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Humans spend alifetime learning, storing and refining a repertoire of motor
memories. For example, through experience, we become proficient at manipulating a
large range of objects with distinct dynamical properties. However, it is unknown what

principle underlies how our continuous stream of sensorimotor experience is
segmented into separate memories and how we adapt and use this growing repertoire.
Here we develop a theory of motor learning based on the key principle that memory
creation, updating and expression are all controlled by a single computation—
contextual inference. Our theory reveals that adaptation can arise both by creating and
updating memories (proper learning) and by changing how existing memories are
differentially expressed (apparent learning). This insight enables us to account for key
features of motor learning that had no unified explanation: spontaneous recovery',
savings?, anterograde interference®, how environmental consistency affects learning
rate*’ and the distinction between explicit and implicit learning®. Critically, our theory
also predicts new phenomena—evoked recovery and context-dependent single-trial
learning—which we confirm experimentally. These results suggest that contextual

inference, rather than classical single-context mechanisms

1479 is the key principle

underlying how adiverse set of experiencesiis reflected in our motor behaviour.

Throughout our lives, we experience different contexts in which the
environment exhibits distinct dynamical properties, such as when
manipulating different objects or walking on different surfaces.
Although the brain can maintain multiple motor memories that are
appropriate for these contexts'®", classical theories of motor learning
focus onhow the brain adapts to a single environment”®, However, with
multiple memories come new challenges—the brain must decide when
to create new memories'?and how much to express and update them
foreach movement. These operations, their governing principlesand
their consequences for motor learning remain poorly understood. We
propose a unifying principle—contextual inference—that specifies how
sensorimotor experience determines memory creation, expression
and updating. We show that contextual inference is the core feature
that underlies a range of fundamental aspects of motor learning that
were previously explained by distinct and often heuristic processes.

The COIN model of motor learning

Toformalize therole of contextualinferencein motor learning, we devel-
oped the contextual inference (COIN) model, a Bayesian nonparamet-
ric model of motor learning (Methods). The COIN model is based on
an internal model that specifies the learner’s assumptions about how
the environment generates sensory observations (Fig. 1a and Extended
DataFig.1a). Motor learning corresponds to onlineinference under this
generative model (Fig. 1b and Extended Data Fig. 1b). Specifically, the
COIN modeljointly infers contexts, their transitions, their dynamical and

sensory properties, andthe current state of each context, with each motor
memory storing theinferences about a different context (for validation;
Extended DataFig.2a,b). The challenge is that neither contexts nor their
transitions come labelled. Thus, the learner needs to continually infer
the current context on the basis of a continuous stream of experience.
Contextual inference computes a posterior distribution express-
ing the probability that each known context, or a yet-unknown novel
context, is currently active (Fig. 1b, top row) and thereby determines
memory creation, expression and updating (Fig. 1b). Figure 1c-h and
Extended DataFig.1c-eillustrate asimulation of the COIN model (the
parameters are provided in Extended Data Fig. 3) when handling objects
of varying weights. To determine the motor command (Fig. 1e, cyan
line), rather than selecting asingle memory to be expressed™?, the state
associated with each memory (Fig. 1d) is expressed commensurate with
the probability of the corresponding context under the posterior, com-
puted after observing the sensory cue but before movement (‘predicted
probability’; Fig. 1b, f). After movement, the ‘responsibility’ of each
known context as well as of ayet-unknown, novel context is computed
astheir posterior probability given both the cue and the resultant state
feedback. A new memory is created whenever the responsibility of a
novel context becomes high (Fig. 1b, g). Critically, context responsibili-
tiesalso scale the updating of existing memories and any newly created
memory (Fig.1b, d, h; thered and pink arrows, respectively, show how
high or low responsibility for the red context accelerates or decelerates
the updating of its state). Finally, these responsibilities are used to com-
pute the predicted context probabilities on the next time step (Fig. 1f).
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Fig.1| Contributions of contextual inference to motorlearningin the COIN
model. a, Generative model. A potentially infinite number of discrete contexts c,
(colours) exist with Markovian transitions. Each contextjis associated witha
time-varying state x. The active context can generate asensory cueq,
independent of movement (for example, object visual appearance) and also
determines whichstateis observed (with noise) as state feedback y,asa
consequence of movement (for example, object weight, black versus grey
arrows). b, Inference process. Thelearner infers contexts and states (and
parameters, notshown) on the basis of the observed sensory cues and state
feedback. Before movement, predicted context probabilities p(c,lg,, ...) are
computed by fusing prior expectations from the previous time point (where....
referstoall observations before time ¢) with the likelihood of the current sensory
cueq,.Foreachknown context, a predicted distribution overits current state
p(x?|...)isrepresented. A potential novel contextis always represented, witha
stationary state distribution p(x?). Motor output u, is the average of the states of
theknown and novel contexts, weighted by their predicted probabilities
(‘memory expression’). Movementresultsin state feedbacky,, which updates the
predicted context probabilities to contextresponsibilities p(c/lq,, y,, ...)- Anew
memoryisinstantiated witha probability that is the responsibility of the novel
context (‘memory creation’ for ared context, initialized with the state
distribution of the novel context). Responsibilities also determine the degree to

In summary, the COIN model proposes that contextual inference is
core to motor learning. In contrast to traditional models of learning,
adaptationtoachangeinthe environment (asin Fig.1e,blueand cyan
arrows) canarise fromtwo distinct and interacting mechanisms. First,
consistent with classical notions of learning, ‘proper’ learning consti-
tutes the creation and updating of memories (the inferred states of
known contexts; Fig.1d, blue arrow). Second, ‘apparent’ learning occurs
duetothe updating of the predicted context probabilities (Fig. 1f, cyan
arrow), thereby altering the extent to which existing memories are
ultimately expressed in behaviour.

Apparent learning in memory recovery

Totest the contributions of contextualinference tomemory creationand
expression (Fig.1b), werevisited awidely used motor learning paradigm.
Inthis paradigm (Fig. 2a and top left of Fig. 2b), participantslearnaper-
turbation, P, applied by a robotic interface while reaching to a target.
Adaptationis assessed using occasional channel trials, P, which remove
movement errors and measure the forces participants use to counteract
the perturbation (Fig.2aand Methods). Exposure to P*is followed by brief
exposure to the opposite perturbation, P, bringing adaptation back,
neartothebaseline. Finally, aseries of channel trialsis administered. As
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whichstate feedbackis used to update the predicted state distribution
p(xﬁ’]llqt,yt, ...)ofeach context (‘memory updating’). ¢, Simulated time series of
sensory cues (background colour for object appearance) and state feedback
observations (noisy weight, purple) when handling visually identical cupsand a
sugar bowl of varying weights (black line, arbitrary scale). The weight of cup 3
decreasesasliquidis poured fromit, other objects have constant weights.d-h,
The COIN modelapplied to the observationsinc.d, Predicted state distributions
for the three contexts inferred by the model and anovel context. e, The predicted
state distribution (purple) isamixture of theindividual contexts’ predicted state
distributions (d) weighted by their predicted probabilities (f). The motor output
(adaptation, cyanline) isthe mean of the predicted state distribution. The
intensity ofthe coloursind and the purplein eindicates probability density,
linearly scaled between 0 and the maximum of the corresponding density.

f-h, Contextualinferences (colours asdescribedind).f, The predicted
probability (before state feedback) of each known context and anovel context.
g, Theresponsibility (context probability after state feedback) of anovel
context. The coloured circles show memory creation events. The novel context
responsibility isinsufficient to generate anew memory when transitioning to
and fromcup2 (greenarrows). h, Theresponsibility of each known context. The
arrowsind-fand h, are explained in the main text (The COIN model of motor
learning).For definitions of variables, see Methods.

in previous studies', our participants showed the feature of spontaneous
recoveryinthis phase (Fig.2c): atransient re-expression of P* adaptation,
rather than asimple decay towards the baseline.

Although this paradigm has no explicit sensory cues, according to
our theory, contextual inference hasanimportantrole. When simulated
for this paradigm (Fig. 2b), the COIN model starts with amemory that
isappropriate for moving in the absence of a perturbation (P%; Fig. 2b,
bottom left) and creates new memories for the P* and P~ perturba-
tions (red and orange, respectively). Spontaneousrecovery arises due
to the dynamics of contextual inference. As P* has been experienced
onmosttrials, itis quickly inferred to be active with a high probability
during the channel-trial phase (Fig. 2b, top right). As its state has not yet
decayed (Fig.2b, bottomleft), the memory of P*is therefore transiently
expressed inthe motor output (Fig. 2b, bottom right). This mechanism
is fundamentally different from a classical, single-context model of
motor learning, the dual-rate model'. In the dual-rate model, motor
output is determined by a combination of individual memories that
update at different rates (fast and slow) but of which the expression
does not change over time. Thus, the dynamics of adaptationis solely
determined by memory updating, thatis, proper learning. By contrast,
inthe COIN model, changes in motor output can occur without updat-
ing any individual memory, simply due to changes in the extent to
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Fig.2|Memory creation and expression accounts for spontaneous and
evokedrecovery. a, Participants made reaching movements (thin horizontal
arrows) to atarget (circle) while holding the handle of a robotic manipulandum
that could generate forces (thick vertical arrows). For clarity, the schematicis
nottoscale. The manipulandum could either be passive (null field, P°) or
generate avelocity-dependent force field that acted to the left (P*) or right (P")
of the current movement direction. Channel trials (P€) were used to assess
adaptation by constraining the hand to astraight channel (grey lines) to the
target and measuring the forces generated by the participantinto the virtual
channel walls. b, Simulation of the spontaneous recovery paradigm with the
COIN model (parameters fit to average datain cand e simultaneously). Top left,
perturbation (Perturb., black) and channel-trial phase (grey). Bottom left, the
predicted state distributions of inferred contexts asin Fig. 1d (for clarity we
omitthe novel context hereand in subsequent figures). Note that full predicted
statedistributions areinferred butappear narrow owingto fitting to
across-participant average data (see Methods). Top right, the predicted
probability of contexts asin Fig. 1f. Bottomright, the predicted state
distribution (purple) and its mean (cyan) asinFig.le.c,Mean £ s.e.m.
adaptation (black, across n =8 participants) on the channel trials of the
spontaneousrecovery paradigm. The cyan and green lines show model fits
(mean of individual participant fits) of the COIN (7 parameters) and dual-rate
models (5 parameters), respectively. Inset: ABIC (nats) for individual
participants, positive favours the COIN model. d, e, Simulation of the evoked
recovery paradigm with the COIN model (d) and the mean +s.e.m. adaptation
onthechanneltrials of the evoked recovery paradigm (e) as described inband
c, respectively (n =8 participants). The third and fourth trialsin the
channel-trial phase were replaced by P* trials (black arrow). The COIN model
parametersare provided in Extended DataFig. 3.

which existing memories are expressed due to contextual inference,
thatis, apparentlearning. This mechanism enables the COIN model to
account robustly for spontaneous recovery (Extended Data Fig. 4a),
including elevated or reduced levels, respectively, when the P* phase is
extended® (Extended DataFig. 5a-j) or when P~ is experienced before
the P* phase! (Extended Data Fig. 5k-0).

To distinguish between proper and apparent learning as the main
mechanism underlying spontaneous recovery, we designed an ‘evoked
recovery’ paradigm in which sensorimotor evidence clearly indicates
that a change in context has occurred. For this, two early trials in
the channel-trial phase of the spontaneous recovery paradigm were
replaced with P* (evoker) trials (Fig. 2d, top left; similar to trigger tri-
als in visuomotor learning" and reinstatement in conditioning®). In
this case, the COIN model predicts astrong and long-lasting recovery
of P*-adapted behaviour (Fig. 2d, bottom right and Extended Data
Fig.4b), primarily due to the inference that the P* context is now active
(Fig. 2d, top right, red) and the gradual decay of the P* state over sub-
sequent channel trials (Fig. 2d, bottom left, red). Our mathematical
analysis suggested that these predictions for evoked recovery (as well

as those for spontaneous recovery) are inherent features of the COIN
model (Supplementary Information and Extended Data Fig. 6a-c). By
contrast, the dual-rate model predicts only a transient recovery that
rapidly decays due to the same underlying adaptation process with fast
dynamics governing both recovery and decay (Extended Data Fig. 6d).

Consistent with COIN model predictions, participants showed a
strong evoked recovery (Fig. 2e). This recovery lasted for the duration
of the experiment, defying models that predict a simple exponential
decay to the baseline*™'® (Extended Data Fig. 6e and Extended Data
Table1). Wefit the COIN and dual-rate models to the data of individual
participants in both experiments (Fig. 2c, e). The COIN model fit the
data accurately, but the dual-rate model (and its multi-rate exten-
sions; Extended Data Fig. 6d) showed a qualitative mismatch in the
time course of decay of evoked recovery (Fig. 2c, e, insets). Model com-
parison provided strong support for the COIN model (A group-level
Bayesian information criterion, BIC, of 302.6 and 394.1 nats for the
spontaneous and evoked recovery groups, respectively) and for the
majority of participants (6 out of 8 for each experiment; individual
fits are shown in Extended Data Fig. 6f).

The COIN model explains memory recovery by creating anew mem-
ory only when existing memories cannot account for a perturbation,
suchasontheabruptintroduction of P*and P~, but not when anew per-
turbationisintroduced gradually. This also explains why de-adaptation
isslower after the removal of agradually (versus abruptly) introduced
perturbation” (Extended Data Fig. 5p-s).

Contextual inference in memory updating

In the COIN model, contextual inference also controls how each exist-
ing memory is updated, that is, proper learning (Fig. 1b). Specifically,
allmemories are updated, with the updates scaled by their respective
inferred responsibilities (Fig. 1h). This contrasts with models that update
only a single memory™? or update multiple memories independent
of context™', To test this prediction, we examined the extent to which
memories for two contexts were updated when we modulated their
responsibilities by controlling the sensory cue and state feedback—the
two observations that determine context responsibilities (Fig. 1b).
Inmany scenarios, sensory cues and state feedback provide consistent
evidence about context (for example, larger cups are heavier) and, there-
fore, context responsibilities are approximately all-or-none (Fig. 1h).
Thus, to test for graded memory updating, we created conflicts between
cues and state feedback (similar to a light, large cup). Specifically, par-
ticipants experienced an extensive training phase designed to form
separate memories for two contexts associated with a distinct cue (tar-
get location) and perturbation (Fig. 3a; context 1, P}; and context 2, P3,
where the subscript and superscript symbols specify the sensory cue
and perturbation sign, respectively). These contexts switched randomly
(with a probability of 0.5; Fig. 3b). As expected®, participants formed
separate memories for each contextand expressed them appropriately
based onthe sensory cues (Extended DataFig. 7a). Inasubsequent test
phase, we studied the updating of one of the memories, the one associ-
ated with context1,inresponse toexposuretoasingletrial of apotentially
conflicting cue-feedback combination. To quantify single-trial learning
for the memory associated with context 1, we assessed the adaptation
of this memory using channel trials with the appropriate cue (cue 1)
before and after an exposure trial (Fig. 3c). The change in adaptation
fromthefirsttothelast channeltrial of this triplet (channel-exposure-
channel) reflects single-trial learning in response to the exposure trial*>.
To bring adaptation close to baseline before each triplet, we used
sequences of washout trials, pairing P° with the sensory cues (P and P9).
The COIN model predicted that the responsibility of context1and,
therefore, the updating of the corresponding memory (as reflected in
single-trial learning; right column in Fig. 3d, Extended Data Fig. 4¢)
should exhibitagraded pattern that arises over training (Extended Data
Fig. 7b)—it should be greatest when the cue and state feedback on the
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Fig.3|Memory updating depends on contextualinference. a, Participants
experienced two contexts defined by asensory cue (right or left target) paired
witha perturbationsign (P*or P"). Participants moved a control point (right
versus left, grey disk) onavirtual bar to the corresponding target”. For clarity,
the schematicis nottoscale. The colours of cues and perturbationsindicate
the context with which they are associated (blue and red for context1and 2,
respectively). b, Training: cues (background colour) were consistently paired
with perturbations (black line) randomly selected on each trial (only a few trials
are shown for clarity). ¢, Triplets: two channel trials (both with cue 1,P) bracket
an‘exposure’trial that uses one of the four possible cue-perturbation
combinations. Single-trial learning for the memory associated with context1is
measured asthedifference (A) in adaptation across the two channel trials.

d, Single-trial learning for context 1before (top) and after (bottom) training.
Experimental data (mean + s.e.m., left column) for n = 24 participants (dots).
Positive valuesindicate single-trial learning consistent with the exposure trial
perturbation (increase after P*and decrease after P). Model data

(mean +s.e.m., right column) across n =24 fits of the COIN model to individual
participants (8 parameters each; Extended DataFig. 3).

exposure trial both provide evidence of context 1 (P;), least when both
provide evidence for context 2 (P;) and intermediate when the two
sources of evidence are in conflict (P5and P; see Extended DataFig. 7c,
dandthe Supplementary Information for an analytical approximation).
Comparing the two conditions with intermediate updating, due to the
cuesbeing paired with P in the washout trials, we also expected the cue
to have aweaker effect than the perturbation and therefore less updat-
ing of the memory for context1after exposure with P} than with P3.
The pattern of single-trial learning in pre- and post-training con-
firmed the predictions of the COIN model (left columnin Fig.3d). Before
training, there was no significant difference in single-trial learning
across exposure conditions (two-way repeated-measures ANOVA for
cue: F,,3=2.40,P=0.135; for perturbation: F, ,; = 0.97, P= 0.335). After
learning, single-trial learning showed a gradation across conditions
withasignificant modulatory effect for both the cue and the perturba-
tion (for cue: F, ,;=10.35, P=3.82 x 1073; for perturbation: F, ,; =21.16,
P=1.26 x10™%; nosignificant interaction: F, ,, = 0.64, P= 0.432; Extended
DataFig. 7e). The modulatory effects of the cue and the perturbation
were not confined to separate subsets of participants (Fisher’s exact
test, odds ratio =1.0, P=1.00; Methods and Extended Data Fig. 7f).
The COIN model also accounted for how single-trial learning changed
during the training phase (Extended DataFig. 7b). Taken together, the
patternofsingle-trial learning shows the gradationinmemory updating
(attheindividual-participant level) predicted by the COIN model, with
multiple memories updated in proportion to their responsibilities.

Apparent changesinlearning rate

The COIN model also suggested an alternative account of various classi-
calresults about apparent changes inlearning rate. Figure 4 shows three
paradigms (column 1) with experimental data (column 2). What is com-
moninallthese casesis that the empirical finding of trial-to-trial changes
inadaptation hasbeeninterpreted as proper learning, thatis, changes to
existing memories (states). Thus, differences between the magnitudes
of these changes have been interpreted as differences in learning rate.
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Fig.4|Contextualinferenceunderlies apparent changesinlearningrate.
a-c, The COIN modelapplied tosavings (a), anterogradeinterference (b) and the
effect of environmental consistency onsingle-triallearning (c). Column]1,
experimental paradigms (lines as described in Fig. 2b, d, top left; the colours
highlight key comparisons). Note that thelines showing P~ perturbationsinb
have beenseparated vertically for clarity.In ¢, p(stay) is the probability of the
perturbation staying the same on the next trial (that is, the self-transition
probability). Column 2, experimental datareplotted fromref.?° (a), ref.* (b) and
ref.*(c). Column 3, output of COIN model averaged over 40 parameter sets
obtained from fits toindividual participantsin the experiments showninFigs.2
and 3 (7 parameters; Extended Data Fig. 3). Model dataare mean + s.e.m. based
onthenumber of participantsin the original experiments; a, n=46;b,n=14 (light
blue), n=9 (other colours, no error bars for the grey condition as they were not
showninthe original publication); ¢, n=9 per condition. Columns4 and 5, COIN
modelinferences with regard to the context (c*) thatis mostrelevantto the
perturbation towhich adaptationis measured. Specifically, c* is the context with
the highest responsibility on the given trial (that associated with P*inaand P~ in
b) or, asinFig.3d (also single-trial learning), the context with the highest
predicted probability on the second channel trial of atriplet (that associated
with P*; ¢). Column 4, the Kalmangain (Kal. gain, top) and mean of the predicted
state distribution (E denotes expected value, bottom) for the relevant context c*.
Column 5, the predicted probability of the relevant context c*. The grey linesinb
representinitial adaptation to P*and have been sign-invertedin columns2and 3
and the bottom panel of column 4. The datain cshow the averages within

blocks, withthe bottom panelin column 4 showing separate averages for
exposure (squares) and the subsequent channel trials (triangles).

For example, savings (Fig. 4a) refers to the phenomenon that learning
the same perturbation asecond time (even after washout) is faster than
thefirst time'*?°%, Inanterograde interference (Fig.4b), learning a per-
turbation (P") isslower ifan opposite perturbation (P*) has beenlearned
previously, with the amount of interference increasing with the length
of experience of thefirst perturbation®. The persistence of the environ-
ment has also been shown to affect single-trial learning (Fig. 4c)—more
consistentenvironments lead toincreased levels of single-trial learning*>.

The COINmodelsuggests that changesinadaptation can occur without
proper learning, simply through apparent learning, thatis, by changing
the way existing memories are expressed (Fig. 1d-f, blue versus cyan
arrows). Thus, apparent changesin learning rate in these paradigms may
be dueto changesin memory expressionrather than changesin memory
updating. To test this hypothesis, we simulated the COIN model using
the parameters obtained by fitting each of the 40 participants in our
experiments (Extended Data Fig. 3). These parameter-free predictions
also provided astrongtest of the COIN model. The COIN model passed this
test: it accurately reproduced the pattern of adaptation and single-trial



learning seen in these paradigms (column 3 in Fig. 4 and Extended Data
Fig.8; Extended DataFig.4d-f). Crucially, differencesinadaptationand
single-trial learning were not driven by differences in either the proper
learning rate (Kalman gain; Methods) or the underlying state (column 4
inFig. 4 and Extended Data Fig. 8). Instead, as hypothesized, they were
drivenby changesin contextual inference (column5inFig.4 and Extended
DataFig. 8). For example, according to the COIN model, in savings, P* is
expected with higher probability during the second exposure after having
experienceditduringthefirstexposure.Similarly, anterograde interfer-
ence arises as more extended experience with P* makes it less probable
thatatransitionto other contexts (thatis, P") will occur. Finally, more (less)
consistentenvironments lead to higher (lower) probabilities with which
contexts are predicted to persist to the next trial, leading to more (less)
memory expression, as reflected in single-trial learning. Moreover, for
single-trial learning, our mathematical analysisindicated that single-trial
learning can be expressed mathematically asamixture of two processes
thatboth depend on contextual inference (Extended Data Fig. 7c, d and
Supplementary Information) and each of which can be dissected by the
appropriate experimental manipulation—properlearning (asstudiedin
Fig.3) and apparent learning (as studied in Fig. 4c).

Cognitive mechanisms in the COIN model

The COIN model suggests how specific cognitive mechanisms contrib-
ute to the underlying computations. For example, associating work-
ingmemory with the maintenance of the currently estimated context
probabilities explains how a working memory task can effectively lead
to evoked recoveryinamodified version of the spontaneousrecovery
paradigm? (Extended Data Fig. 9a-d and Supplementary Information).
Furthermore, identifying explicit and implicit forms of visuomotor
learning with inferences in the model about state (that is, estimate of
visuomotor rotation) versus a bias parameter (that is, sensory recali-
brationbetween the proprioceptive and visual locations of the hand),
respectively, explains the complex time courses of these components of
learning®? (Extended Data Fig. 9e-1and Supplementary Information).

Discussion

The COIN model puts the problem of learning a repertoire of memo-
ries—rather than a single motor memory—centre stage. Once this more
general problem is considered, contextual inference becomes a key
computation that unifies seemingly disparate datasets. By partitioning
motor learning into two fundamentally different processes, contextual
inference (Fig. 1b, top row) and state inference (Fig. 1b, bottom rows),
the COIN model provides a principled framework for studying the neu-
ral bases of learning motor repertoires (Supplementary Information).

Previous theories of motor learning typically lacked a notion of con-
text**8, Inthe few cases in which contextual motor learning was considered
within a principled probabilistic framework™'¢*, the generative models
underlying learning did not incorporate fundamental properties of the
environment (such as context transitions, cues or state dynamics) thatare
critical for explaininganumber of learning phenomena. Consequently, pre-
viousmodels canaccount foronly asubset of the datasets that we modelled
(Extended Data Table 1), which they were often hand-tailored to address.

There are deep analogies between the context dependence of learning
in the motor system and other learning systems, both in terms of their
phenomenologies and the computational problems they are trying to
solve>”3° However, there is one important conceptual issue that has
been absent from work on contextual learning in other domains that
our research has brought to the fore—the distinction between proper
learning and apparent learning. We have shown that many features of
motor learningarise not from the updating of existing memories (proper
learning) but from changesin the extent to which existing memories are
expressed (apparent learning). This distinction, and the role of contex-
tualinferenceinboth properand apparentlearning, is likely toberelevant

toallforms oflearning in which experience can be usefully broken down
into discrete contexts in the motor system and beyond.
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Methods

Here we provide an overview of the methods. Full details are provided
in the Supplementary Information.

Participants

Forty right-handed, neurotypical participants (18 males and 22 females;
aged 27.7 + 5.6 years, mean * s.d.) participated in two experiments,
which were approved by the Cambridge Psychology Research Ethics
Committee and the Columbia University IRB (AAAR9148). All of the
participants provided written informed consent.

Experimental apparatus

Experiments were performed using a vBOT planar robotic manipulan-
dumwith avirtual-reality system and air table®. Participants grasped
the handle of the manipulandum with their right hand while their
forearm was supported on an air sled and moved their hand in the
horizontal plane.

The manipulandum controlled a virtual ‘object’ that was displayed
centred on the hand and translated with hand movements as the par-
ticipants made repeated movements fromahome positionto atarget
located 12 cm distally in the sagittal direction.

Oneachtrial, the vBOT could either generate no forces (P°, null field),
avelocity-dependent curl force field (P* or P~ perturbation depending
onthedirection of the field) or a force channel (P¢, channel trials). For
the curlforce field, the force generated on the hand was given by

A

where F,, F,, x and y are the forces and velocities at the handlein the x
(transverse) and y (sagittal) directions, respectively. The gain, g, was
setto+15N's m™, with the sign specifying the direction of the curl field
(counterclockwise or clockwise, which were assigned to P* and P,
counterbalanced across participants). During the channel trials, the
hand was constrained to move along a straight line to the target by
simulating channel walls on each side of the straight line as stiff springs
(3,000 N m™) with damping (140 Ns m™)*%,

Experiment1: spontaneous and evoked recovery

Sixteen participants were randomly assigned to either a spontaneous
(n=8)orevoked (n=8)recovery group. The virtual object controlled
by participants was simply a cursor.

The participantsin the spontaneousrecovery group performed a ver-
sion of the standard spontaneous recovery paradigm'. A pre-exposure
phase (50 trials) with a null field (P°) was followed by an exposure phase
(125trials) with P*. The participants then underwent a counter-exposure
phase (15 trials) with the opposite perturbation (P"). This was followed
by achannel-trial phase (150 channel trials, P°). In the pre-exposure and
exposure phases, to assess adaptation, each block of 10 trials had one
channel trial (P°) in arandom location (not the first). A 45 s rest break
was given after trial 60 of the exposure phase, followed by an additional
5P"trials prepended to the next block.

The evoked recovery group experienced the identical paradigm
to the spontaneous recovery group except that the third and fourth
trials of the channel-trial phase were replaced with P* trials (Fig. 2d).

Experiment 2: memory updating

Twenty-four participants performed the memory updating experiment.
The paradigm is based on the control point experiment described in
ref.”inwhich perturbations P°, P*and P~ are presented with one of two
possible sensory cues (different control points onarectangular virtual
object). The experiment consisted of a pre-training, training and
post-training phase. Inthe pre-training and post-training phases, par-
ticipants performed blocks of trials consisting of a variable number

(8,10 or 12in the pre-training phase, and 2, 4 or 6 in the post-training
phase) of washout trials (an equal number of P and P9in a pseudoran-
dom order, where the subscript values denote cues) followed by 1 of 4
possible ‘triplets’. Each triplet consisted of 2 channel trials (both with
cue 1, P) bracketing a cue—perturbation ‘exposure’ trial (P}, P5, P; or
P>, see the main text and Fig. 3c). Each of the 4 triplet types was expe-
rienced once every 4 blocks, using pseudorandom permutations, with
a total of 16 blocks in the pre-training phase and 32 blocks in the
post-training phase.

Inthe training phase (Fig. 3b), the participants performed 24 blocks
each consisting of 62-70 trials. The key feature of each block was that
32 force-field trials (equal number of P; and P; in a pseudorandom
order) was followed by 2 triplets (with exposure trials of P{ and P3). Each
triplet was preceded by a variable number of washout trials (equal
number of P and P in a pseudorandom order) to bring adaptation
back close to baseline. Full details of the block structure are provided
inthe Supplementary Information.

The control point assigned to sensory cue 1(used onall triplet chan-
neltrials) and sensory cue 2 was counterbalanced across participants,
aswas the direction of force field assigned to P* and P". Note that coun-
terbalancing the sensory cues and force field directions across par-
ticipants guarantees that the results we obtained would have had the
opposite pattern (greatest single-trial learning for P, and least for
P}; compare with Fig. 3d, bottom left) had we probed the memory
for context 2 (using P§ channel trials). Thus, this design allows us to
draw conclusions about multiple memories being updated simulta-
neously, while measuring the updating of only one memory for each
participant.

Data analysis

On each channel trial, we linearly regressed the time series of actual
forces generated by participantsinto the channel wall against the ideal
forces that would fully compensate for the forces on aforce-field trial.
The offset of the regression was constrained to zero, and we used the
slope as our (dimensionless) measure of adaptation.

To identify changes in single-trial learning between triplets in the
memory updating experiment, two-way repeated-measures ANOVAs
were performed with factors of cue (2 levels: cue 1and cue 2) and per-
turbation (2 levels: P* and P). To test whether the modulatory effects
of cue and perturbation were confined to separate subsets of the par-
ticipants, we quantified the effect of each by computing, on an
individual-participant basis, the following contrasts in single-trial
learning: P + P] - P - P; (cueeffect) and P; + P; - P; - P; (perturba-
tion effect). We then split participantsinto 2 x 2 groups on the basis of
whether each effect was below or above the median of each effect and
performed a Fisher’s exact test on the resulting 2 x 2 histogram
(Supplementary Information).

All statistical tests were two-sided with significance set to P < 0.05.
Data analysis was performed using MATLAB R2020a.

COIN generative model

Figure 1ashows the graphical model for the generative model. Ateach
timestept=1,..., T, thereisadiscrete latent variable (the context)
¢, €11, ..., ~}that evolves as a Markov process:

¢ lc,—y, [1~ Discrete(m, ), )

where /7= (nj);f:1 isthe transition probability matrix and m = ("fk):=1 is
itsjth row containing the transition probabilities from context j to
each context k (includingitself). In principle, there are an infinite num-
ber ofrows and columns in this matrix. However, in practice, generation
and inference can both be accomplished using finite-sized matrices
by placing anonparametric prior on the matrix (see below).

Each contextjisassociated withacontinuous (scalar) latent variable
x? (the state, for example, the strength of a force field) that evolves



according to its own linear-Gaussian dynamics independently of all
other states:

xP=a"xP+d"+w? WP~ MO0,02), )
where a” and d¥ are the context-specific state retention factor and
drift, respectively, and oé isthe variance of the process noise (shared
across contexts). Each state is assumed to have existed for long
enough thatits prior for the first time it is observed is its stationary
distribution:

)
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At each time step, a continuous (scalar) observation y, (the state
feedback) is emitted from the state associated with the current context:
Y=x4v, v~ MO,0)), (5)
where g2 is the variance of the observation noise (also shared across
contexts).
Inadditionto the state feedback, adiscrete observation (the sensory
cue) g, €141, ..., %} is also emitted. The distribution of sensory cues
depends on the current context:

(6)

is the cue probability matrix (which, in principle, is
1

qlc, @~ Discrete(q)cf),

where® =(¢)”
I j=

also doubly infinite in size but can be treated as finite in practice) and
q)j: (¢jk): isitsjth row containing the probability of each cue kin
=1

contextj.

To make this infinite-dimensional switching state-space model well
defined, we place hierarchical Dirichlet process priors* on the transi-
tionand cue probability matrices. The transition probability matrix is
generated in two steps (Extended Data Fig. 1a). First, an infinite set of
global probabilities for transitioning into each context g = (ﬁ)

(‘global transition probabilities’) is generated by sampling from a
Griffiths, Engen and McCloskey (GEM) distribution:

Bly ~ GEM(y), )
where0 < f.<1and Z;’Zl Bj =1,asrequiredforasetof probabilities. The
global transition probabilities decay exponentially as a function of jin
expectation, with the hyperparameter y controlling the rate of decay
and thus the effective number of contexts: a large y implies a large
number of small-probability contexts (slow decay from a relatively
smallinitial probability), whereas a small y implies a smaller number
of relatively large-probability contexts (fast decay from a relatively
large initial probability).

Second, for each context (row of the transition probability matrix),
aninfinite set of local (context-specific) probabilities for transitioning
into each contextm; = (njk)‘;::1 (‘local transition probabilities’) are gen-

erated via a ‘sticky’ variant® of the Dirichlet process (DP):

(XB+K6j]

+K

wla, B,KNDP[O("‘K, (8)

whereO0<m <landY;_, m;=1,asrequired for aset of probabilities,
and §; is an infinite-dimensional one-hot vector with the jth element
settolandall other elementssetto 0. The mean (base) distribution of
the Dirichlet process is (ap + k8)/(a+kK), with large a + k reducing
variability around this mean (for a tutorial on the Dirichlet process,
seeref. >). Thus, the concentration parameter a controls the resem-
blance of local transition probabilities to the global transition

probabilities B. The self-transition bias parameter k > O controls the
resemblance of local transition probabilities to §; (that is, a certain
self-transition, ¢, = ¢,_;=j). This self-transition bias expresses the fact
that a context often persists for several time steps before switching
(thatis, that contexts are sticky), such as when an object is manipulated
for an extended period of time.

Note that the rows of the transition probability matrix are dependent
astheir expected values (the base distributions of the corresponding
Dirichlet processes) contain a shared term, the global transition dis-
tribution B. This dependency, controlled by a, captures the intuitive
notion that contexts that are common in general (that is, have a large
global transition probability) will be transitioned to frequently from
all contexts.

The cue probability matrix @ = (cp )7_1is generated using an analo-
gous (non-sticky) hierarchical constructlon

l;eh/ewGEM(ye) q)jlae' ﬁeN

DP(a®, B°), 9)

where y€determines the distribution of the global cue probabilities B¢
anda® determines the across-context variability of local cue probabil-
ities around the global cue probabilities.

To allow full Bayesian inference over the parameters governing the
state dynamics @ = [a¥, d9T, we also place a prior on these param-
eters. For this, we use a bivariate normal distribution (truncated
between 0 and 1for a¥)):

0|, I~ TV, 2), (10)

wherep = [#,, O and X = diag(c2, 03 is a diagonal covariance matrix.
Here we have set the prior mean of d*’ to zero under the assumption
that positive and negative drifts are equally probable.

Inference in the COIN model
At each time step ¢=1, ..., T, the goal of inference is to compute
the joint posterlor dlstrlbutlon p(O,,.,.q,..) of all quantities
= 1{c,, ¥ (,)V)} B, 11,B¢, @} thatare not directly observed by the
learner the currént context ¢, the current state of each context x¥,
the parameters governing the state dynamics in each context ", the
context transition parameters (global B and local /7 transition proba-
bilities) and the cue emission parameters (global B¢ and local @ cue
probabilities) based on the sequence of state feedback y,. and sensory
cueobservations g, made untiltime 7 and 7/, respectively (with Tand
7’ each being either t or t — 1; see below). In principle, this posterior is
fully determined by the generative model that was defined in the pre-
vious section and canbe obtained in asequential manner by recursively
propagating (filtering) the joint posterior from one time point to the
next after each new set of observations is made. As exact inference is
infeasible, we use asequential Monte Carlo method known as particle
learning that computes an approximation to this filtered posterior®?$,
We extensively validated the accuracy of this method (Extended Data
Fig.2a,b). The details of the inference method are provided in the Sup-
plementary Information. Here we describe only how the approximate
posterioris used to obtain the main model-derived quantities plotted
inthe paper.

The predicted probability of context j€ {1, ...,/, @}, wherejis the
number of known contexts and @ is the novel context, on trial ¢ (com-
puted after observing the cue but before observing the state feedback;
Fig. 1f, Fig. 2b, d, top right and column 5 in Fig. 4a-c) is

plc.=jq,, ...) :Ip(c, =j,0,\c/q,, ...)dO,\c,, 11
where©, \ c,denotes the set O, excludingc,and... represents all of the
observations before time ¢ (as in Fig. 1). The responsibility of context
Jjontrial t (computed after observing both the cue and the state feed-
back; Fig.1g,h) is
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pcc=iqp Y- = [ Ple=i, 0 \cdq,y, - )dO e (12)

The predicted state distribution for contextj on trial ¢ (computed
before observing the state feedback; Fig. 1d and Fig. 2b,d, bottom left) is
p(fl..) = [ pe?, 0\ xP1...)d0, \x?, 13)
where@,\x¥ denotes the set 0, excluding x¥. The mean of this distri-

bution ¥’ (bottom of column 4 in Fig. 4a-c) can be shown to evolve
across trials (Supplementary Information) as

() Nl . N
X¥+1= Ep(a(i)lc[r%y:,...)[ag)](x? +p(ct:j|qr’yt’ "‘)k?)e?))

) (14)
",

+ )
Ep(d(jnfp‘hvytr-

where Ep(aU)Ict,q,,yt,..‘)[a(/)] denotes the expected value of a? with
respecttothedistribution p(a?|c,, q,,y,, ...) € =y, - 27 is the predic-
tion error for contextj, and kg’ corresponds to the Kalman gain for
contextj, which we plotin Fig. 4. Note that this update is scaled by the
context’sresponsibility p(c,=/q,,,, ...), which underlies the effect of
contextual inference on memory updating (Fig. 1b).

The ‘overall’ predicted state distribution on trial ¢ (that is, the pre-
dicted state distribution of the context that is currently active, and of
whichtheidentity thelearner cannot know with certainty; purple distri-
butioninFig.leandFig.2b, d, bottomright) iscomputed by integrating
out the context from equation (13) using the predicted probabilities
from equation (11) (Fig. 1b):

Epie g, P01 = Zj:u“_.Jm pG?L.ple.=jlg,,..). (15

The motor output u, of thelearner (Fig. 1e, cyan line, Fig. 2b, d, bot-
tomright, cyan line and column 3 in Fig. 4a, b) is the mean of this pre-
dicted state distribution:

u, = zj:{le’g} 27 pc.=jiq,, ). (16)

Applying the COIN model to experimental data
Applying the COIN model to experimental data required solving two
additional challenges. First, participants’ state feedback observations
are hidden fromthe perspective of the experimenter, as they are noisy
realizations of the true underlying states (equation (5)). To appropri-
ately account for our uncertainty about the state feedback participants
actually observed, we computed the distribution of COIN modelinfer-
ences by integrating over the possible sequences of state feedback
observations y, , given the sequence of true states (experimentally
applied perturbations) xj.r(ref.*"). Specifically, on each trial, x; was
assigned a value of O (null-field trials), +1 (P* perturbation trials) or -1
(P~ perturbation trials) and Y, was assumed to be distributed around
x; with independent and identically distributed (i.i.d.) zero-mean
Gaussian observation noise of variance o2 (equation (5)), except on
channel trials (P°) where we treated y, as unobserved, as the state (the
magnitude of a force field) was not observed by the participants on
thosetrials. Note that the distribution of state feedback given the true
state p(y,Ix;)shares the same parameters as those underlying the COIN
modelinferences as it is self-consistently defined by the generative
model. All figures showing COIN model inferences applied to experi-
mental data (thatis, all but Fig. 1) show the quantities described in the
previous section after the state feedback has been integrated out
(Fig.1d-h shows COIN modelinferences conditioned on the state feed-
back sequence shownin Fig.1c).

Second, the behaviour of real participants can always be subject to
influences that are not explicitly included in the COIN model. To

account for these uncontrolled and unmodelled factors, we introduced
aphenomenological ‘motor noise’ component that relates the motor
output u, of the COIN model (equation (16)) to the experimentally
measured adaptation a, viai.i.d. zero-mean Gaussian noise:

a,~Mu,, 03%), 17)

where g,,is the s.d. of the motor noise.

Model fitting and model comparison

In experiments 1 and 2, we fit the parameters of the COIN model §
to participants’ data by maximizing the data log likelihood using
Bayesian adaptive direct search (BADS)*°. In Experiment 1,
9={o,, 1, 0, 04, @, p, n}, Where

p=kK/(a+k) (18)

isthe normalized self-transition bias parameter. In Experiment 2, which
included sensory cues, an additional parameter a® was also fit. In
Experiment 1, we also fit a two-state (dual-rate) and three-state
state-space model to the data of individual participants by minimizing
the meansquared error using MATLAB’s fmincon and BADS. In all cases,
optimization was performed from 30 randomiinitial parameter settings
(Supplementary Information).

To perform model comparison for individual participants, we calcu-
lated the BIC. ABIC difference of greater than 4.6 nats (a Bayes factor of
greater than10) is considered to provide strong evidence in favour of
the model with the lower BIC value*.. To perform a model comparison
atthegroup level, we calculated the group-level BIC, whichis the sum
of BICs over individuals*:.

Parameter and model recovery

We used the parameters from the fits of the COIN and dual-rate models
tothe data of each participantin the spontaneous and evoked recov-
ery experiments to generate ten synthetic datasets per model class
(COIN and dual-rate) for each participant from the corresponding
experiment. In the dual-rate model, the only source of variability
across the different synthetic datasets for a given participant was
motor noise. By contrast, for the COIN model, sensory noise pro-
vided another source of variability in addition to motor noise. We
fit both model classes to each synthetic data set as we did with real
data (see above).

For parameter recovery (Extended Data Fig. 2c), we compared the
COIN model parameters that were used to generate the synthetic data
(true parameters) with the COIN model parametersfit to these synthetic
datasets (recovered parameters).

For model recovery (Extended Data Fig. 2d, e), we examined the
proportion of times that the difference in BIC between the COIN and
dual-rate fits favoured the true model class that generated the data.

Simulating existing datasets

We performed COIN model simulations on adiverse set of extant datain
Fig.4 (similarly Extended DataFigs. 5,8 and 9) ina purely cross-validated
manner, such that we used model parameters fitted to participantsin
our own experiments to make predictions for experiments conducted
in other laboratories using other paradigms.

The paradigms in Fig. 4 and Extended Data Fig. 8 were simulated
using the 40 sets of parameters fit to our individual participants’data
from both experiments. One hundred simulations (each conditioned
onadifferent noisy state feedback sequence) were performed for each
parameter set. The results shown are based on the average of all of
these simulations.

The paradigmsin Extended Data Figs. 5a-o and 9 were variations of
the standard spontaneous recovery paradigm. We therefore simulated
these paradigms (as well as the paradigm in Extended Data Fig. 5p-s)



using the parameters fit to the average spontaneous and evoked recov-
ery datasets. One hundred simulations (each conditioned on a different
noisy state feedback sequence) were performed. The results shown are
based on the average of these simulations.

Modelling working memory

Aworking memory task performed after thelast P trial of aspontane-
ousrecovery paradigm has beenshown tointerfere with spontaneous
recovery, producing an effect thatis reminiscent of evoked recovery on
thefirst P°trial”? (Extended Data Fig. 9a). We modelled the effect of the
working memory task as selectively abolishing the (working) memory
oftheresponsibilities onthe last P~ trial (Extended Data Fig. 9b-d). This
means that, on the first P° trial, the predicted probabilities are based
onthe expected context frequencies (the stationary probabilities).

Modelling visuomotor learning and its explicit and implicit
components
In visuomotor rotation experiments, the cursor moves in a different
direction to the hand (whichis occluded fromvision). Thus, visuomo-
tor rotationsintroduce adiscrepancy between the location of the hand
as sensed by vision and proprioception. To model this discrepancy, we
include a context-specific bias parameter b“?in the state feedback
(equation (5)):

Y, =xE+b v, v~ MO, D). (19)

Tosupport Bayesianinference, we place anormal distribution prior
over this parameter:

b1, 0~ M, 09). (20)
We set p, to zero based on the assumption that positive and negative
biases are equally probable and o, to 707! by hand to match the empir-
icaldatain Extended DataFig. 9e. We extend and modify the inference
algorithm accordingly (Supplementary Information).

On each trial, the state feedback was assigned a value of O (no rota-
tion trials), +1 (P* rotation trials) or -1 (P rotation trials) plus i.i.d.
zero-mean Gaussian observation noise with variance ¢2. Visual
error-clamp trials (P°) were modelled in the same way as channel trials
(thatis, with state feedback unobserved). Adaptation was modelled
as the mean of the predicted state feedback distribution (Extended
DataFigs. 5q and 9f, dashed pink line) plus Gaussian motor noise.

We also modelled an experiment in which an explicit judgement of
the perturbationis obtained on every trial, and theimplicit component
is taken as the difference between adaption and the explicit judge-
ment?. We hypothesized that participants have explicit access to the
staterepresenting their beliefabout the visuomotor rotationbut do not
have accesstothebiasinthe state feedback, whichis therefore implicit.
Thus, we mapped the state of the context with the highest responsibility
onthe previous trial (Extended DataFig. 9h, black line) onto the explicit
componentand the average bias across contexts weighted by the pre-
dicted probabilities (Extended DataFig. 9j, cyanline) onto the implicit
component. Adaptation is then, by definition, the sum of these two
components (Extended Data Fig. 9e, solid pink) plus Gaussian motor
noise. Full details are provided in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All experimental data are publicly available at the Dryad repository
(https://doi.org/10.5061/dryad.m63xsj42r). The datainclude the raw
kinematics and force profiles of individual participants on all trials as
well as the adaptation measures used to generate the experimental
datashownin Figs. 2c, eand 3d.
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com/jamesheald/COIN).

31. Howard, I. S., Ingram, J. N. & Wolpert, D. M. A modular planar robotic manipulandum with
end-point torque control. J. Neurosci. Methods 181, 199-211 (2009).

32. Milner, T. E. & Franklin, D. W. Impedance control and internal model use during the initial
stage of adaptation to novel dynamics in humans. J. Physiol. 567, 651-664 (2005).

33. Scheidt, R. A., Reinkensmeyer, D. J., Conditt, M. A., Rymer, W. Z. & Mussa-Ivaldi, F. A.
Persistence of motor adaptation during constrained, multi-joint, arm movements.

J. Neurophysiol. 84, 853-862 (2000).

34. Teh,Y.W., Jordan, M. I., Beal, M. J. & Blei, D. M. Hierarchical Dirichlet processes. J. Am.
Stat. Assoc. 101, 1566-1581(2006).

35. Fox, E. B., Sudderth, E. B., Jordan, M. I. & Willsky, A. S. An HDP-HMM for systems with state
persistence. In Proc. 25th International Conference on Machine Learning (eds. McCallum,
A. & Roweis, S.) 312-319 (Omnipress, 2008).

36. Teh, Y. W. in Encyclopedia of Machine Learning (eds. Sammut, C. & Webb, G. I.) 280-287
(Springer, 2011).

37. Carvalho, C. M., Johannes, M. S., Lopes, H. F. & Polson, N. G. Particle learning and
smoothing. Stat. Sci. 25, 88-106 (2010).

38. Lopes, H.F., Carvalho, C. M., Johannes, M. S., & Polson, N. G. in Bayesian Statistics 9 (eds.
Bernardo, J. M. et al.) (Oxford Univ. Press, 2011).

39. Houlsby, N. et al. Cognitive tomography reveals complex, task-independent mental
representations. Curr. Biol. 23, 2169-2175 (2013).

40. Acerbi, L. & Ma, W. J. Practical Bayesian optimization for model fitting with Bayesian
adaptive direct search. In Proc. Advances in Neural Information Processing Systems (eds.
Guyon, |. et al.) 1836-1846 (Curran, 2017).

41, Jeffreys, H. The Theory of Probability (Oxford Univ. Press, 1998).

42. Li,J., Wang, Z. J., Palmer, S. J. & McKeown, M. J. Dynamic Bayesian network modeling of
fMRI: a comparison of group-analysis methods. Neuroimage 41, 398-407 (2008).

Acknowledgements We thank J. N. Ingram for technical support and G. Hennequin for
discussions. This work was supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement no.
726090 to M.L.), the Wellcome Trust (Investigator Awards 212262/Z/18/Z to M.L. and
097803/Z/11/Z to D.M.W.), the Royal Society (Noreen Murray Professorship in Neurobiology to
D.M.W), the National Institutes of Health (ROTNS117699 and U19NS104649 to D.MW.) and
Engineering and Physical Sciences Research Council (studentship to J.B.H).

Author contributions J.B.H. developed the model, implemented the model, performed the
experiments, analysed the data and performed simulations. J.B.H. and D.M.W. designed the
behavioural experiments. All of the authors were involved in the conceptualization of the
study, developed techniques for analysing the model, interpreted results and wrote the paper.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-021-04129-3.

Correspondence and requests for materials should be addressed to James B. Heald.

Peer review information Nature thanks the anonymous reviewers for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.5061/dryad.m63xsj42r
https://github.com/jamesheald/COIN
https://github.com/jamesheald/COIN
https://doi.org/10.1038/s41586-021-04129-3
http://www.nature.com/reprints

Article

global transition probabilities ()

local transition probabilities (/7)

from context

1

w N

I

generative model

to context

hierarchical Dirichlet process

b

from context

global transition probabilities ()

inference process

t
responsibilities

to context

local transition probabilities (

from context

1 I
2 I
s I

to context

=

parameter learning in the COIN model

contexts cues
c d
1 1
z '—\,A\ gz |
% global transition o5
. © ©
-g stationary % '8
g, ST 38 sy
time time
- ’ from context 1 ’ context 1
<]
E E‘ to context 1 ] E cue 1
ca to context 2 [S)¢<} cue 2
ol =®
=Q to context 3 g Q novel cue
w2 to novel context <
8% o %0
ke]
time time
from context 2 context 2
S 1 1
=2 o=
9= 3=
5% °3
f=je} 8 o
=2 o8
8% o 0
3 [
time time
- 1 from context 3 1 context 3
S
=2 > {
6= SE
C QO oQa
[ =3
%3 g%
gsa 0 %0 L
3 [ ——
time time
e =
- 0.1 E 1
o} s
o
S °©
o 0 209
= S
5 5
-0.1 - ©0.8 "
time = time

Extended DataFig.1|See next page for caption.



Extended DataFig.1|Additional details of the COIN model (related to
Fig.1).a-b, Hierarchy and generalizationin contextualinference. a, Local
transition probabilities are generated in two steps via a hierarchical Dirichlet
process.Inthefirststep (top), aninfinite set of global transition probabilities B
aregenerated viaastochasticstick-breaking process (Supplementary
Information). Probabilities are represented by the width of bar segments with
different coloursindicating different contexts. In the second step (bottom), for
each context (‘from context’), local transition probabilities to each context (‘to
context’) are generated (arow of /7) viaastochastic Dirichlet processand are
equaltotheglobal probabilities in expectation (bar a self-transition bias, which
weset tozero here for clarity). (An analogous hierarchical Dirichlet process,
notshown, isused to generate the global and local cue probabilities.)

b, Contextual inference updates both the global and local transition
probabilities. Context transition counts are maintained for all from-to pairs of
known contexts and get updated based on the contexts inferred on two
consecutive time points (responsibilities at time pointstand ¢ +1). These
updated context transition counts are used to update the inferred global
transition probabilities ﬁ Theupdated global transition probabilities and
context transition counts produce new inferences about the inferred local
transition probabilities 1.Note that although the modelinfers full (Dirichlet)
posterior distributions over both the global and local transition probabilities,
for clarity here we only show the means of these posterior distributions
(indicated by the hat notation). In the example shown, only row 3 of the context
transition countsis updated (as context 3 has an overwhelming responsibility
attimet), butall rows of the local transition probabilities are updated due to
the updating of the global transition probabilities (if the model were non-
hierarchical, there would be no global transition probabilities, and so the local
transition probabilities would only be updated for context 3 viathe updated
context transition contexts). Thus, inferences about transition probabilities
generalise from one context (here context 3) to all other contexts (here

contexts1and?2)dueto the hierarchical nature of the generative model. Note
thatwhen anovel contextisencountered for the first time, its local transition
probabilities areinitialised based on [3 thus allowing well-informed inferences
about transitions to be drawnimmediately. c-e, Parameter inferencein the
COIN modelfor the simulationshownin Fig.1c-h.Inadditiontoinferring
states and contexts, the COIN model also infers context transition (c) and cue
(d) probabilities, as well as the parameters of context-specific state dynamics
(e).c, Transition probabilities. Top: Inferred global transition probabilities
(solid lines) for transitioning into each known context (line colours) and the
novel context (grey). Pale lines show inferred stationary probabilities for the
same contexts, representing the expected proportion of time spentin each
context given the currentestimate of the local transition probabilities (below).
Bottom three panels: inferred local transition probabilities from each context
(coloursasintop panel). Note that the local transition probability from context
1tocontext2increases when cup 3ishandled (thatis, whentransitions from
context2toitselfareinferred to happen) dueto the generalization of

inferred transition probabilities across contexts. Also note that the local
transition probabilities from context 3 areinitialised based on the global
transition probabilities (plus a self-transition bias). d, Inferred global (top
panel) and local cue probabilities for the three known contexts (bottom three
panels) and cues (line colours). Although the modelinfers full (Dirichlet)
posterior distributions over both transition (c) and cue probabilities (d), for
clarity here we only show the means of these posterior distributions.

e, Posterior distributions of the state drift (left) and retention parameters
(right) for the three known contexts (colours asin ¢, novel context not shown
for clarity). Although the modelinfers the joint distribution of the driftand
retention parameters for each context, for clarity here we show the marginal
distribution of each parameter separately. Note that driftand retention
areinferred tobelarger for the red context thatis associated with the largest
perturbation.
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Extended DataFig. 2| Validation of the COIN model. a, Validation of the
inference algorithm of the COIN model with asingle context. We computed
inferencesinthe COIN model with asingle context based on synthetic
observations (state feedback) generated by its generative model (Fig. 1a). Plots
show the cumulative distributions of the posterior predictive p-values for the
state variable (left) and the parameters governing its dynamics (retention,
middle; drift, right). The posterior predictive p-value is computed by
evaluating the cumulative distribution function of the model’s posterior over
the corresponding quantity at the true value of that quantity (as defined by the
generative model). Empirical distributions of the posterior predictive p-values
were collected across 4000 simulations (with different true retention and drift
parameters), with 500 time stepsin each simulation (during which the true
state changes, but the true retention and drift parameters are constant). Note
thatalthough the true retention and drift parameters do not change during a
simulation, inferences in the model about them still evolve ingeneral,andsoa
new posterior predictive p-valueisgenerated at each time step even for these
quantities. Ifthe modelimplements well-calibrated probabilistic inference
under the correct generative model, the empirical distributions of

the posterior predictive p-values should all be uniform. This is confirmed by all
cumulative distributions of the posterior predictive p-values (orange and
purple curves) approximating the identity line (thin black diagonal line).
Orange curves show posterior predictive p-valuesunder the corresponding
marginals of the model’s posterior. To give additional information about the
model’sjoint posterior over the retention and drift parameters, we also show
the cumulative distribution of the posterior predictive p-value for each
parameter conditioned on the true value of the other parameter (retention|
drift, and drift| retention, purple curves). b, Validation of the inference
algorithm of the COIN model with multiple contexts. Simulationsasinabut
withadditional synthetic observations (sensory cues) and multiple contexts
allowed both during data generation and inference. Empirical distributions of
the posterior predictive p-values were collected across 2000 simulations (with
different true retention and drift parameters), with 500 time stepsin each
simulation (during which not only the true states change but also contexts
transition, and sometimes novel contexts become active). Left column shows
thetruedistributions of sensory cues, contexts and parameters. Inset shows
the growth of the number of contexts over time both during generation (blue)
andinference (orange). Middle and right columns show the cumulative
distributions of the posterior predictive p-values (pooled across datasetsand
time steps) for the observations (top row), contexts and state (middle row) and
parameters (bottom row). To calculate the posterior predictive p-values for the

context, inferred contexts wererelabelled by minimising the Hamming
distancebetweentherelabelled context sequence and the true context
sequence (Supplementary Information). For the parameters, the posterior
predictive p-values were calculated with respect to both the marginal
distributions (retention and drift) and the conditional distributions (retention |
drift, and drift| retention) asin a. The cumulative probability curves
approximate the identity line (thinblack diagonal line) showing that the
inferred posterior probability distributions are well calibrated. c, Parameter
recovery inthe COIN modelrelated to Fig. 2. Plots show the COIN model
parameters that were recovered (y-axes) from fits to 10 synthetic datasets
generated with the COIN model parameters (true, x-axes) obtained from the
fitsto each participantinthe spontaneous (n=8) and evoked (n=8) recovery
experiments (Extended DataFig. 3). Vertical bars show the interquartile range
oftherecovered parameters for each participant. While several parameters are
recovered withgoodaccuracy (aq, Hy Og o), othersarenot (o, andin particular
o,and p). Weexpect that with richer paradigms and larger datasets, all
parameters would be recovered accurately. Mostimportantly, despite partial
success withrecoveringindividual parameters, model recovery shows that
recovered parameter sets taken asawhole canstillbe used to accurately
identify whether data was generated by the dual-rate or COIN model (d). Note
that we make no claims about individual parameters in this study as our focus is
onmodelclassrecovery. d-e, Model recovery for spontaneous (d) and
evoked recovery experiments (e) related to Fig. 2. Synthetic datasets were
generated using one of two models (COIN model, cyan; dual-rate model, green).
Parameters used for each model were those obtained fromthe fitsto each
participantin the spontaneous (n=38) and evoked (n=8) recovery experiments
(Extended DataFig. 3), that s, for the COIN model, these were the same
synthetic datasetsasthose usedinc. Thenthe same model comparison
method that we used on real data (Fig. 2c, e, insets) was used to recover the
modelthat generated each synthetic dataset (Methods). Arrows connecttrue
models (used to generate synthetic data, disks on top) to models that were
recovered from their synthetic data (pie-chart disks at bottom). Arrow colour
indicatesidentity of recovered model, arrow thickness and percentages
indicate probability of recovered model given true model. Bottom disk sizes
and pie-chart proportions show total probability of recovered model and
posterior probability of true model given recovered model (assuminga
uniform prior over true models), respectively, with percentages specifically
indicating posterior probability of the correct model. These results show that
themodelrecovery processis generally very accurate and actually biased
against the COIN modelinfavour of the dual-rate model.
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Extended DataFig. 3| COIN model parameters. Left column: Parameters for
illustrating the COIN model (I: purple), model validation (V: brown) and fits to

individualsinthe spontaneous (S: blue) and evoked (E: green) recovery
experiments, to the average of both groups (A: cyan), and individualsin the
memory-updating experiment (M: red). Right: scatter plots for all pairs of

parameters for the six groups. The overlap of data points suggest parameters
aresimilar across experiments. o, process noise s.d. (equation 3); i, g,: prior

mean and s.d. for context-specific state retention factors (equation10); o4
priors.d. for context-specific state drifts (equation 10); a: concentration of
local transition probabilities (equation 8); p: self-transition bias parameter

(equation18); o,,: motor noise s.d. (equation 17); a*: concentration of local cue
probabilities (equation 9). Parameters used in the figuresis as follows. I: Fig. 1

and Extended DataFig.1c-e. V: Extended DataFig. 2a, b. S: Fig. 2c, Extended
DataFig. 6f (column1) and Extended DataFig. 2d. E: Fig. 2e, Extended Data
Fig. 6f (column 3) and Extended Data Fig.2e. S & E: Extended Data Fig. 2c.

A:Fig.2band d, Extended DataFig.5and Extended Data Fig. 9 (bias added for
visuomotor rotation experiments: Extended Data Fig. 5a-j, p-s and Extended
DataFig.9e-1).M:Fig.3 and Extended DataFig. 7a-d.S, E& M: (all parameters,
buta®):Fig.4 and Extended DataFig. 8. The robustness analyses (Extended
DataFig.4) used perturbed versions of the same parameters as the
corresponding unperturbed simulations. Toreduce the number of free
parametersinthe model, we set the parameters of the hierarchical Dirichlet
processthat determine the expected effective number of contexts or cues,

y (equation 7) and y€ (equation 9), respectively, both to 0.1, the prior mean for
context-specific state drifts pytozero (equation10) and the standard deviation
ofthe sensory noise o,to 0.03 when fitting or simulating the model, with the
variance of the observation noise (equations 5and 19) set to 2= g2+ 0. For
visuomotor rotation experiments (Extended Data Fig. 5a-j, p-s and Extended
DataFig. 9e-1), we set the mean of the prior of the bias y1, to zero (equation 20)
anditss.d.o,to707%.
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Extended DataFig. 4 |Robustness analysis of the main COIN model results.
Totesthow robust the behaviour of the COIN model is, we added noise to the
parametersfitto theindividual participantsin the spontaneousrecovery,
evoked recovery and memory updating experiments and re-simulated the
paradigmsinFigs.2-4: spontaneousrecovery (a), evoked recovery (b),
memory updating (c), savings (d), anterograde interference (e) and
environmental consistency (f). For each experiment, we simulated the COIN
model for the same participants asin Figs.2-4 but perturbed each participant’s
parameter values. Thatis, for each parameter (suitably transformed to be
unbounded) we calculated the standard deviation across participants (relevant
forthegiven paradigmor set of paradigms) and then perturbed each
participant’s (transformed) parameter by zero-mean Gaussian noise whose
standard deviationwas afraction (1=0, 0.05, 0.5 or 1.0) of this empirical
standard deviation, after which we used the inverse transform to obtain the
actual parameter usedin these perturbed simulations. For parameters thatare

constrained to be non-negative (o5, 9,, 04, @, a®,0,,), weused alogarithmic
transformation, whereas for parameters constrained to be on the unitinterval
(u,, p), weusedalogittransformation. Column 1: experimental data (plotted as
inFigs.2-4). Columns 2-5: output of the COIN model for different amounts of
noiseadded to the parameters. Note that the simulations were not conditioned
ontheactualadaptation data of individual participants (in contrast to the
original simulations of Figs. 2and 3) because these dataare not available for the
experiments showninFig. 4 (for which the original simulations were already
performed using this ‘open-loop’ simulationapproach). The robustness
analysis shows that most predictions of the COIN model are robust to changes
inthe parametersand only start to deviate for large parameter changes (A=1) in
some of their quantitative details (such as the magnitude of spontaneous
recovery). NotethatA=1leadsto changesin parameters thatare ofthe same
magnitude as randomly shuffling the parameters across participants.
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Extended DataFig. 5|History dependence of contextual inference.

a-j, Contextual inference underlies the elevated level of spontaneous
recovery after ‘overlearning’. a, Spontaneousrecovery paradigm for
visuomotor learning in which the length of the exposure (P*) phaseis tripled
from 200 trials (‘standard’ paradigm, pink) to 600 trials (‘overlearning’
paradigm, green). For comparison, paradigms are aligned to the end of the
exposure phase. b, Adaptationin the COIN model for the standard and
overlearning paradigms (same parameters as in Fig. 2b and d but with the
addition of abias parameter; see Supplementary Information and also
Extended DataFig. 3, parameter set A). Adaptation corresponds toreach angle
normalized by the size of the experimentally imposed visuomotor rotation.
Note elevated level of spontaneous recovery after overlearning compared to
thestandard paradigm, qualitatively matching visuomotor learning datain
Fig.4a of Ref. ", c-f, Internal representations of the COIN model for the
standard paradigm. Inferred bias (c) and predicted state (d) distributions for
each context (colours).e, Predicted probabilities of each context (with zoomed
view starting from near the end of P* exposure), colours asin c-d, grey is novel
contextasinFig.1f.f, Predicted state feedback (predicted state plus bias)
distribution (purple), which is amixture of theindividual contexts’ predicted
state feedback distributions (not shown) weighted by their predicted
probabilities (e). Total adaptation (cyanline) is the mean of the predicted state
feedback distribution. g-j, same as c-ffor the overlearning paradigm. For
comparison, the dashed horizontal lines in both paradigms show the final level
ofeachvariable for thered contextinthe standard paradigm. Note that
overlearningleavesinferences aboutbiases and states largely unchanged
(comparelinc&gand2ind &h)butleadsto higher predicted probabilities of
the P’ context (red) in the channel-trial phase (compare 3in e &i), reflecting the
true statistics of the experimentinwhichP*occurred more frequently. Inturn,
this makes theP*bias and state contribute more to total adaptationin the
channel-trial phase, thus explaining higher levels of spontaneous recovery.
Therefore, differences between conditions are explained by contextual
inferencerather than by differencesinbias or stateinferences. Theresults are
qualitatively similar when simulated as a force-field paradigm (thatis, without
bias, not shown). k-0, Contextual inference underlies reduced spontaneous
recovery following pre-training withP". k, Adaptationin the channel-trial
phase of atypical spontaneousrecovery paradigm (standard, pink, asin Fig. 2b)
and two modified versions of the paradigm in which theP* phase is preceded by
aP” (pre-training) phasein whichP iseitherintroduced and removed abruptly
(Pbrupe dark green) or gradually (Py,,q,,, light green). Datareproduced from
Ref..I-0,Simulation of the COIN model for the same paradigms (same
parametersasin Fig.2band d; Extended DataFig. 3, parameter set A), plotted

asinFig.2b-c.Ineach paradigm, contexts are coloured according to their order
ofiinstantiation during inference (blue~red->orange). Note that pre-training
withP~ (either abruptor gradual) leaves inferences about states within each
contextlargely unchanged at the beginning of the channel-trial phase
(compare corresponding numbers1-2in column2 across m-o0). However, the
pre-trainingleads to higher predicted probabilities of theP™ context initially
(compare number 3inmto number 3inn & o) and throughout the channel-trial
phase (compare number 4 across m-o) reflecting the true statistics of the
experimentinwhichP occurred more frequently (compare columnlacross
m-o0). Inturn, this makes theP” state contribute more to total adaptation, thus
explainingthereductioninboth theinitial and final levels of adaptation during
the channel-trial phase in the Py, and Py, groups. Therefore, asin Fig. 4,
differences between conditions are explained by contextual inference rather
thanstateinference. p-s, Contextual inference underlies slower
de-adaptation following agradually introduced perturbation.
p,Adaptation (normalized reachangle, asinb) inaparadigminwhicha
visuomotor rotationisintroduced abruptly (pink) or gradually (green) and
thenremoved abruptly. Datareproduced from Ref.". q-s, Simulation of the
COIN modelonthe abrupt (q, pink, and r) and gradual (q, green, and s)
paradigms (same parametersasin Fig. 2b and d but with the addition of abias
parameter; Extended DataFig. 3, parameter set A) plotted asin b-j. Note that
contextsare coloured according to their order of appearance duringinference
(blue~red). Inresponse to the abruptintroduction of theP* perturbation, anew
memoryis created (1). In contrast, the gradualintroduction of theP*
perturbation prevents the creation of anew memory, thus requiring changesin
theinferred bias and state of the original memory associated with P® (2, blue
context) toaccount for the slowly increasing perturbation. Therefore, the
‘blue’ contextisinferred tobeactive throughout the exposure phase (3) and
becomes associated with aP*-like state. However, at the beginning of the
abruptly introduced post-exposure (P°) phase, anew memory is created (4),
whichhasalowinitial predicted probability that can only beincreased by
repeated experience with P° (5). This leads to slower de-adaptationin the post-
exposure phase compared to the abrupt paradigm (6), in which the original
contextassociated with P° (blue) is protected (7) and canbe reinstated quickly
(8) asthePlocal self-transition probability has been learned to be higher
duringthe pre-exposure phase. Note that the smaller errors caused by the
gradual perturbation relative to the abrupt conditionare better accounted for
byanerrorinthestateratherthananerrorinthebias,and therefore the stateis
updated more than thebias. Theresults are qualitatively similar when
simulated asaforce field paradigm (that is, without bias, not shown).
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Extended DataFig. 6 | Additional analyses of spontaneous and evoked
recoveryrelated toFig.2.a-c, Mathematical analysis of spontaneous and
evokedrecovery. The channel-trial phase of spontaneous recovery and
evoked recovery (after the twoP” trials) simulated inasimplified setting
(Supplementary Information) with two contexts that are initialized to have
equal butopposite state estimates (a) and equal (spontaneous recovery, solid)
or highly unequal (evoked recovery, dashed) predicted probabilities (b). For
the two contexts, the retention parameters are assumed to be constant and
equal, and the drift parameters are assumed to be constant, of the same
magnitude but opposite sign. Mean adaptation (c), which in the COIN model is
the average of the state estimates (a) weighted by the corresponding predicted
probabilities (b), shows the classic pattern of spontaneous recovery (solid, cf.
Fig.2b, c) and the characteristicabruptrise of evoked recovery (dashed, cf.
Fig.2d, e). Note thatalthoughin the full model, state estimates are different
between evoked and spontaneous recovery following the twoP* trials, here we
assume they are the same (no separate solid and dashed lines ina) for simplicity
and todemonstrate that the difference in mean adaptation between the two
paradigms (c) can be accounted for by differences in contextual inference
alone (b, cf.Fig.2b and d, top right). Circles on the right show steady-state
values of inferences and adaptation. Note thatin both paradigms, adaptationis
predicted to decay toanon-zero asymptote (seealso e). d, State-space model
fits toadaptation datafrom the spontaneous and evoked recovery groups.
Solid lines show the mean fits across participants of the two-state model (5
parameters, top row) and the three-state model (7 parameters, bottom row) to
the spontaneous recovery (left column) and evoked recovery (right column)
datasets. Mean *s.e.m.adaptation on channeltrialsshowninblack (sameasin
Fig.2cande). Insets show differencesin BIC (nats) between the two-state
model and the three-state model for individual participants (positive valuesin
greenindicate evidence in favour of the two-state model, and negative values
inpurpleindicateevidenceinfavour of the three-state model). At the group
level, the two-state model was far superior to the three-state model (A group-
level BIC of 64.2 and 78.4 nats in favour of the two-state model for the
spontaneous and evoked recovery groups, respectively). Individual states are
shown for the two-state model (top, blue and red). Both the fast and slow
processes adapt toP* during the extended initial learning period. TheP~ phase
reverses the state of the fast process, but not of the slow process, so that they

cancel when summed resulting in baseline performance. Spontaneous
recovery during the P¢ phase is then explained by the fast process rapidly
decaying, revealing the state of the slow process that has remained partially
adapted toP". Note that this explanation arises because in multi-rate models all
processes contribute equally to the motor outputatall times. This s
fundamentally different from the expression and updating of multiple context-
specific memories in the COIN model, which are dynamically modulated over
time according to ongoing contextual inference. e, Evoked recovery does not
decay exponentially to zero. According to the COIN model, adaptationinthe
channel-trial phase of evoked recovery can be approximated by exponential
decay toanon-zero (positive) asymptote (a-c, Fig. 2e, Supplementary
Information). To test this prediction, we fitan exponential function that either
decaystozero (lightand dark green) or decays to anon-zero (constrained to be
positive) asymptote (cyan) to the adaptation data of individual participantsin
the evoked recovery group after the twoP" trials (black arrow). The two zero-
asymptote models differ in terms of whether they are constrained to pass
through the datumon the first trial (light green) or not (dark green). The mean
fitsacross participants for the models that decay to zero (green) fail to track
the mean adaptation (black, +s.e.m.across participants), which shows aninitial
period of decay followed by a period of little or no decay. The mean fit for the
model that decaysto anon-zeroasymptote (cyan) tracks the mean adaptation
well and was strongly favoured inmodel comparison (A group-level BIC of
944.3 and 437.7 nats compared to the zero-asymptote fits with constrained and
unconstrained initial values, respectively). Note that fitting to individual
participants excludes the confound of finding amore complex time course
(e.g.onewithanon-zero asymptote) only due to averaging across participants
thateach showa different simple time course (e.g. all with zero asymptote but
different time constants). f, COIN and dual-rate modelfits for individual
participantsinthespontaneous and evoked recovery groups. Dataand
model predictions are shown for individual participants asin Fig.2c and e for
across-participantaverages. ParticipantsintheS and Egroups are ordered by
decreasing BIC difference between the dual-rate and COIN model (that s, S1's
and E1's data most favour the COIN model), asininsets of Fig. 2cand e. Note
that the COIN model can account for much of the heterogeneity of
spontaneous recovery (e.g.fromlarge in S1to minimal in $6) and evoked
recovery (e.g.fromlarge in E1 to minimal in E7).
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memory updating experiment: time-course of learning
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Extended DataFig.7|Additional analyses of the memory updating
experiment (related to Fig. 3). a-b, Memory updating experiment:
time-course oflearning. a, Adaptation on channeltrialsat theend of each
block of force-field trials in the training phase (purple), which occur before P°
washout trials, and on the first channel trial of triplets within each block
(orange), which occurs after P’ washout trials. Datais mean +s.e.m. across
participants and lines show mean of COIN modelfits (8 parameters, Extended
DataFig.3).b, Single-trial learning on triplets that were consistent with the
training contingencies. Data (mean +s.e.m. across participants) with mean of
COIN modelfitsacross participants. Positive learning reflects changesin the
directionexpected based onthe force field of the exposure trial (anincrease
followingP*and a decrease followingP"). c-d, Mathematical analysis of
single-trial learning. Single-trial learning in the COIN model (column1) for the
four cue-perturbation tripletsin the pre-training phase (c) and the
post-training phase (d) in the memory updating experiment. The COIN model
was fitto each participantand model fits are shownas mean +s.e.m.
(single-trial learning, fullmodel prediction) or mean (dot product, posterior,
prior andlikelihood) across n=24 participants. Single-trial learning (column1)
isapproximately proportional toadot product (column 2) between the vector
of posterior context probabilities (responsibilities) on the exposure trial of the
tripletand the vector of predicted context probabilities on the subsequent
channel trial (see the Supplementary Information for derivation). This dot

product canbe further approximated by collapsing the vector of predicted
probabilities toa one-hotvector, thatis, by the responsibility p(c,=c"lq,, y,, ...)
(column 3) of the context thatis predominantly expressed on the second
channeltrial of the triplet (¢’, the context with the highest predicted
probability on the second channel trial of the triplet), where ... denotes all
observations beforetime¢(asinFig.1). Thisresponsibility is proportionaltoa
product oftwo terms. The first termis the prior context probability

plc,= c*|qt, ...)(column 4), that s, the predicted context probability before
experiencingthe perturbation (asin Fig. 1f), whichis already conditioned on
thesensory cuevisible from the outset of the trial. The second termexpresses
thelikelihood of the state feedback in that context p(yt lc,=c*,...)(column5).
Because prior tolearning neither cues nor feedback are yet consistently
associated with a particular context, the COIN model predicts that the prior
and likelihood, and thus total single-trial learning should all be largely uniform
across contexts before training. e-f, The effects of cue and perturbation on
single-trial learning inindividual participants. e, Single-trial learning
(post-training) shown as a function of perturbation separated by cue (left) or as
afunction of cue separated by perturbation (right) for each participant (lines).
Noteasignificanteffect for both the perturbation and the cue.f, Scatter plot of
cue effect (Pj+P;—P,—P;) against perturbation effect (P;+P;—P;-P;) for each
participant (dots). Solid lines show medians of corresponding effects. Note the
lack of anti-correlation between two effects.
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Extended DataFig. 8| Additional analysis of the effect of environmental
consistency onsingle-triallearning related toFig.4c.Columns1&2:
experimental paradigm and datareplotted from Ref. . Participants
experienced repeating cycles of P* trials of varying lengths (column1: 20 P*
trialsin P20, 7in P7,1in Pland 1followed by 1P trialin PIN1) in betweenP trials.
To assess single-trial learning (column 2) during exposure to the environments,
channel trials were randomly interspersed before and after the firstP* trialina
subset of the force-field cycles. Columns 3 to 5show the outputand internal
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inferences of the COIN model in the same format as Fig. 4c (same parameters as
inFig.4; Extended DataFig. 3, parameter set S, E&M). The COIN model
qualitatively reproduced the pattern of changesin single-trial learning seen
overrepeated cyclesin this paradigm. As in Fig. 4, differencesin the apparent
learning rate were not driven by differencesin either the proper learning rate
(Kalman gain) or the underlying state (column 4) but were instead driven by
changes in contextual inference (column 5).
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Extended DataFig. 9| Cognitive processes and the COIN model.

a-d, Maintenance of context probabilities may require working memory.
a,Adaptationinaspontaneousrecovery paradigminwhichanon-memory
(pink) or working memory task (green) is performed at the end of the P phase
before starting the channel-trial phase (datareproduced from Ref.??). Initial
adaptationin the channel-trial phase (inset) shows the working memory task
abolishes spontaneousrecovery and leads to adaptation akin to evoked
recovery (cf. Extended Data Fig. 6a-c). b-d, COIN model simulationinwhich the
working memory task abolishes the (working) memory of the context
responsibilities on the last trial of theP” phase but not the context transition
(and thus stationary) probabilities (same parametersasin Fig.2band d;
Extended DataFig. 3, parameterset A), plotted asin Fig.2b, c. Thecirclesonthe
predicted probability (zoomed view) show the values on the first trial in the
channel-trial phase.d, as (c) but for the working memory task. The predicted
probabilitieson the first trialin the channel-trial phase are set to the values
under the stationary distribution (shown onevery trialin the simulation of
Extended DataFig.1c). We calculate the stationary context distribution by
solving = /7 for  (arow vector), subject to the constraint that  is a valid
probability distribution (i.e. all elements of  are non-negative and sumto1),
where Tis the expected local transition probability matrix. e-I, Explicit versus
implicitlearningin the COIN model. e, Results of aspontaneous recovery
paradigm (as in Fig. 2b) for visuomotor learning. Adaptation is computed as
participants’ reach angle normalized by the size of the experimentally imposed
visuomotor rotation. Explicitlearning (dark green) is measured by participants
indicating theirintended reach direction. Implicitlearning (light green) is

obtained as the difference between total adaptation (solid pink) and explicit
learning. Inthe visual error-clamp phase (P€), participants were told to stop
using any aiming strategy so that the direction they moved was taken as the
implicit component of learning. A control experiment (dashed pink) was also
performedinwhichthere was noreporting ofintended reach direction. Data
reproduced from Ref. . f-1, Simulation of the COIN model on the same
paradigm (same parametersasin Fig.2b and d but with the addition of abias
parameter; Extended DataFig. 3, parameter set A). b, Predictions for
experimentally observable quantities. Light green line: implicitlearningis the
average biasacross contexts weighted by the predicted probabilities (cyanline
inj). Dark greenline: explicit learning is the state of the most responsible
contextonthe previous trial (blacklinein h). Solid pinkline: total adaptation
for thereporting conditionis the sumofexplicitand implicitlearning (asine).
Dashed pinkline: total adaptation for the non-reporting conditionis the
average predicted state feedback across contexts weighted by the predicted
probabilities (cyanlineinl, asinall experiments thathad noreporting
element).g-h, Inferred bias (g) and predicted state (h) distributions for each
context (colours), withblack line showing the mean state of the most
responsible context (coloured line below axis) for trials on which an explicit
reportwassolicited. i, Predicted probability of each context. Coloursasing-h,
greyisnovel contextasin Fig. 1f. j-k, Inferred bias (j) and predicted state (k)
distributions (purple), obtained as mixtures of the respective distributions of
individual contexts (g-h) weighted by their predicted probabilities (i), and their
means (cyanlines).l, Predicted state feedback distribution (purple, computed
asthesumofbiasinjand predicted stateink) andits mean (cyan).
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Extended Data Table 1| Comparison of the COIN model to other models

single-context models multiple-context models
dual-rate memory source winner- DP-KF MOSAIC COIN
of errors of errors take-all
Smith et al. Herzfeld et al. * Berniker & Oh & Gershman et al’2| Haruno et al. 26
Kording 16 Schweighofer11

spontaneous a b b c d
recovery v X X X X X v/
evoked e e f f f d
recovery X X X v
memory g g g h g,h
updating X X X X X v v
savings after i
full washout X / v / / 7 v
anterograde a b b i
interference v X X X v X v
environmental i b b k
consistency X v X X X v v
explicit/implicit m 1 I 1 1 I
learning X X X X X v

Table shows which experimental phenomena (rows) can be explained by different single and multiple-context models (columns). Alphabetical superscripts index the key feature(s) missing
from each model that are primarily responsible for their inability to explain a particular phenomenon. Note that we consider each model as described and implemented by its authors (although
it might be possible to modify or extend these models to explain more features). Orange cross-ticks are for models that can partially explain a phenomenon. Spontaneous recovery, the
gradual re-expression of P* in the channel-trial phase (Fig. 2c), requires a single-context model to have multiple states that decay on different time scales or a multiple-context model that can
change the expression of memories in a gradual manner based on the amount of experience with each context. Therefore, single-context models that have a single state?, or multiple-context
models that do not learn context transition probabilities® or do not have state dynamics® do not show spontaneous recovery. Models that learn transition probabilities but that do not represent
uncertainty about the previous context® (the ‘local’ approximation in DP-KF) can either include a self-transition bias or not. With a self-transition bias, the expression of memories changes in an
abrupt manner (akin to evoked recovery) when, in the channel-trial phase, the belief about the previous context changes (e.g. from P to P*), and thus such models fail to explain the gradual
nature of spontaneous recovery. Without a self-transition bias, the change in expression of memories is gradual based on updated context counts, but this occurs too slowly relative to the time
scale on which the rise of spontaneous recovery occurs. Evoked recovery, the rapid re-expression of the memory of P* in the channel-trial phase (Fig. 2e) that does not simply decay exponentially
to baseline (Extended Data Fig. 6€), requires a model to be able to switch between different memories based on state feedback. Therefore, single-context models® that cannot switch

between memories are unable to show the evoked recovery pattern seen in the data. Multiple-context models with memories that decay exponentially to zero in the absence of observationsf
(for example, during channel trials) can only partially explain evoked recovery, showing the initial evocation but not the subsequent change in adaptation over the channel-trial phase. Models
with no state decay® cannot explain evoked recovery. Memory updating requires a model to update memories in a graded fashion and to use sensory cues to compute these graded updates.
Therefore, models that either have no concept of sensory cues? or multiple-context models that only update the state of the most probable context in an all-or-none manner® do not show
graded memory updating. Savings, faster learning during re-exposure compared to initial exposure after full washout, requires a single-context model to increase its learning rate or a
multiple-context model to protect its memories from washout and/or learn context transition probabilities. Therefore, single-context models with fixed learning rates' do not show savings.
Anterograde interference, increasing exposure to P* leads to slower subsequent adaptation to P~, requires a single-context model to learn on multiple time scales or a multiple-context model
to learn transition probabilities that generalise across contexts. Therefore, single-context models with a single state?, or multiple-context models that either do not learn transition probabilities®
or that learn local transition probabilities independently for each row of the transition probability matrix do not show anterograde interference. Envir | Y. the increase/
decrease in single-trial learning for slowly/rapidly switching environments, requires a model to either adapt its learning rate or learn local transition probabilities based on context transition
counts. Therefore, single-context models with fixed learning rates' or multiple-context models that either do not learn transition probabilities® or that learn non-local transition probabilities
based only on context counts® do not show the effects of environmental consistency on single-trial learning. Explicitand implicit learning, the decomposition of visuomotor learning into
explicit and implicit components, requires a model to have elements that can be mapped onto these components. For most models, there is no clear way to map model elements onto these
components'. It has been suggested that the fast and slow processes of the dual-rate model may correspond to the explicit and implicit components of learning, respectively. However, in a
spontaneous recovery paradigm, this mapping only holds during initial exposure and fails to account for the time course of the implicit component during the counter-exposure and
channel-trial phases™ (Supplementary Information).
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Custom code written in C++ for the vBOT robotic interface

Data analysis MATLAB R2020a.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data, code, and materials used in the analysis are available in a public repository as documented in the paper
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Study of human motor learning with quantitative measurements using a robotic interface
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Research sample Participants has to be age 18-45 with no problems affecting the control of movement and right handed. 40 neurologically-healthy
participants participated 18 males and 22 females; age 27.7 +- 5.6 yr, mean +- s.d.). Sample sizes were representative chosen on the
basis of the typical between-participant variability observed in similar motor adaptation studies (e.g. Herzfeld 2014, Smith 2006,
Heald 2018, McDougle 2015- see main text for references).

Sampling strategy Participants were randomly allocated to groups.

Data collection Data was collected with a vBOT robotic interface - only the participant and experimenter were present and the experimenter was not
blind to the hypothesis being tested.

Timing Data was collected between May 2018 and May 2019
Data exclusions No data was excluded

Non-participation No participants dropped out

Randomization Allocation into experimental groups was random

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChiIP-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics see above
Recruitment Human volunteers from the local Cambridge community or the local Columbia and Manhattan community.
Ethics oversight Columbia University IRB and Cambridge Psychology ethics committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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