 2018). 

 

 After identification and clustering of 9 main cell types, we sub-clustered each of the 9 main cell types 

independently to identify distinct cell states within each cell-class. To maximize the influence of disorder-specific 

effects on subclustering, we performed this analysis on each brain region separately, generating 134 total clusters 

(pre-filtering . Specifically, we combined nuclei from the same major cell type and different diagnosis groups, 

and performed batch correction, data integration and subsampling using Liger (v0.4.2; with kappa = 20 and 

lambda = 0.5) (Liu et al., 2020; Welch et al., 2019).  We removed clusters that were non-representative across 

multiple subjects (with less than three libraries contributing >10 nuclei from at least one diagnostic group), low-

quality clusters based on significant association with multiple sample quality metrics (FDR <0.05, limma, number 

of gene detected per cell, sample post-mortem interval, percent_mitochondrial genes detected per cell), or 

ambiguous cell type with 30% or more nuclei in a given cell-type enriched cluster bearing markers more 

suggestive of a disparate cell type (see Table S1 for full list of filtered clusters with justification).   

 

For reference based assignment of clusters to cell classes and subclasses, cells were mapped to an external human 

motor cortex dataset (Bakken et al., 2021) using the reference-based mapping workflow described (Hao et al., 

2021).  We prefiltered our cells as recommended by the web interface: UMI count in the range [212, 33185], gene 

count in the range [201, 6486], and proportion of mitochondrial genes <= 2%. For visualization Sankey plots 

(Figure S1E) were made between our subclusters and the predicted subclusters. High gene count (nFeature_RNA 

>= 10000) and cells with low mapping scores (mapping.score <= 0.9) were filtered out. Subcluster/predicted 

subcluster links were restricted to those in the same cell type.  Clusters that did not map to reference cell type 

were discarded from further analysis (Table S1). In this way, each final cluster was assigned a reference cell class 

and subclass, as shown (Table S2, Figure 1, Figure S1-S2).  Finally, to organize subclusters into related cell types, 

subtypes and states across all brain regions and diagnoses groups, we performed hierarchically clustered based 

on their marker genes, and then jointly annotated based on marker gene expression and reference cell type 

assignments.  First, for each cluster, we calculated cluster-specific marker gene expression by performing 

differential gene expression to compare each cluster with all other clusters of the same cell type and brain region.  

Genes were filtered using a minimum proportion, keeping only genes detected in 10% or more of cells per cell 
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type x brain region group.  Differential gene expression (DGE) was calculated based on mixed effects model used 

lmerTest::lmer (Kuznetsova, 2017) with formula expression ~ clinical_dx + pmi + age + sex + number_umi + 

percent_mito + (1 | library_id).  To complete hierarchical clustering across brain regions, we then filtered DGE 

lists to genes detected in each region.  We then used the estimate terms (beta) for the top 100 genes per cluster 

based on DGE results for all regions, sorted by the cross-region variance. The top 100 most variable genes were 

used to compute a Euclidian distance matrix (stats::dist) and complete-linkage hierarchical clustering 

(stats::hclust) using default parameters. Groups of clusters were annotated based on shared marker genes.  

Reference-based cluster assignment results from Azimuth were overlaid manually to the hierarchical clustering 

framework to assign cluster groups to reference cell type and subtypes based on high confidence matches where 

>70% of cells of a cluster assigned to the same reference cell type (Table S2, Figure 1G, Figure S1-S2).    

Cell type composition analysis 

Cluster composition was defined as the proportion of cells in a given cluster relative to the total number of cells 

of that major cell class and brain region, per subject. To measure cell type composition across subjects and 

diagnosis groups, cluster composition percentages were used as pseudobulk counts, forming a cluster by subject 

count matrix for each major cell type and brain region. The matrix was normalized using TMM (Robinson and 

Oshlack, 2010) and Limma-voom (Law et al., 2014), then fit on model formula ~0 + dx + pmi + age + sex + 

mean_percent_mito + median_genes. T-statistics were calculated using eBayes (Smyth, 2005) and FDR-adjusted 

p-values were reported. For various analyses as reported, we then measured and reported different contrasts 

between samples, such as for one diagnosis versus control samples, all disease versus control samples, or one 

diagnosis versus all other samples. For selected clusters of interest, to correlate cluster counts with variation in 

neuropathology and tau scores across subjects (Table S1), we measured the Pearson’s correlation and p-value 

between cluster count proportion and neurodegeneration and tau score per subject across disease samples. Control 

samples were excluded because their tau and neuropathology scores were either zero or unmeasured. 

 

Cross disorder differential gene expression  

 

Differential gene expression for each diagnosis group was calculated using a linear mixed effects model.  Counts 

for all cell type within a brain region were derived from the Seurat counts matrix (Methods, Single nucleus RNA-

seq Alignment and Filtering).  To assess DGE by diagnosis within a given cluster, we subset the normalized 

counts to cells from that cluster to generate a per-cluster cell by gene counts matrix. Genes were then filtered 

using a minimum proportion, keeping only genes expressed in at least 10% of cells within any condition, 

calculated independently per cluster.  We then calculate differential gene expression using a linear mixed effects 

model (LME) using lmerTest::lmer (Kuznetsova, 2017) with model formula ~ clinical_dx + pmi + age + sex + 
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number_umi + percent_mito + (1 | library_id).   Resulting p-values were then FDR-adjusted across the number 

of genes measure in the DGE analysis.  Depending on the experiment, different contrasts were used to measure 

DGE by disease.  In some cases we contrasted one disease group, such as AD, with samples from all other 

diagnosis groups (such as PSP, bvFTD and control).  In other cases, we generated one combined linear model to 

measure the effect on gene expression of each diagnosis group, contrasting each diagnosis with control 

(expression ~ clinical_dx+ pmi + age + sex + number_umi + percent_mito + (1 | library_id)).  

 

In several instances, as indicated in the text and figures (Figure 3K, Figure 4B,G,I, Figure S7C, Table S5)  we 

used LME to measure differential gene expression between two specific clusters, within only samples of one 

disease samples (for example, comparing gene expression of INS_EX-2 vs INS_EX-5 in bvFTD cases, or between 

layer 2-4 vs layer 5-6 excitatory neurons). We subset the normalized counts matrix to only those only cells 

assigned to the cluster or cell subtypes and being compared (such as INS_EX-2 and INS_EX-5) and to only the 

libraries of the disease group of interest (such as bvFTD).  As before, genes were then filtered using a minimum 

proportion, keeping only genes expressed in at least 10% of cells.  The cells were subset to form two levels of a 

contrast labeled custom_split. We calculate differential gene expression on the counts matrix using a linear mixed 

effects model (LME) using lmerTest::lmer (Kuznetsova, 2017) with formula expression ~ custom_split + pmi + 

age + sex + number_umi + percent_mito + (1 | library_id).   Resulting p-values were then FDR-adjusted across 

the number of genes measure in the DGE analysis. 

Gene regulatory network analysis  

We used a modified version of the SCENIC (Single-Cell rEgulatory Network Inference) approach (Aibar et al., 

2017) for constructing GRNs from single-cell RNaseq data. Briefly, SCENIC contains three steps: (1) identify 

co-expression modules between TF and the potential target genes; (2) for each co-expression module, infer direct 

target genes based on those potential targets for which the motif of the corresponding TF is significantly enriched. 

Each regulon is then defined as a TF and its direct target genes; (3) the RAS in each single cell is calculated 

through the area under the recovery curve. We performed this analysis on four cell types (excitatory neurons, 

oligodendrocytes, astrocytes, microglia) from each brain region (INS, BA4, V1), using final cell clusters post-

quality control, outlier removal, regression and normalization in Seurat (Butler et al., 2018). On disease and 

control cells combined, and for each cell type and brain region, we ran SCENIC. We first filtered genes to those 

expressed in at least 5% of cells. We then subsampled from each library to draw a similar number of cells from 

each library and disorder for the analysis.  To achieve this, we sampled at the 15% decile range of counts across 

samples, and then performed stratified random sampling to keep this decile range of cells from each sample.  

Stratified random sampling starts off by dividing a population into groups with similar attributes. This method 

was used to ensure that different segments in a population are equally represented.  We then applied the SCENIC 
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package algorithm in R (https://github.com/aertslab/SCENIC) to generate gene regulatory networks and activity 

scores of every regulon in each cell type. To compare regulon activity across disorders, we used Shannon entropy 

algorithm described in (Suo et al., 2018) to quantify regulon specificity scores (RSS) for each regulon for each 

disease condition. Briefly, this analysis quantifies the differences between two probability distributions, scored 

from 0 to 1. The essential regulators are predicted to be those with the highest specific scores. This application 

has been used previously to define cell type specific regulons.  Therefore, we first confirmed that our entropy-

based scores reproduced known cell type specific TFs, by comparing microglia to all other cell types and 

observing top ranked microglia specific TFs to include RUNX1 and SP11 (Figure S6A-B), which are two known 

core microglial transcriptional regulators. We then modified this application to assign a specificity score for a 

regulon for each disorder (Figure 5-6).  

snATAC sequencing and data analysis  

 

Nuclei were extracted as above simultaneously (BA4, INS) with 78 samples subjected to snRNA-seq balanced 

by age, PMI and cause of death (n = 8 – 11 per diagnosis and region pair as shown in Table S1). Libraries were 

aligned to reference genome with 10X Genomics software, Cell Ranger (cellranger-atac count; 

https://support.10xgenomics.com/single-cell-atac/software) then all libraries were aligned together using the 

cellranger-atac aggr function. We used ArchR version 1.0.2 (Granja JM, Corces MR et al. 2021) to filter out low 

quality cells through nucleosome banding score < 4, TSS < 2, minimum fragments < 1000, and blacklist region 

ratio > 0.1. We additionally dropped low-quality samples P1_7at1_7, I3_6_at, and I1_7 (Table S1), leaving  

141038 AD, 136732 PSP, 145106  bvFTD and 152369 control high quality cells from each dataset.  

 

We normalized with ArchR’s iterative Latent Semantic Indexing and Harmony batch correction on the sequencing 

and preparation batches. Clustering was performed using the Seurat clustering algorithm with resolution = 0.8 to 

generate 23 clusters. To annotate the clusters we first created a gene activity score matrix where gene expression 

levels are roughly computed from fragment counts within gene body elements. We then used the snATACseq 

gene activity matrix to integrate with our fully annotated snRNAseq clusters through Seurat’s 

‘FindTransferAnchors’ function.  We then used spearman correlation to assess how closely related the cluster- 

specific marker gene profiles from the snATACseq clusters (from the gene activity matrix) with our snRNAseq 

cluster marker gene profiles.  This identified two snATAC-seq clusters corresponding to excitatory neurons (C2) 

and microglia (C7), which we used for further analysis. 

 

Peak calling and prediction of TF activity in snATAC-seq data  
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We merged reads from individual cells of snATAC clusters by disease condition and brain regions. Pseudo-bulk 

replicates were further created in ArchR using customized parameters to ensure balanced number of cells for all 

pseudo-replicates (ArchR::addGroupCoverage, minCell = 950, minRep = 4). Peak calling was performed using 

macs2 (https://github.com/macs3-project/MACS) in ArchR (Granja et al., 2021), resulting in a reproducible, non-

overlapping peakset (ArchR::addReproduciblePeakSet). Differential accessible peak regions were determined by 

pair-wise comparisons of chromatin accessibility between disease and control cells. We identified significant TFs 

sourced from our SCENIC analysis and JASPAR via ArchR wrappers (addBgdPeaks, addDeviationsMatrix) for 

chromVAR (Schep AN, Wu B, Buenrostro JD and Greenleaf WJ, 2017), selecting TF motifs that were correlated 

with significant deviations in chromatin accessibility. To infer transcription factor activity, we performed TF 

footprinting analysis on peak regions differentially accessible in each disease using TOBIAS(Bentsen et al., 

2020), as described in our previous study (Tian et al., 2022) (Wamsley et al., 2023 biorxiv) This method starts 

with Tn5 bias correction using the TOBIAS ATACorrect module, subtracting the background Tn5 insertion cuts 

highlighting the effect of protein binding. To match footprints to potential TF binding sites, and to estimate TF 

binding activity on its target loci, we applied TOBIAS BINDetect module to the corrected ATAC-seq signals 

within peaks, with TF motif PWMs used in TRASFAC Pro. Many transcription factors are represented by more 

than one motif. To avoid motif redundancy, we clustered the motifs based on their sequence similarity using 

TOBIAS ClusterMotifs, and chose one motif per TF that is most similar to others in the same cluster TOBIAS 

BINDetect compares the positions and activities of TF footprinted sites in disease or control per clusters. Each 

footprint site was assigned a log2FC (fold change) between two conditions, representing whether the binding site 

has larger/smaller TF footprint scores in comparison. To calculate statistics, a background distribution of footprint 

scores is built by randomly subsetting peak regions at ~200bp intervals, and these scores were used to calculate a 

distribution of background log2FCs for each comparison of two conditions. The global distribution of log2FC’s 

per TF was compared to the background distributions to calculate a differential TF binding score, which represents 

differential TF activity between two conditions. A P-value is calculated by subsampling 100 log2FCs from the 

background and calculating the significance of the observed change. By comparing the observed log2FC 

distribution to the background log2FC, the effects of any global differences due to sequencing depth, noise etc. 

are controlled. To visualize, we used soGGI to plot TF footprints, and bar graphs to show the global TF footprint 

activity changes comparing disease versus control.  

Protein-Protein Interaction and Gene Ontology Analysis  

To assess and visualize protein-protein interactions among module genes, we used STRING (version 11.5; 

(Szklarczyk et al., 2017)) with the following setting (organism: Homo sapiens for human data; meaning of 

network edges: confidence; active interaction sources: experiments and databases; minimal required interaction 

score: high confidence, max number of interactors to show: none; we reported either full STRING networks 
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indicating edges representing both functional and physical protein associations, or physical STRING networks 

indicating only physical protein interactions based on databases, as indicated in Figures and Figures Legends).  

Protein-protein interaction enrichment p-values were reported as generated by STRING.  Gene ontology 

enrichment represented within protein-protein interaction networks were prioritized and displayed along with 

their geneset enrichment FDR corrected p-values as generated by STRING, using whole genome as the default 

background.  Data was exported and visualized using the Cytoscape software (Saito et al., 2012). 

Connectivity Map (CMAP) Analysis  

For a given module, the top 100 module genes (ranked by T-statistic, LME) were used as input for the QUERY 

app in the Broad’s CMAP database, version CLUE (Subramanian et al., 2017). This signature was used to query 

7,494 gene overexpression or knockdown experiments carried out across 9 cell lines for similar (positive 

connectivity score) or opposite (negative connectivity score) effects on gene expression signatures, incorporating 

Kolmogorov-Smirnov statistics (a nonparametric, rank-based pattern-matching strategy) as 

described(Subramanian et al., 2017). Per the CMAP website (https://clue.io), for each module-perturbagen pair, 

the connectivity score (tau) is a standardized percentile score that compares the similarity of the query geneset to 

the perturbagen compared to all other reference genesets in CMAP; such that 95 indicates that 5% of reference 

genesets show stronger connectivity to the perturbagen than the query dataset. For our analysis, we used the mean 

“connectivity scores” which is calculated from the combining data generated independently in 9 cell lines. 

AD GWAS risk variant enrichment    

Summary statistics for genome-wide association studies for AD (Lambert et al., 2013) were used as an input for 

MAGMA (v1.08bb) (de Leeuw et al., 2015) for gene annotation to map SNPs onto genes (with annotation window 

= 20) and the competitive gene set analysis was performed to test module associations with GWAS variants 

(permutations = 100,000). Genesets analyzed included marker genes of differentially disease enriched clusters 

(LME, T-statistic>2); as indicated in the text or accompanying figure legends.  FDR correction was applied across 

competitive p-value outputs from MAGMA for all genesets tested. 

Module enrichment 

 

We implemented a Fischer's exact test for geneset enrichment analysis.  We compared cluster-specific and DGE 

by disorder (Log2FC > 0.2 in one disease vs all others, LME, see above section) with genes assigned to TF 

regulons by SCENIC (see Table S6).  To compare cluster-specific marker gene expression (T-statistic >2, LME, 
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see above section) to published disease-associated cell types and markers, we used published genesets and 

markers shown in Table S3.  

 

Unless otherwise stated all statistical test were run using R (4.1.0). P-values are reported with post-hoc FDR for 

multiple testing correction.   

 

Supplementary Information 

 

Supplementary Tables 1:  Sample metadata 

Supplementary Tables 2:  Cluster Marker Genes 

Supplementary Table 3: Differential Composition 

Supplementary Table 4: Comparison with Published Clusters 

Supplementary Table 5: Cluster-specific Differential Gene Expression 

Supplementary Table 6: Gene Regulatory Networks 

Supplementary Table 7: Chromatin Analysis 

 

Data Availability  

Data will be deposited for public use at publication.  Data will be made available for review. 

Code Availability  

https://github.com/rexachgroup/snseq_nd_liger/ 
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