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Psychedelics are drugs which have lysergic 
acid diethylamide (LSD)- like actions that 
alter perception, emotion and cognition 
without impairing memory or inducing 
delirium1. LSD is the prototypical psyche-
delic drug and produces a state of altered 
consciousness including prominent visual 
distortions, hallucinations and states of 
‘oceanic awareness’. The term ‘psychedelic’ 
was coined by Osmond in 1957 (ref.2) and 
is now defined as a drug that induces an 
LSD- like effect via activation of 5- HT2A sero-
tonin receptors. Such LSD- like psychedelics 
include numerous natural products such as 
N,Nʹ- dimethyltryptamine (DMT), psilo-
cybin, mescaline and various lysergamides3 
(fig. 1). Other hallucinogenic natural pro-
ducts, such as the indole alkaloid ibogaine4 
and the diterpene salvinorin A5, induce 

pre- Columbian Mesoamerica10. In Western 
civilization, Heffter identified mescaline 
as the active ingredient of the psychedelic 
cactus Lophophora sp. in the 1890s11,12, 
whereas LSD was rediscovered by Hoffman 
in 1945 (ref.7). Wasson was one of the first 
Western scientists to report on the properties 
of psilocybin- containing mushrooms13 and 
the first to report on the effects of salvinorin 
A- containing plants14. Throughout the 1950s 
and 1960s there was considerable research 
on psychedelic drugs as potential adjuvants 
to psychotherapy for various conditions 
including depression and alcoholism (see 
for example ref.15). This trajectory of early 
psychedelic research explains, in part, 
how our understanding of the biology of 
neuropsychiatric conditions is convoluted 
with our understanding of the molecular 
mechanisms of drugs that impact the psyche. 
Early hypotheses on neuropsychiatric 
disorders were driven by experiments 
with psychedelic drugs that mimicked 
or ameliorated established symptoms16. 
As such, LSD and other psychedelics were 
originally annotated as ‘psychotomimetics’ 
for their ability to induce altered states of 
consciousness that shared some observable 
qualities with psychoses17.

It was clear in the 1950s that psychedelic 
drugs such as LSD affected serotonergic 
function and neurotransmission18,19, 
although it was not until the 1980s that a 
specific serotonin receptor subtype was 
determined to be the likely molecular target 
for psychedelic drugs20,21. Legislation to 
control the use and study of psychedelic 
drugs (Box 1) may have hindered research. 
Despite these restrictions, a large 
number of psychedelic drugs have been 
synthesized based on the general scaffolds 
shown in fig. 1, especially among the 
phenethylamine22,23 and tryptamine3,24,25 
families. However, insufficient chemical 
diversity in compounds acting via the 
receptors known to underlie psychedelic 
drug actions has been generated to enable 
the kind of careful molecular pharmacology 
necessary to investigate the links between 
the drug mechanisms of action and the 
behavioural responses observed (both 
therapeutic and otherwise).

Renewed interest in the therapeutic 
potential of psychedelic drugs was becoming 
apparent in the mid-2010s. Some of the 

altered states in humans distinct from those 
caused by LSD- like psychedelic drugs6 and 
are not discussed in detail here. In addition 
to naturally occurring psychedelics, a large 
number of synthetic and semi- synthetic 
drugs include ergolines such as LSD7, 
various phenethylamines, tryptamines3, 
N- benzyl phenethylamines8 and others3. 
Thus, both naturally occurring and psyche-
delic compounds are represented by several 
chemical scaffolds (fig. 1).

Historically, psychedelic plants and  
fungi have been used for millennia by 
humans (fig. 1) for various purposes 
(as evidenced by their depictions in murals9 
and other artefacts) from between 3,000 and 
5,000 years ago10 across a wide variety 
of cultures3. There is extensive evidence 
for their use by indigenous cultures in 
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earliest studies found significant positive 
effects with the use of psilocybin and 
guided therapy for anxiety and depression 
associated with life- threatening cancer. 
Subsequently, multiple trials have been 
completed or are in progress examining 
the potential therapeutic effects of 
psychedelic- adjuvanted therapy on other 
conditions, such as treatment- resistant 
mood disorders and substance abuse. In this 
Perspective, we review the current state of 
knowledge about the molecular mechanisms 
of action and critical receptor targets of 
psychedelic drugs, as well as the potential 
for the development of novel therapeutics 
based on those mechanisms and targets in 
the central nervous system. As psychedelic 
drugs represent a specific class, we will focus 
on their targets and associated mechanisms, 
and will not consider the ongoing studies 

with MDMA or other drugs which also can 
cause alterations in perception but are not 
considered to be psychedelic.

Basic science of psychedelics
Given the large number of molecular targets 
engaged by LSD and related psychedelics, 
it is perhaps surprising that, to date, only one 
molecular target has emerged as mediating 
psychedelic- like drug effects in humans and 
animals — the 5- HT2A serotonin receptor3. 
It is well appreciated in behavioural 
pharmacology that psychoactive drugs 
produce phenotypes in animal models that 
only partially capture the effects observed 
in humans. This is particularly true for 
the psychedelic compounds, where the 
subjective perception and interpretation 
of the experience play major roles in both 
the acute and enduring effects. Moreover, 

the complex polypharmacology of 
psychedelic drugs makes direct comparisons 
and mechanistic inferences challenging. 
That said, evidence from structural studies is 
emerging that activation of 5- HT2A receptors 
by psychedelics is capable of modulating 
multiple signalling pathways by virtue of 
interactions within the receptor binding site. 
Such actions likely underlie the observed 
impact of psychedelics on synaptic plasticity 
and spine dynamics.

Psychedelic receptor pharmacology.  
Virtually all classical psychedelic drugs have 
a complex in vitro receptor pharmacology. 
For instance, LSD has agonist activity 
at 12 of the 14 human 5- HT receptors (for 
example, 5- HT1A, 5- HT1B, 5- HT1D, 5- HT1E, 
5- HT1F, 5- HT2A, 5- HT2B, 5- HT2C, 5- HT4, 
5- HT5 and 5- HT6)26–30. LSD is an antagonist 
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Fig. 1 | Historical timeline of key events in psychedelic science. Early 
ethnobotanical studies described use of naturally occurring psychoactive 
substances in various rituals and other practices, dating back thousands of 
years. Compounds such as mescaline from peyote cactus, psilocybin from 
various species of Psilocybe fungi and N,Nʹ- dimethyltryptamine (DMT) in the 
multicomponent cocktail ayahuasca are ‘archetypal’ psychedelics with a 
long history of ascribed effects in humans. From the 1940s to the 1970s, 
more modern synthetic and medicinal chemistry efforts produced lysergic 
acid diethylamide (LSD) as well as several other psychedelic drugs based on 
phenethylamine (such as 2,5- dimethoxy-4- methylamphetamine (DOM)) and 
tryptamine scaffolds typified by mescaline and psilocybin, respectively.  

In 1963, the head twitch response (HTR), a behaviour in rodents caused by 
5- HT2A receptor activation, was developed as an important surrogate for 
psychedelic activity in animal studies. The late 1970s through the early 
2000s introduced radioligand binding approaches to identify and quantify 
the neurotransmitter receptors engaged by LSD and other psychedelics. 
Subsequent studies with fluorescence microscopy helped localize these 
receptors to specific subpopulations of neurons in various brain regions. 
Most recently, advanced structural biology approaches have yielded atom- 
scale resolution of psychedelic drug- bound 5- HT2 family receptors, enabling 
a fine- grained assessment of how these drugs engage their targets and what 
signalling pathways are responsible for their effects. TBG, tabernanthalog.
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at the 5- HT7 receptor27 and inactive at the 
5- HT3 receptor31. LSD is also an agonist 
for α1 and α2- adrenergic receptors and for 
all five dopamine receptors (D1, D2, D3, D4 
and D5 dopamine receptors)27,29,30. LSD and 
other psychedelics have also been shown to 
activate TAAR1 trace amine receptors30,32 
(fig. 2). Similarly, psilocin (the active 
metabolite of psilocybin), mescaline, DMT 
and their analogues have potent activity at 
many serotonin and other biogenic amine 
receptors26,28,33,34. By contrast, the N- benzyl 
phenethylamines have a more restricted 
pharmacology with their most potent 
agonist activities at 5- HT2 family receptors28, 
with 25CN- NBOMe being very selective 
for 5- HT2A receptors35,36. Non-psychedelic 
hallucinogens do not activate 5- HT2A 
receptors. Salvinorin A, for example, is 
a potent and selective κ- opioid receptor 
hallucinogenic agonist37, whereas ibogaine 
is a weak partial κ- opioid hallucinogenic 
agonist with serotonin transporter inhibiting 
activity38.

5- HT2A receptor: a canonical target. Within 
the 5- HT2 receptor family, psychedelics are 
generally non- selective agonists at 5- HT2A, 
5- HT2B and 5- HT2C receptors26,29,35,39–41. 
As mentioned above, it has long been known 
that activation of the 5- HT2A receptor is 
essential for psychedelic drug actions20,21,42–44. 
5- HT2A receptors are expressed in several 
cortical and subcortical regions45, and are 
concentrated in layer V cortical pyramidal 
neurons where they are localized to the 
apical dendrites46,47 (fig. 3). Activation 
of 5- HT2A receptors by psychedelics in 
layer V cortical neurons enhances their 
excitability48, presumably leading to the 
psychedelic experience. To mediate these 
actions, a 5- HT2A receptor transduces 
its signal via a complicated network of 
signalling (fig. 3) which initially relies on 
activation of Gq- family G proteins to induce 
phosphatidylinositol-4,5- bisphosphate 
hydrolysis and the liberation of inositol 
trisphosphate (IP3) and diacylglycerol 
(DAG)49–51. In neurons, this leads to 
an enhancement of excitability and 
neurotransmitter release48,52. 5- HT2A 
receptors also interact with arrestins53–55, 
and both arrestin- dependent and arrestin- 
independent pathways have been linked to 
psychedelic drug actions35,56–58. Intriguingly, 
LSD and several psychedelic drugs display 
arrestin- biased signalling at 5- HT2A 
receptors40,55,59.

Although there appear to be many 
features shared between rodents and humans 
with regard to 5- HT2A receptor signalling, 
there are differences. One of the most 

important distinctions is the species- specific 
amino acid difference at residue 242 in 
the binding pocket for LSD and related 
psychedelics35 between the rodent (Ala) 
and human (Ser) 5- HT2A receptors60 
(fig. 4). Because of this difference, many 
hallucinogenic tryptamine and ergolines 
have reduced potencies at the rodent 5- HT2A 
receptor60. This is potentially important 
because a Ser242Ala mutation in the 
human 5- HT2A receptor greatly attenuates 
the receptor residence time of LSD due to 
a specific interaction between LSD and 
Ser242 (ref.35). Given that Ser242 is the only 
residue in the 5- HT2A binding pocket which 
is unique to the human 5- HT2A receptor, 
drugs targeting 5- HT2A receptors may be 
expected to have different pharmacodynamic 
properties when tested in rodent models of 
psychedelic drug actions.

The off- target actions of psychedelics 
at 5- HT2B and 5- HT2C receptors engender 
potential therapeutic pitfalls. For instance, 
drugs with potent 5- HT2B agonism induce 
life- threatening valvular heart disease in 
humans61,62 when chronically administered. 
Thus, several anorectic drugs (fenfluramine, 
benfluorex)63,64, various ergots (ergotamine, 
methysergide)65,66 and some medications 
used to treat Parkinson disease67 share a 
common mechanism by the parent drug  
(or active metabolites) in potently activating 
5- HT2B receptors61. Relevant to this is the 
observation that chronic administration 
of MDMA, which also can activate 5- HT2B 
receptors68, has been associated with 
valvular heart disease in humans69–71. 
It is currently unknown whether chronic 
administration of psychedelic drugs, as may 
occur with microdosing, increases the risk 
of valvular heart disease. As 5- HT2C agonists 
induce anorexia72,73, the agonist actions 
of psychedelics at 5- HT2C receptors could 
explain why diminished appetite has been 
reported in clinical trials74. A final possible 
liability of psychedelic drugs as a class 
relates to their potential for inducing the 

occasionally fatal serotonin syndrome when 
co- administered with other serotonergic 
drugs including serotonergic antidepressants 
and anti- migraine medications75–77. 
Serotonin syndrome, broadly defined, is a 
collection of symptoms typically involving 
changes in mental, musculoskeletal and 
autonomic functions caused by excessive 
activation of serotonin receptors in multiple 
body systems75–77.

Behavioural model studies. There are two 
major behavioural paradigms that are 
repeatedly cited as surrogates of psychedelic 
drug action in animal models: two- 
lever drug substitution and the head twitch 
response (HTR)78 (Box 2). Drug substitution 
is a useful paradigm for the comparative 
assessment of dose- dependent subjective 
drug effects and has been well validated for 
establishing which drugs are more or less 
‘LSD- like’ and which receptor families are 
necessary for those actions79. Early drug 
discrimination studies in rodents showed 
that several psychedelic compounds were 
capable of fully substituting for others, 
whereas other psychoactive substances 
were not80–82. These studies were augmented 
by the discovery of drugs that modified 
5- HT signalling, including 5- HT receptor 
subtype- selective antagonists. Drug 
discrimination studies that used subtype- 
selective antagonists in combination 
with psychedelics were among the first to 
establish that the 5- HT2A receptor20,83–85 was 
a common factor involved in the properties 
of LSD and other psychedelics84. Moreover, 
there is a linear correlation between binding 
affinity for cortical 5- HT2A receptors and 
stimulus generalization in rats86, indicating 
that a direct relationship exists between 
the extent of 5- HT2A receptor occupancy 
and the effective dose that produces 
discriminative effects.

The HTR is another rodent behaviour 
originally demonstrated to be stimulated 
by LSD87 and later shown to be a response 

Box 1 | The controlled substances Act

Psychedelic drugs were made illegal in the United States and other countries in the latter half of 
the 1960s and early 1970s. In the United States, the 1970 Controlled Substances Act established 
certain regulatory and law enforcement oversights on the study and use of drugs. According to  
the Controlled Substances Act, drugs are listed in different categories (Schedules) based on the 
existence of any therapeutic utility and their abuse liability; drugs listed in Schedule I are viewed  
as those substances with the greatest risk for abuse and the least indicators of therapeutic activity. 
Most psychedelic drugs fall under Schedule I, and the Controlled Substances Act imposes formal 
restrictions on the use of federal funds to support research if it promotes their legalization without 
demonstrating therapeutic benefit. The impact of this legislation imposed certain specific barriers 
for research (for example, the need for investigators to acquire and maintain a separate Schedule I 
substances license), as well as more diffuse ones (for example, resulting from ambiguity over what 
constitutes research that ‘promotes legalization’). Such restrictions are likely to have slowed the 
pace of research on the therapeutic potential of psychedelics.
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induced by many other psychedelic 
drugs88,89. The involvement of the 
5- HT2A receptor was indicated by a strong 
correlation between the potencies of 
drugs for 5- HT2A receptor binding and 
the induction of the HTR20,21. Subsequent 
studies showed that the HTR to psychedelics 
was abolished in transgenic mice that 
lack 5- HT2A receptors (5- HT2A receptor 
knockouts)33,42. Taken together, these 
studies supported the hypothesis that 
the 5- HT2A receptor mediates the actions 
of psychedelics in rodents, at least to 

the extent of those reliable phenotypic 
measurements. In subsequent human 
studies, several well- controlled experiments 
have demonstrated that pretreatment with 
the 5- HT2A- preferring (that is, a drug that 
has highest affinity for, but is not selective 
for, 5- HT2A receptors) antagonist ketanserin 
blocks the psychedelic actions of LSD90,91 
and psilocybin44,92.

It is clear that 5- HT2A receptors represent 
the main molecular target for psychedelics, 
even though animal studies have shown 
that both psychedelic and non- psychedelic 

drugs can modify so- called ‘classical’ 
models of psychedelic drug- like actions. 
Moreover, although the HTR has long 
been used to profile psychedelic drugs 
in rodent models, the non- psychedelic 
compounds 5- hydroxytryptophan, 
tryptamine and serotonin induce robust 
HTR responses57,93,94. Additionally, some 
psychedelic drugs such as DMT induce 
modest 5- HT2A- dependent HTR responses33. 
On the other hand, the non- psychedelic 
drugs lisuride and ergotamine, which are 
structurally and pharmacologically similar to 
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LSD, do not induce robust HTRs in mice42. 
Thus, although there is a linear correlation 
between drug potencies for inducing HTR 
and the in vivo hallucinogenic doses in 
humans2, the magnitude of the HTR and 
whether a drug induces HTR is not, by itself, 
definitive evidence that a drug will have 
psychedelic drug- like actions in humans. 
Furthermore, the structural differences 
between rodent and human 5- HT2A 
receptors may complicate the interpretation 
of both negative and positive findings for 
this and other behavioural assays.

For instance, psychedelics have also 
been shown to modulate other rodent 
behaviours including retrograde walking, 
nose- poking and locomotion, to name just 
a few95, although the specificity of these 
behaviours for psychedelics has not been 
conclusively demonstrated. Similar to other 
psychotomimetic drugs, psychedelics also 
disrupt measures of sensory- motor gating 

such as pre- pulse inhibition in both humans 
and rodents95. Intriguingly, psychedelic 
drug- induced alterations in pre- pulse 
inhibition are attenuated in mouse models 
in which 5- HT2A receptors cannot interact 
with synaptic scaffolding proteins96,97. 
These results indicate that not only are 
5- HT2A receptors involved in these actions 
of psychedelics but also that a specific 
synaptic complex is essential for their 
effects. Importantly, disruption of pre- pulse 
inhibition by psychedelics is blocked by 
specific 5- HT2A antagonists in both mice 
and humans95.

Induction of spine formation. Recently, we98 
discovered and others99,100 confirmed that 
psychedelics can alter synaptic plasticity 
by enhancing dendritic spine formation on 
cortical neurons in vitro and in vivo (fig. 3) 
by activating 5- HT2A receptors. Furthermore, 
we have found that many of the biochemical 

and behavioural actions of psychedelics 
are dependent upon 5- HT2A receptor 
interactions with synaptic scaffolding 
proteins that are enriched in dendritic 
spines and post- synaptic densities93,97,98. It is 
also well established that non- psychedelic, 
albeit clinically effective, antidepressants 
also induce spine formation and synaptic 
plasticity101–103 and that this appears 
essential to their actions103. Taken together, 
these findings have supported a model for 
therapeutic actions of psychedelics that 
converge upon processes which enhance 
synaptic plasticity.

Insights from structural studies. Given 
the centrality of the 5- HT2A receptor 
for psychedelic drug actions, key to 
understanding their mechanism of action 
is to reveal how they interact with and 
activate 5- HT2A receptors. Recently both 
X- ray and cryogenic electron microscopy 
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studies have elucidated the modes of 
binding and activation of 5- HT2A and related 
receptors by LSD35,55 and the synthetic 
psychedelic 25CN- NBOMe35. The X- ray 
structures provided insights into how LSD 
interacts with 5- HT2A receptors whereas the 
cryogenic electron microscopy structures 
clarified the mechanisms responsible for 
psychedelic-induced receptor activation 
(fig. 4). To address controversies regarding 
which G proteins interact with 5- HT2A 
receptors, an unbiased examination of 
G protein coupling104 revealed interaction 
principally with Gq- like G proteins (for 
example, Gq, G11 and G15) and minimal 
interactions with other G protein subtypes35. 
An examination of the structure revealed 
the determinants for selective engagement 
of Gq, verifying the hypothesis that 5- HT2A 
receptors appear to selectively interact with 
Gq- like G proteins35.

The structures also revealed a potential 
molecular mechanism for the long- lasting 
effects of LSD in humans. Here, it was found 

that in the LSD- complexed receptors, a ‘lid’ 
was formed over the binding pocket that 
greatly slows the dissociation of LSD from 
the receptor35,55. This specific interaction 
between the diethylamide moiety of LSD 
and Leu229 in extracellular loop 2 (EL2) 
of the 5- HT2A receptor emerged as one key 
driver for LSD’s long residence time in the 
receptor55. An additional 5- HT2A- specific 
interaction with the human- specific residue 
Ser242 also mediates the slow kinetics of 
LSD dissociation from the human receptor35.

Insights into how LSD and related drugs 
stabilize an arrestin- bound receptor complex 
were also provided by the structural studies. 
Again, the slow dissociation rate of LSD 
facilitated by interactions with Leu229 is key 
for arrestin interactions which occur with 
prolonged receptor binding55. Additionally, 
a 5- HT2A residue which interacts directly 
with Gq is key for specifying Gq versus 
arrestin interactions35. As differential 
interactions with G proteins and arrestins 
have been postulated to be important 

for psychedelic drug actions40,55,59, these 
studies could provide templates for future 
structure- guided drug discovery efforts.

The mechanisms by which non- 
psychedelic hallucinogens interact with 
their targets have also been clarified by 
high- resolution structures. Structures of 
activated κ- opioid receptors which mediate 
the actions of salvinorin A105 have been 
reported. Also, a structure of ibogaine 
complexed with the serotonin transporter 
has clarified its molecular mechanisms of 
action at this target106.

There has been a great deal of work 
conducted that indicates 5-HT2A receptors 
are necessary for many of the observable 
phenotypic effects of psychedelic drugs, 
both behaviourally and molecularly. 
Despite the polypharmacology inherent 
in many (if not all) known psychedelic 
drugs, the 5- HT2A receptor has emerged 
as a key enabler of their potent effects 
on perception and consciousness. As 
the majority of available model systems 
provide limited proxy measurements for 
very complex physiological processes, 
there is clearly a need to develop new tools 
for a careful mechanistic interrogation of 
5- HT2A receptor activation to determine the 
sufficiency of that receptor’s actions in the 
phenotypic responses observed. More work 
must also be done on building chemical 
probes with selective receptor engagements 
and potencies to dissect the effects that are 
critical for therapeutic efficacy and ascertain 
whether they can be isolated from the 
other effects.

Psychedelics as therapeutics
Over the past several years there has been 
tremendous interest in re- examining the 
potential of psychedelics as transformative 
psychiatric therapies107. We use the term 
‘transformative’ in the sense that the 
model for their use and integration into 
the therapeutic framework is distinct 
from how current standard- of- care 
psychopharmacologic medications are used. 
There are currently many clinical trials 
underway, with three phase II clinical trials 
demonstrating potential therapeutic actions 
of psilocybin for treating depression and 
anxiety108–110. An open- label extension 
arm for one of these studies revealed an 
apparently sustained action of psilocybin up 
to 6 months after a single administration111.  
A blinded comparison phase II study 
between the serotonin- selective reuptake 
inhibitor escitalopram and psilocybin 
revealed no difference in primary 
outcome measures for daily escitalopram 
(an approved antidepressant) versus 
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two doses of psilocybin110. As the study 
was not placebo controlled, it is unknown 
whether either treatment group would 
show superiority compared with placebo 
treatment. Taken together, these findings 
suggest a significant and enduring 
antidepressant and anxiolytic effect of 
one or two doses of psilocybin, although 
all are relatively small phase II trials. 
Although the secondary analysis of the 
single head- to- head comparison with 
escitalopram appeared to favour psilocybin, 
it is important to note that this study was 
underpowered to test the hypothesis of 
superiority of either treatment110 and was 
not placebo controlled. Smaller controlled 
studies have supported the potential 
therapeutic actions of psychedelics for 
various other neuropsychiatric conditions112. 
Based on these favourable results collected 
within the experimental confines of the 
studies published thus far, psilocybin 
was granted FDA Breakthrough Therapy 
designation for these conditions.

How to construct clinical trials using 
psychedelics, or indeed any drug where an 
immediately perceptible effect is part of 
its panoply of actions, will face challenges 
in the use of placebo and comparator 
cohorts, and the degree of subject and 
investigator blinding that is possible. Recent 
reviews of these issues113,114 have discussed 
some means of addressing the potential 
confounds. Being able to establish a dose–
response relationship115 with sufficient 
granularity to resolve the phenotypic effects 
(including therapeutic efficacy) would be 
highly informative, although it may be 
difficult to implement for practical reasons 
such as the sample sizes required and the 
associated costs. Including an arm with a 
lower- dose comparator group has been used, 
but does not allow for as much detailed 
comparison of effects and their magnitudes 
as a multilevelled dose escalation study. 
Similarly, whereas active placebos have been 
used in some studies with psychedelics (for 
example ref.115), the choice of what placebo 
to use and what aspects of the psychedelic 

experience to mimic (such that the results 
of the comparison capture the actual 
therapeutic effectiveness) are significant 
aspects to consider and remain open 
challenges.

TaBle 1 summarizes the results from 
well- controlled clinical trials to date. 
Although there is a clear efficacy signal in 
these trials, it is notable that high rates of 
disqualification of volunteers were reported, 
ranging from 90%109 to 96.3%116 of patients 
initially assessed. When examining only 
those who were deemed potentially eligible 
for the trial, inclusion rates ranged from 
38 to 67%109,116. Exclusion criteria include 
having a first or second- degree relative 
with schizophrenia, psychotic disorder or 
bipolar I or bipolar II disorder; a current 
or past history of schizophrenia, psychotic 
disorder or bipolar I or II disorder; 
suicidal ideation or having “a psychiatric 
condition judged to be incompatible with 
establishment of rapport or safe exposure 
to psilocybin”; current antidepressant drug 
use; and routine medical exclusion criteria 
common for clinical trials109,116. In the 
most recent study110, of the 1,000 patients 
who were initially screened by telephone, 
891 were disqualified for not meeting 
the inclusion criteria. Of the remaining 
individuals, 59 were eventually randomized 

(5.9% of initially screened individuals)110. 
These stringent exclusion criteria, although 
justifiable in terms of optimizing safety, 
do risk constraining the size of the total 
number of subjects in a given trial as well 
as not accurately reflecting the diversity of 
the population that could potentially benefit 
from novel therapeutic intervention.

It is also important to note that there 
are no controlled studies demonstrating 
the safety or efficacy of psychedelic drugs 
in individuals currently on antidepressant 
medications. In all of the trials reported 
to date, individuals entering the trial 
were free of antidepressant drugs for 
several weeks prior to entry. There are 
also uncontrolled studies suggesting that 
the subjective effects of psychedelics may 
be attenuated by ongoing treatment with 
serotonin- selective reuptake inhibitors 
and other antidepressants117,118. As yet, 
the mechanism of this observed potential 
antagonism between psychedelic and 
other antidepressant drugs is not known 
and further studies will be necessary to 
determine how it impacts the practical utility 
of these drugs in the clinic.

Interestingly, the percentage of 
individuals who reported past psychedelic 
drug use ranged from 36 to 56% in one 
study89, which is considerably higher than 
the general US population with the most 
recent estimate in 2019 being 44 million 
individuals (see Substance Abuse and Mental 
Health Service Administration — 2019 
National Survey on Drug Use and Health 
Detailed Tables) out of a general population 
of 382 million, or 11.5%. In another study92 
a much lower rate of past psychedelic drug 
use was reported. These inconsistencies 
highlight some of the additional confounds 
presented by the current trial sizes and 
designs, particularly with respect to the 
degree of an individual’s expectancy of drug 

Box 2 | Behavioural pharmacology paradigms for psychedelic drug action

Drug substitution and the head twitch response (HTR) are two key behavioural approaches to study 
psychedelic drugs in animal models. The two- lever drug substitution paradigm involves training an 
animal to associate pressing one of two levers for a rewarding stimulus (usually a highly palatable 
food) with the effect of a co- administered drug. Once the animal has learned to associate the  
drug’s effects with the reward presented by pressing the drug- paired lever, other drugs can be 
administered and the animal’s lever- pressing responses are used to quantify the degree to which 
they resemble the drug used in the initial training (how well one ‘substitutes’ for the other). The HTR 
is a readily observable head- shaking motion produced in rodents following the administration of a 
psychedelic drug. It is an obvious behaviour that is readily quantifiable as the number of events 
within a given time window following drug dosing.

Table 1 | Phase ii trials of psilocybin

Trial control outcome N ref.

Psilocybin for anxiety and 
depression in individuals with 
life- threatening cancer

Niacin Improvement 
in anxiety and 
depressiona

29 (14 psilocybin; 
15 niacin)

115

Psilocybin for anxiety and 
depression in individuals with 
life- threatening cancer

Low- dose 
psilocybin

Improvement 
in anxiety and 
depressionb

51 (25 low dose; 
26 high dose)

109

Psilocybin versus escitalopram 
in depression

Escitalopram Improvement in 
depression for both 
psilocybin and 
escitalopramc

59 (30 psilocybin; 
29 escitalopram)

110

aClinical outcome measurements include statistically significant improvement in the Hamilton Depression 
Rating Scale and the Beck Depression Inventory for depression, and the Hospital Anxiety and Depression 
Scale for anxiety. bClinical outcome measurements include statistically significant improvements in the  
Grid Scoring Hamilton Depression Rating Scale (GRID- HAM- D-17) for depression and the Hamilton Anxiety 
Rating Scale (HAM- A) for anxiety. cClinical outcome measurements included statistically significant 
improvement in the six- item Quick Inventory of Depressive Symptomatology — Self- Report.

NATURe RevIewS | Drug Discovery

P e r s P e c t i v e s

https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/breakthrough-therapy
https://www.samhsa.gov/data/report/2019-nsduh-detailed-tables
https://www.samhsa.gov/data/report/2019-nsduh-detailed-tables
https://www.samhsa.gov/data/report/2019-nsduh-detailed-tables
https://www.samhsa.gov/data/report/2019-nsduh-detailed-tables


0123456789();: 

action afforded by previous experience with 
psychedelics, and the extent to which the 
trial population reflects the broader patient 
population intended to be modelled.

With regard to potential human genetic 
polymorphisms and variants that may 
affect the activity of psychedelic drugs at 
5-HT2A receptors, there are many reported 
non- synonymous protein- encoding 
single- nucleotide polymorphisms 
with non- rare population frequencies 
(Supplementary Fig. 1). Of these, the 
most frequent are T25N, I197V, A447V 
and H452Y variant 5- HT2A serotonin 
receptors (see Genome Aggregation 
Database)119. A comprehensive analysis 
of the effects of these protein- encoding 
variants showed that agonist potencies or 
efficacies of prototypical psychedelics such as 
2,5- dimethoxy-4- iodoamphetamine (DOI) 
or 5- methoxy- N,Nʹ- dimethyltryptamine 
(5- OMe- DMT) were significantly attenuated 
in a drug × polymorphism- specific 
fashion for the T25N, I197V and H452Y 
polymorphisms120. There are currently no 
peer- reviewed published data examining 
the actions of LSD or psilocin at 5- HT2A 
variants, although there are data showing 
differential actions of LSD at 5- HT2C 
receptors where the receptor is subjected 
to RNA editing121. In this case, RNA editing 
involving adenosine→inosine substitution 
in the coding region leads to a change in the 
translated protein121.

As previously mentioned, many 
psychedelic 5- HT2A agonists including 
LSD and psilocin are potent agonists at 
5- HT2B receptors29,55,122. LSD displays 
unusual binding and activation kinetics 
at 5- HT2B receptors55 and has picomolar 
potency for activating both canonical and 

non- canonical 5- HT2B receptor signalling55. 
As it is well established that 5- HT2B 
receptor activation may be associated 
with drug- induced valvular heart disease 
in humans61, there is the potential that 
chronic dosing as may be achieved with 
so- called ‘microdosing’ strategies could be 
associated with this serious and potentially 
life- threatening side effect. Other potential 
problems with psychedelics are the lack 
of known ‘rescue’ medications to abort 
unfavourable psychedelic experiences and 
potential long- term effects of psychedelic 
medications. Because of the potential for 
exacerbation of underlying psychosis, 
studies on psychedelic medications routinely 
disqualify individuals with personal or 
familial history of major psychotic disorders. 
As a consequence, subjects in future trials 
will continue to represent a restricted 
subset of the total patient population that 
could potentially benefit from novel drugs 
targeting the 5- HT2A system.

In summary, evidence for the therapeutic 
effects of psychedelic compounds is 
mounting, at least under specific clinical 
settings and for select demographics of 
people with certain conditions. For the 
classical psychedelics gaining interest in 
the clinical domain, studies examining 
longer- term durability of therapeutic 
benefits and more comprehensive 
assessments of safety margins, particularly 
involving patient populations presenting 
with multiple comorbidities, will be 
highly valuable. Additional research 
and development is also required in 
the basic science domain to increase 
our understanding of the underlying 
mechanisms, and to diversify the chemical 
space of drugs that act via these mechanisms 

so that we may be able to benefit the greatest 
proportion of the affected population.

Potential for non- psychedelic drugs
It is currently unknown whether the 
subjective experience of a psychedelic drug 
is a necessary component of its ability to 
produce therapeutic benefits. The magnitude 
of the therapeutic effect correlates with 
several subjective qualities of the psilocybin 
experience123,124. The subjective intensity 
of the psychedelic experience elicited 
by psilocybin also correlates with the 
circulating plasma levels of psilocin and 
the degree of 5- HT2A receptor occupancy 
in the brain125. Thus, a trivial conclusion is 
simply that the amount of drug administered 
recruits more receptor activity which 
results in more physiological effects, both 
quantifiable and subjective. Correlations, 
although robust and quantifiable according 
to the data collected, are not evidence of an 
underlying mechanism per se. We cannot 
say, with any certainty, anything beyond 
the existence of a relationship between 
these observations. Knowing what we do 
about the diverse constellation of signalling 
processes engaged by the 5- HT2A receptor, 
and others implicated in the myriad effects 
of psychedelics, it is possible that a drug 
binding the receptor(s), but with different 
agonist activities and/or polypharmacology 
to psilocin, will have substantially different 
effects. Determining which receptor 
engagements and conformations 
contribute to which signalling processes 
and how those, ultimately, manifest as 
behavioural phenotypes requires additional 
experimentation and the application of 
both existing and new tools.

In this regard, a new paper126 suggested 
that the psychedelic actions of psilocybin in 
mice could be blocked without affecting its 
antidepressant drug- like actions. Here the 
authors show that pretreatment with 
the 5- HT2A receptor antagonist ketanserin 
attenuates, but does not abolish, psilocybin’s 
HTR in mice without affecting psilocybin’s 
antidepressant drug actions in two animal 
models. Although these findings are 
intriguing, given the non- translational value 
of many rodent models of antidepressant 
drug actions127, and the substantial 
polypharmacology inherent with classical 
psychedelics, further investigation is 
warranted.

There have recently been preclinical 
reports that drugs which share at least some 
of the actions of conventional psychedelics 
may have antidepressant drug- like actions 
without psychedelic drug- like actions. Thus, 
in an intriguing study investigating ibogaine 
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derivatives, Cameron et al.128 reported 
that tabernanthalog (TBG) (fig. 1) had 
antidepressant and anxiolytic- like activity 
in several animal models but was devoid of 
activity in the HTR. TBG displayed a robust 
polypharmacological profile with potent 
agonist activity at several 5- HT receptors 
and the serotonin transporter (SERT). 
Even though TBG displayed quite modest 
potency at 5- HT2A receptors, several of its 
actions in vivo were blocked by ketanserin128. 
TBG’s pharmacological profile is quite 
distinct from the parent compound ibogaine 
(fig. 5), which has negligible activity at 5- HT 
receptors and modest activity at various 
transporters and the κ- opioid receptor. TBG 
more closely mimics the polypharmacology 
of LSD, although LSD has appreciably higher 
potencies at most human 5- HT receptors27 
and lacks activity at the SERT.

Intriguingly, Dong et al.129 recently 
reported that a biosensor (PsychLight) in 
which a circularly permuted GFP (cGFP) 
was inserted into the 5- HT2A receptor was 
able to distinguish several psychedelic 
from non- psychedelic 5- HT2A agonists 
in vitro. The sensor, however, was also 
potently activated by 5- HT and tryptamine 
(which are not psychedelic) whereas the 
psychedelic 2-(4- iodo-2,5- dimethoxyphenyl)
ethan-1- amine (2C- I) was inactive (TaBle 2). 
The authors used this sensor to discover 
AAZ-134 — a tryptamine derivative — 
which displayed antagonist activity at 
the sensor and antidepressant drug- like 
actions in mice. Although the authors were 
unable to determine the molecular target(s) 
responsible for the actions of AAZ-134, 
the paper demonstrated the utility of the 
sensor for separating psychedelic from 
non- psychedelic compounds, at least for 
the majority of compounds tested. Going 
forward it will be important to examine 
the ability of other known psychedelic 
and non- psychedelic 5- HT2A agonists 
to determine the fidelity of the sensor and to 
discover the molecular targets responsible 
for the actions of AAZ-134. ‘Calibrating’ 

such sensors to the gold standard of effects 
in humans (TaBle 2) will be an important 
step in preclinical evaluations of utility 
for progression into human trials with the 
appropriate expectations about the effects 
that may be produced.

Access to structurally diverse chemical 
matter may, ultimately, be key to the 
advancement of novel drug candidates 
targeted to the 5- HT2A receptor with 
ranges of potencies, intrinsic activities 
and polypharmacology. As discussed 
previously, there are several discrete 
genetic polymorphisms in the primary 
target of interest already known to exist, 
with more likely present in our diverse 
population. It is certainly the case that a 
given psychedelic drug will elicit different 
interospective effects in different people. 
This is a consequence of the fact that 
genetic polymorphisms will influence both 
pharmacokinetic and pharmacodynamic 
effects, and because — although all 
psychedelic compounds share numerous 
molecular targets and intrinsic activities at 
those targets — the precise combination 
of polypharmacological effects will differ 
according to chemical structure. As such, 
the ‘right’ psychedelic- inspired medication 
may not be obvious for every individual 
seeking a pharmacological resolution to 
their specific condition. Rather, we need to 
expand the chemical space, both according 
to the subjective effects of the drugs as well 
as their structural diversity.

Discovering new chemical matter with  
beneficial actions at 5-HT2A receptors will  
likely be accelerated by ultra-large-scale 
computational approaches130. In proof-of- 
concept studies we and others have shown 
that the ultra- large- scale docking of in 
silico enumerated molecules can afford 
the discovery of potent and selective 
compounds with biased signalling properties 
at prototypical G protein- coupled receptors 
(GPCRs)130,131. One can thereby envision a 
similar strategy aimed at 5- HT2A receptors 
where, ultimately, billions of compounds 

might be interrogated computationally at 
relevant 5- HT2A receptor complexes.

As of this writing, there are 40 public 
psychedelic medicine companies listed 
on the Psychedelic Stock Index, with 
numerous other ventures at varying stages 
of maturity pursuing psychedelic therapies 
as products and/or services. The majority of 
these commercial enterprises are pursuing 
formulations and/or specific integrated 
therapies with existing classical psychedelics, 
mostly psilocybin. As mentioned above, 
not every patient suffering from depression, 
anxiety, post- traumatic stress disorder and 
so on will be able to benefit from therapy 
including classic psychedelic drugs. As such, 
the emphasis at this stage should be on the 
discovery of new chemical matter with 
diverse target receptor engagements and 
intrinsic activities. Such efforts are active 
research pursuits and will be key to the 
longevity of effective psychiatric treatments 
inspired by psychedelic mechanisms of 
action. These areas of innovation should 
enhance the promise and minimize the peril 
of psychedelic pharmacology applications 
in psychiatry.
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