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Highlights
Context has widespread effects on
memory and learning across multiple
domains.

Context is rarely directly observed by the
learner and needs to be inferred.

Contextual inference is determined
by three main factors: performance-
related feedback signals, performance-
unrelated sensory cues, and spontane-
ous factors, such as the passage of time.

Contextual inference controls mem-
ory creation, updating, and expres-
sion across a variety of domains. In
Context is widely regarded as a major determinant of learning and memory
across numerous domains, including classical and instrumental conditioning,
episodic memory, economic decision-making, and motor learning. However,
studies across these domains remain disconnected due to the lack of a unifying
framework formalizing the concept of context and its role in learning. Here, we
develop a unified vernacular allowing direct comparisons between different do-
mains of contextual learning. This leads to a Bayesian model positing that con-
text is unobserved and needs to be inferred. Contextual inference then
controls the creation, expression, and updating of memories. This theoretical ap-
proach reveals two distinct components that underlie adaptation, proper and ap-
parent learning, respectively referring to the creation and updating of memories
versus time-varying adjustments in their expression. We review a number of ex-
tensions of the basic Bayesian model that allow it to account for increasingly
complex forms of contextual learning.
general, this requires multiple memo-
ries to be recalled and modified at
any time.

Adaptation is not a monolithic process
but arises from a combination of two
distinct processes: proper learning,
involving the creation and updating
of memories, and apparent learning, in-
volving changes in how existing memo-
ries are expressed.

Many classical learning phenomena,
typically attributed to proper learning,
have been shown to arise primarily from
apparent learning.
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Placing context in context
Central to the operation of the brain is the ability to store and maintain multiple memories of the
environment and retrieve them as the need arises. The notion of context (see Glossary) has
emerged as being a key component of how the brain manages this complex task: it controls
whether and how much conditioned fear memories are expressed [1–3], episodic memories
are recalled [4–6], spatial locations are remembered [7–10], and motor skills are activated
[11–13]. Thus, classical work on contextual memories suggests that, by knowing the current con-
text, the challenging problem of managing multiple memories can be reduced to the simpler
problem of dealing with one memory at a time.

But what is context and how does the brain determine the current context? To borrow from
James [14], ‘Everybody knows what context is’. Indeed, from the experimenter’s point of view,
context is usually clearly defined, for example, by the room in which the experiment is taking
place, or salient landmarks unique to an environment. However, in the real world, contexts are
neither clearly defined nor labeled and in general they cannot be unequivocally defined by the
features of the environment. For example, contexts for fear conditioning in laboratory experiments
are commonly operationalized by the identity of specific sensory cues or experimental chambers.
But how does contextual fear conditioning happen in the wild?When amouse escapes a ferret in a
clearing of a forest, what constitutes the ‘context’ for this fearful memory? Is it the particular forest,
any forest in general, the clearing, the time of the day, the chirping of the birds in the background, or
the sequence of actions that led to this traumatic encounter? Similarly, when a chef has learned to
generate different knife movements under a range of contexts such as when dealing with oranges
or tomatoes, what movement should she use when slicing a persimmon for the first time and how
should any motor errors update the memories for existing contexts [15]?

Here we review empirical evidence and computational models of how the brain breaks down our
continuous stream of sensorimotor experience into distinct contexts such that the consequent
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creation, expression, and updating of memories supports flexible and adaptive behavior. We
emphasize the commonalities that exist across sensory, motor, and cognitive domains. A common
theme that emerges is that the computational task of inferring the current context is nontrivial and
the way the brain solves this task has profound consequences on the processing of memories.

Context-dependent effects on long-term memory
The role of context in learning and memory is ubiquitous. All forms of long-term memory, from
declarative (semantic [16] and episodic [17]) to nondeclarative (associative [18], nonassociative
[19,20], procedural [21], and priming [22,23]), exhibit context dependence, whereby the expres-
sion of remembered information or learned behaviors depends on contextual factors, such as
sensory cues in the environment, location, and time. Here we provide some examples of para-
digms that suggest context is important in the four broad areas of classical conditioning, episodic
memory, economic decision-making, andmotor learning and present a unified terminology to de-
scribe these results (Box 1).

Classical conditioning
In classical conditioning [24,25] (Figure 1A), an unconditioned stimulus (US, e.g., a foot shock for
a rat; Figure 1A, feedback, purple) is presented with a conditioned stimulus (CS, e.g., a tone;
state, orange) in an acquisition phase. Over numerous trials, the CS comes to elicit a conditioned
response (e.g., freezing) that grows in strength and/or frequency. If the US is then withheld
(change in contingencies, in the gray box) in an extinction phase, the conditioned response
becomes progressively weaker over trials. If acquisition and extinction are performed in distinct
environments (environments A and B, respectively; sensory cues, pink), returning the animal to
the acquisition environment (A) leads to re-expression of the conditioned response (ABA
renewal) [26,27]. Thus, the information learned in the acquisition and extinction phases of the
experiment (that the CS does and does not predict the US, respectively) has been linked to the
specific contexts defined by different sensory cues (environments A and B) and contingencies.
Box 1. Contextual learning: a unifying view

Although the different experimental domains in which contextual learning has been studied have each historically developed their
own idiosyncratic terminologies, their paradigms can be broadly described using a unified vernacular defining a common set of
key concepts (see Figure 1 in main text). By definition, in contextual learning experiments, context (see Figure 1, red and blue, in
main text) changes over time (typically progressing in trials). Each context is associated with a specific set of contingencies (gray
boxes) defining the kind of sensory stimuli that can occur in the context and how feedback depends on these and the subject’s
actions. In general, it is useful to distinguish between two kinds of sensory stimuli that subjects can receive in a context: sensory
cues and feedback. There may be sensory cues (pink; e.g., the appearance of the environment) that are informative about the
context but have no further direct task relevance. When subjects also have the opportunity to choose an action in a trial (green;
e.g., a button press, or joint torques to move the arm), and in turn receive feedback (purple; e.g., reward or movement kinemat-
ics), this feedback can directly depend not only on their action but also on some specific stimuli they receive, that define (albeit, in
general, only probabilistically) the current state (orange). Therefore, the critical difference between sensory cues and states is that
once the context is known, only state affects feedback (i.e., is task relevant).

Collectively, the findings in different domains reveal a number of domain-general features of contextual learning. First, the
internal representation of context is determined by a complex interaction between three main factors: (i) feedback signals that
are performance related (e.g., rewards, punishments, movement accuracy); (ii) sensory cues that have neutral valence and
are not performance related (e.g., the appearance of the environment); and (iii) spontaneous factors that are independent
of experimentally controlled stimuli (e.g., the passage of time, or uncontrolled stimuli). Second, the effects of each of these
factors are experience-dependent. This means that not only the way rewards and sensory cues are associated with different
contexts is subject to learning (the first two factors) but also the propensity with which different contexts appear and transition
over time (the third factor). For example, experience with more volatile environments can lead to the mere passage of time
mediating more abrupt shifts in context (see also Box 5). Third, once an internal representation of context is determined, it
has widespread effects on the creation, expression, and updating of memories. In general, memories related to the currently
active context are predominantly expressed and/or updated, whereas new memories are laid down in contexts that are
believed to be novel.
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Figure 1. A unifying vernacular for decribing contextual learning in different domains. Top row shows key elements of contextual learning (color coded; see also Box
1); panels showhow they apply to specific domains. Three consecutive trials in a typical classical conditioning (A), episodicmemory (B), instrumental learning (C), andmotor adaptation
(D) task. For each task, the first two trials (trials n–1 and n) are in context 1 (blue), and the last trial (trial n+1) is in context 2 (red). Each context can be associated with an observed
sensory cue [pink, conditioning chamber in (A), background image in (B) and (C), and orientation of virtual tool in (D)]. The sensory cue is informative of the context but is not directly
related to task performance. On each trial, the participant observes a state [orange, presence or absence of auditory tone in (A), foreground image in (B) and (C), and target location in
(D)]. The participant selects an action [green, no action is taken in (A) and (B), discrete button press in (C), and continuous elbow and shoulder (not shown) joint torques in (D)]. Given the
state and action (if applicable), the participant receives feedback [purple, presence or absence of foot shock in (A), no feedback in (B), monetary reward in (C), and observed hand
trajectory in (D)]. The relationship between state, action, and feedback is determined by the context-specific contingencies (corresponding gray box). The straight arrows in (D)
show velocity-dependent forces produced by the handle of the robot (not shown) grasped by the participant. Note that someof the specific experimental paradigms only use a subset
of these ingredients. For example, actions are usually not considered in classical conditioning (A) or (the study phase of) episodicmemory experiments [(B); in this case, typically there is
not even feedback, but see [142]], motor learning experiments (D) often have only one state (i.e., the same target across all trials) for each context, andmany paradigms do not use any
context-specific sensory cues. In addition, historically, the same term has come to refer to different concepts in different domains: for example, the term ‘state’ as used in state-space
models of motor learning [72,114,128] refers to the concept that we here call ‘contingencies’, while we reserve the use of the term ‘state’ in a sense that is closest to that used in
reinforcement learning [120]. Finally, sometimes terms other than ‘context’ are used to express the same concept (e.g., ‘task set’ or ‘abstract rule’ in economic decision-making).
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Glossary
ABA renewal: a conditioned response
can be reinstated by re-exposure to the
conditioning context (A) following
extinction in a different context (B) (cf.
ABA structure).
ABA structure: a task with two con-
texts, A and B, which are experienced in
the order A then B and then A again (cf.
ABA renewal).
ABC structure: a task with three con-
texts, A, B, and C, experienced in that
order.
Action: a choice made by a participant,
such as a button press or arm move-
ment.
Anterograde interference (proactive
interference): learning a set of
contingencies is slower if a different set of
contingencies has been learned
previously, with the amount of interference
increasing with the length of experience of
the first set of contingencies.
Apparent learning: a change in how
context-specific memories are differen-
tially expressed due to a change in belief
about the current context. Based on
behavior alone, it may appear as though
proper learning has taken place, hence
the name.
Consolidation: a time-dependent pro-
cess by which recent learned experi-
ences are transformed and stabilized
into long-term memory.
Context: a discrete variable that con-
trols which one of the potentially many
sets of contingencies is currently active
(i.e., determines the statistics of sensory
cues, states, and feedback, and how
they depend on actions).
Context shifts: see Event boundaries.
Contextual inference: the process of
inferring the current context from a
sequence of observations of sensory
cues, states, actions, and feedback.
Contiguity effect: the finding that
stimuli that occur close together in time
become associated with each other so
that recall of an item is facilitated by the
presentation or recall of a different item
that was presented in close temporal
proximity.
Contingencies: the context-specific
statistical relationships between sensory
cues, states, actions, and feedback.
Environmental consistency: the ten-
dency of the environment to stay the
same over time, typically with respect to
the context (i.e., the inverse of between-
context volatility).
Event boundaries: the transition
points that segment a continuous
While in the aforementioned experiments, context can be unambiguously identified by the physical
location or environment of the subject (indeed, the sensory cue, such as the experimental chamber,
is often referred to as the ‘context’ in these experiments), there are other phenomena which have
been explained by other, more subtle notions of context. For example, reaquisition of the condi-
tioned response a second time, after having extinguished it once, is faster than initial acquisition
(rapid reaquisition, also known as savings) [28,29]. In fact, even the (repeated) presentation of
the US alone can lead to the re-expression of the conditioned response on the first presentation
of the CS (reinstatement) [30,31]. In both cases, it has been suggested that different (and opposite)
memories have been laid down in the original acquisition and extinction phases, which have been
linked to different contexts (rather than extinction simply erasing the originally acquired memory,
as the term ‘extinction’ may suggest) [32]. According to these theories, the presence of the US
(in reinstatement) or the CS and the US (in savings) in the second phase of the experiment act as
contextual cues, recalling the acquisition context and thus giving rise to the conditioned response.

The phenomenon of spontaneous recovery represents an even more intriguing case of context
being implicitly defined [24,33]. Here, after extinction, the passage of time alone can lead to the
reappearance of the conditioned response. This has been suggested to be caused by a temporally
evolving internal representation of context that, in the absence of salient stimuli, changes over time
as fundamentally determined by its intrinsic dynamics and can eventually return to the original
acquisition context [18,34]. Moreover, the partial reinforcement extinction effect [35] suggests
that even the temporal dynamics of the context representation are experience-dependent. In this
paradigm, the rate of extinction of the conditioned response (assumed to be due to the emergence
of the memory for the ‘extinction’ context) is slower if the CS and US are paired inconsistently
during the acquisition phase (so that the omission of the US on one trial does not necessarily
imply that ‘extinction’ will persist on the next trial) [32].

Episodic memory
The notion of context has been central to theories of episodic memory. In a typical episodic
memory experiment (Figure 1B), participants observe a state that varies from trial to trial (e.g., a
visual shape in the foreground). The set of possible states depends on the current context
(indexed by a sensory cue, background image), which changes on a slower timescale than the
state. Recall of a memory for a state is facilitated by reinstating the conditions (i.e., context) in
which that memory was originally encoded [36]. For example, spontaneous changes in context
over time (similar to those thought to account for spontaneous recovery of classical conditioning
or motor learning) have been suggested to underlie some of the most common effects in
episodic memory recall [4,6]. These include the recency effect, whereby the ability to recall an
item (the state) declines with the passage of time since encoding or the presence of intervening
items, and the contiguity effect, in which recall of an item is facilitated by the presentation or
recall of an item that was presented nearby in time to the target item. Both of these effects
have been accounted for by assuming a notion of context that gradually drifts over time and is
in turn used to index the memory of a past item at recall. This results in recent items sharing a
similar context to the current context and, more generally, temporally contiguous items sharing
a similar context to one another [4] (see [37] for a review of whether context gradually drifts or
abruptly shifts).

Contexts relevant for episodic memory do not seem to just simply drift at random. They have also
been shown to be controlled by specific, potent sensory cues. For example, in a number of studies,
participants read, watched, or listened to narratives consisting of a stream of items, punctuated by
event boundaries (also known as context shifts) that in turn were marked by rapid changes in
perceptual, temporal, or semantic information. In text narratives, time shift signals at the beginning
46 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1
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stream of sensory observations (such as
a movie) into a series of discrete events,
such as at scene changes in a movie.
Evoked recovery: the re-expression of
a previously extinguishedmotormemory
following re-exposure to the perturba-
tion associated with that memory (cf.
Reinstatement).
Extinction: the disappearance of a
conditioned response when no longer
reinforced.
Feedback: sensory input that either
has intrinsic valence or is related to task
performance (e.g., rewards, punish-
ments, movement accuracy) and that
can depend on state and action, as
determined by the currently active con-
tingencies.
Force field: typically 2D planar forces
exerted at the handle of a robot grasped
by a participant that depend on the state
of the hand (e.g., the velocity of the hand
in a viscous force field).
Hierarchical Dirichlet process
(HDP): a nonparametric Bayesian
model that supports the hierarchical
generation of context transition proba-
bility matrices between infinitely many
contexts.
Kinematic error: the spatial error, for
example, of a reaching movement.
Learning-to-learn: learning an induc-
tive bias (e.g. a prior) from experience to
aid future learning, also known as meta-
learning.
Object manifold: the properties of
objects (such as a bike or hammer) can
be characterized by a set of parameters
(e.g., inertia, damping). However, the
parameters for a category of objects (e.g.,
bikes) do not span the entire range of
possibilities but live in a lower dimensional
subspace within the full space of object
parameters (i.e., a manifold).
Partial reinforcement extinction
effect: the rate of extinction of a learned
behavior is slower if the behavior was
only reinforced on a fraction of acquisi-
tion trials, rather than on all trials.
Place cell remapping: the phenome-
non by which place cells change their
firing patterns (place fields) when the
environment changes (e.g., by changing
salient landmarks).
Policy: a strategy that a participant
uses in pursuit of goals. The policy
determines (sometimes stochastically)
the action that will be taken as a function
of the state and the current contingencies.
Proper learning: an update to the
estimates of context-specific contingen-
cies.
of a sentence such as ‘A while later...’ can act as sensory cues that are indicative of a new event
[38]. A common finding is that within-event items are recalled and recognized more easily than
across-event items. For example, serial recall (recall of items in the order in which they were
experienced) is poorer across event boundaries compared with within the same event [38–40].
Consistent with a reduction in memory for the temporal order of items across event boundaries,
recency discrimination (memory for which of two items was presented most recently) is less
accurate when items are separated by event boundaries [36,39,41–43]. Similarly, items separated
by event boundaries are remembered as being further apart in time compared with those pre-
sented within the same event [17,42,44]. Recognition of a previous item is also less accurate
when an event boundary separates the encoding of the item and the subsequent recognition
test [45,46]. The effects of event boundaries can also be observed in more naturalistic settings.
For example, walking through a doorway leads to impaired recognition of items encountered in
the previous room [47,48]. In addition, when a person returns to the same room (ABA structure),
their memory for the items of that room (room A) is better compared with when they go to another
room (room C, ABC structure) [47], echoing ABA renewal in classical conditioning.

While the identity of context is usually assumed to be objectively defined by the experimenter in
classical conditioning paradigms, the experiments on episodicmemory described earlier highlight
how context is very much a subjectively constructed concept that is in the eye of the individual.
In particular, for high-dimensional, multisensory naturalistic stimuli, such as movies, there is no
clear and unambiguous ground-truth segmentation of the stimulus stream into discrete events
and, hence, event boundaries can only be determined in the first place by asking participants
to explicitly report perceived event boundaries [49,50], or by observing abrupt shifts in brain
activity [51] or bursts of autonomic arousal [52] indicative of perceived event boundaries.
Despite this, participants often agree on the location of event boundaries [53] and individuals
who have a higher segmentation agreement score (a measure of the degree to which the
event boundaries identified by an individual agree with those identified by the group) exhibit
better recall, recognition, and order memory performance [54–56], suggesting that normative
event boundaries exist.

Economic decision-making and instrumental learning
In a typical economic decision-making or instrumental learning experiment (Figure 1C), participants
observe a state that varies from trial to trial (e.g., a shape), choose from a set of actions, and receive a
reward (feedback) that depends on both the state and the chosen action (through a set of contin-
gencies). This task can be generalized to a contextual variant, in which, unbeknownst to participants,
the contingencies can change depending on the context, which remains constant over a number of
trials (as opposed to stimuli which can change on every trial) [57]. At the beginning of an experiment,
participants do not know the contingencies and, hence, they obtain relatively little reward. Then,
through trial-and-error learning, they come to select better actions, as indicated by an increase in
performance, and in turn obtain more reward. Following a context switch, performance drops
abruptly before increasing steadily to a plateau [58–60]. This increase in performance is faster if
the current context has been experienced before [59,60] (analogous to rapid reacquisition in classi-
cal conditioning), suggesting that participants use feedback to retrieve a previously learned context-
specific policy (mapping from states to actions), rather than learn a new policy from scratch.
Importantly, performance increases even for those states of a context that have not yet been
encountered since the reinstatement of the context, suggesting that participants retrieve entire
context-specific policies rather than just the actions specific to individual states [61,62].

By presenting context-specific sensory cues (e.g., a color), which provide a second source of
information about the context in addition to the feedback, the increase in performance following
Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1 47
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Rapid reaquisition: faster relearning of
a set of contingencies (following its
extinction) compared with initial learning
of the same sets of contingencies.
Recency discrimination: after being
presented with a series of items, partici-
pants are asked to determine which of a
set of items was presented more recently.
Recency effect: stimuli that are pre-
sented more recently are remembered
better than those that came earlier.
Reconsolidation: the process by
which, upon its recall, a previously con-
solidated memory is potentially modified
and then consolidated.
Reinstatement: the return of a previ-
ously extinguished conditioned
response after the presentation of the
unconditioned stimulus alone (cf.
Evoked recovery).
Retrieval failure: the temporary inabil-
ity to access information that is stored in
memory.
Savings: see Rapid reaquisition.
Segmentation agreement score: a
measure of how well the event bound-
aries perceived by an individual agree
with the typical event boundaries of a
group.
Sensory cue: sensory input that has
neutral valence and is not performance
related (e.g., the appearance of the
environment). Sensory cues may be
informative of the context, but given the
context, the sensory cue (unlike state)
does not affect feedback.
Serial recall: after being presentedwith
a series of items, participants are asked
to recall the items in the order in which
they were presented.
Single-trial learning: the change in
behavior induced by a single trial.
Although called ‘learning’, this change in
behavior can arise through apparent,
rather than proper, learning.
Spontaneous recovery: the re-emer-
gence of a previously extinguished
response after a delay.
State: a latent or observed variable that
determines the feedback (often
depending on the action taken). The
same state can be associated with dif-
ferent feedback under different contexts.
Utility: the scalar measure of the
goodness of an action which can be a
function of quantities that have intrinsic
valence or are related to task perfor-
mance, such as rewards, punishments,
movement accuracy.
Visuomotor rotation: a rotation of the
visual representation of the hand (e.g., a
cursor) about the start location of a
reaching movement.
a context switch can be accelerated further, suggesting that participants can use sensory cues to
aid retrieval of the appropriate policy [59]. Moreover, in experiments where a single context can be
associated with multiple sensory cues, contexts associated with more cues are inferred to be
more probable when a new sensory cue is presented, as revealed by a preferential retrieval of
the policy for the context associated with most sensory cues [63]. This suggests that the informa-
tion about sensory cues associated with a context includes information at a higher level of
abstraction (e.g., the diversity of cues) than just the identity of the specific cues that have already
been encountered in that context. Similarly, information about state–action–feedback contingen-
cies can also be learned at a higher level of abstraction than just a simple lookup table. For
example, in one experiment, contexts were associated with abstract relationships between ac-
tions and feedback (defining the parametric form of the dependence of feedback on actions,
e.g., linearly increasing or decreasing with key position on a keyboard, but with the exact
parameters of the linear relation changing across blocks of trials of the same context).
Participants were able to exploit this abstract knowledge about the contingencies (linearity)
to efficiently guide their exploration in novel blocks [64]. Finally, in a two-step sequential
decision-making paradigm using four different contexts with a rich transition structure, partic-
ipants showed learning and transfer effects indicative of having also learned this context tran-
sition structure, rather than just the contingencies corresponding to individual contexts and
their overall frequencies [65].

Motor adaptation
In motor adaptation (Figure 1D), participants make movements (action) in the presence of a
perturbation such as a viscous force field [66] or visuomotor rotation [67]. Each perturbation
represents a set of contingencies between actions and the feedback (kinematic error). These
perturbations are meant to be analogous to the experience of interacting with objects in the
real world that have different physical properties. The abrupt introduction of a perturbation
leads to large kinematics errors, which gradually decrease over trials as participants adapt their
motor output to compensate for the perturbation. When two opposite perturbations (e.g., force
fields with opposite directions) are randomly interleaved across trials, the memories of the two
sets of contingencies interfere such that minimal adaptation occurs. However, if each perturba-
tion is paired with a unique sensory cue, robust adaptation to both perturbations is possible
(e.g., [12,21]). Interestingly, however, not all sensory cues are effective at reducing interference
and, among those that are effective, some are more effective than others [68] and different cues
engage implicit and explicit learning processes to different degrees [69]. Moreover, the effec-
tiveness of sensory cues may change with experience as novel cue-context associations are
learned [12,13].

On a single-trial basis, sensory cues interact with perturbations to determine howmuch adaptation
occurs: single-trial learning (the change in adaptation following a single trial with a perturbation) is
greater when the sensory cue and the perturbation in that trial are indicative of the same context
versus different contexts [13]. Single-trial learning is also greater when a perturbation is likely to
persist from one trial to the next compared with when it is likely to revert to the opposite perturba-
tion [70,71]. Thus, the dynamics of adaptation are sensitive to the environmental consistency
(or its inverse, volatility). Importantly, many of the phenomena observed in classical conditioning
have direct analogs in the motor domain, including spontaneous recovery [72], reinstatement
(known as evoked recovery [13]) and savings [73]. Moreover, these phenomena have been
shown to depend on a variety of experimental manipulations in subtle ways. For example, sponta-
neous recovery increases if the acquisition phase is extended [74] and decreases if the acquisition
phase is preceded by a counter-acquisition phase in which the opposite perturbation is presented
[75]. In addition, savings is more pronounced when a perturbation is large or abruptly introduced
48 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1
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Volatility: the rate of change of the
environment. Within-context volatility
refers to the trial-to-trial variability of
context-specific contingencies, whereas
between-context volatility (the inverse of
environmental consistency) refers to the
trial-to-trial variability of the context itself,
as determined by the context transition
probabilities.
comparedwith when it is small or gradually introduced [76]. A recent study has shown that a model
of motor learning that includes, at its core, contextual inference can provide a unified explanation
for all these findings [13].

Bayesian theories of context-dependent learning
In Box 1, we summarize the main domain-general features of contextual learning that can be
distilled from the findings presented in the previous section. These general features motivate a
unifying theoretical framework for contextual learning. At the same time, they also represent the
desiderata for such a theory, specifying the space of empirical phenomena that needs to be
captured. We now turn to developing such a theoretical framework.

Given that, as we argued earlier, there is no objective ground truth for context, it is the subjective
beliefs of the learner about the context that controls learning and memory. Bayesian models of
cognition provide a mathematical formalism for rigorously defining such beliefs and how they
should be updated in light of past and current sensory experience [77]. Under this view, context
is a prominent example of a so-called latent variable that cannot be observed directly, only
indirectly via its potentially stochastic effects on the observable features of the environment
[78]. In particular, as we saw earlier (Box 1), context controls the appearance of the environment
(e.g., the distribution of states or sensory cues) and other task-relevant associations, such as
state–action–feedback contingencies [3,79,80]. Beliefs about context are then expressed as a
posterior probability distribution, defining the probabilities with which the learner believes it is
currently in any particular context.

In order to define the posterior distribution of a latent variable, such as the current context, Bayesian
models start from a generative process that specifies the learner’s assumptions about the environ-
ment, its latent and observed variables, and their statistical relationships (i.e., how the distribution of
each variable may depend on some of the other variables). This can be visualized as a graphical
model consisting of nodes (representing random variables) and edges between the nodes
(representing probabilistic relationships between the random variables). Figure 2A shows graphical
models for a multiple-context environment (cf. the model for a single-context environment in
Figure 2B). This model captures the essence of many of the contextual learning experiments de-
scribed earlier (Figure 1) and uses the variables defined in our unified vernacular (Box 1). Specifically,
there exists a set of contexts (indexed by c), each described by its set of (potentially temporally
evolving) contingencies, x t

(c) (empty circles with differently colored contours), which define the
probability with which different observations may be made about sensory cues (qt, pink), states
(st, orange), and feedback (rt, purple), the latter also being conditioned on the subject’s actions
(at, green). Critically, the current context ct (blue and red filled circles) acts as a top-level ‘gating’
variable that determines (connections with filled or empty circular heads) which set of contingencies
is currently at play [i.e., it determines the observations (black vs. gray vertical arrows, for the set of
contingencies that are gated in vs. out in a given time step, respectively)]. Moreover, this context
variable also evolves over time according to its own dynamics (horizontal arrows in the top row),
as determined by context-dependent transition probabilities (Figure 2C, see also Box 6; transition
probabilities are included in the contingencies of the current context, but to avoid clutter, the
corresponding arrow from contingencies to next context is not shown in Figure 2A).

For example, for the mouse in the forest, relevant sensory cues may be the density of trees
and the lighting conditions, states may be associated with the appearance or absence of a ferret,
actions may include searching for food or trying to escape, and feedback may be related to
consuming food versus being consumed. This mouse may distinguish two contexts, associated
with a safe and unsafe environment depending on whether there are nearby predators, with the
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Figure 2. Internal model of the environment commonly imputed to learners. (A,B) Graphical models underlying
multiple-context (A) and single-context models (B). Temporal changes in variables (circles) are formalized by introducing
multiple nodes for them, each corresponding to the value of the variable in a different time step (subscript), and then
introducing directed edges (horizontal arrows) between them to describe how their future values depend on their pas
values (i.e., internal dynamics). The value of a variable in a given time step can also depend on other variables in the same
time step (vertical arrows). (A) Multiple-context model [12,13,58,59,95]. Contexts (top nodes, color represents the identity
of the active context) evolve according to Markovian transition probabilities. Each context has its own set of contingencies
(only two shown for simplicity; in general, the number of contexts and sets of contingencies can be unbounded). Contexts
can also be associated with sensory cues (pink) of which the appearance probabilities are also dictated by the context-
specific contingencies. Only the contingencies associated with the active context influence the observed sensory cue
state (orange) and feedback (purple) variables (gating by context, black vs. gray arrows). Feedback can depend on both
an observed state and an action (green). In general, the active set of contingencies can also affect the next contex
transition (for clarity, arrows not shown). In addition, states may not be directly observable and may have their own (action-
dependent) dynamics [120] (also not shown for clarity). Gray box indicates that the contingencies, xt, determine the join
distribution of the variables inside the box (here: qt, st, and rt). (B) Single-context model [57,116,119] in which only a single
set of contingencies exists. (C). Hierarchical contingencies: an example of transition probabilities (as generated by a

(Figure legend continued at the bottom of the next page.
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probabilities of observing different sensory cues and states, and receiving different feedback for
different actions, under each context likely being different. The longer the mouse waits near a
watering hole, the higher the probability of being in the unsafe context may become (context tran-
sitions).

According to the generative process underlying contextual learning (Figure 2A), both the current
context, ct, and the contingencies corresponding to each possible context, x t

(c), are latent
variables. Thus, the Bayesian contextual learner needs to simultaneously infer both of these
quantities. Note that, in Bayesian models, inference is uniquely determined in principle (at the
computational level of analysis) as the probabilistic inversion of the generative model, without
any free parameters or process-level assumptions (although in practice, algorithmic-level choices
may still need to be made; Box 2). Specifically, inferences about x t

(c) constitute a (long-term)
memory of context c. As we discuss later, this is compatible with how classical single-context
theories of learning formalized the contents of memory (Figure 2B) and accounted for a broad
range of empirical findings in simple (single-context) learning paradigms. However, the Bayesian
contextual learning model also requires inferences to be performed and continually updated
about ct. Therefore, the learner needs to infer the probability that each context is currently active.
In some situations, such as when our mouse is in the jaws of a ferret, the sensory evidence may
be overwhelmingly in favor of the unsafe context, such that the probability of this context is effec-
tively 1, whereas when our mouse moves from a shrub into a clearing, it may only infer an inter-
mediate probability for the unsafe context. In the next section, we describe the functional
consequences of these inferences and how they should ultimately be reflected in behavior.

Note that here we have assumed a graphical model with a fixed structure underlies inference in
contextual learning. However, classical conditioning experiments suggest that context may play
diverse roles in associative learning, such that animals can treat it as having a purely modulatory
or additive effect on contingencies, or deem it altogether irrelevant [81,82]. This diversity has been
accounted for by Bayesian theories assuming that animals consider alternative structures for the
generative model, each being a special case of the one we present here, and perform hierarchical
inference over these structures, treating the correct model structure as ‘just another’ high-level
latent variable to be inferred [83]. Whether such hierarchical learning of multiple simpler structures
is a better account of these phenomena than learning the contingencies within a single more
complex structure remains to be tested.

Consequences of contextual inference
The posterior distribution over contexts expresses the probability that each known context or a
yet-unknown novel context is currently active. In turn, this posterior controls the expression,
updating, and creation of memories as we detail next.

Contextual mixing for memory expression
If the current context and its corresponding set of contingencies were known to the learner, then
choosing the best action at a given time would be straightforward (even if tedious): the learner
would need to select the action that is associated with the most desirable (highest utility) feed-
back according to this set of contingencies. Thus, behavior would be driven only by a single
hierarchical Dirichlet process). The set of probabilities for transitioning ‘from’ each context (bottom, horizontal multicolored
bars, with the width of each stripe showing the probability of transitioning to each ‘to’ context) is a variation on a global se
of probabilities (top). This way, learning about the local transition probabilities in a particular context informs inferences
about global transition probabilities, in turn informing inferences about other local transition probabilities, even for contex
transitions that have not yet been observed.
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Box 2. Curbing the complexity of contextual inference

The task of the Bayesian contextual learner is to infer (by applying Bayes’ rule) the joint posterior distribution over all latent
variablesLt (i.e., the sets of contingencies, xt

(c), and contexts, ct, see Figure 2A inmain text), given the history of all observed
variables O0:t (i.e., the sequence of sensory cues, q0:t, states, s0:t, actions, a0:t, and instances of feedback, r0:t). This inference
process performs a probabilistically appropriate inversion of the generative process we described in the text (and see
Figure 2A inmain text). In general, this inversionwould require computing a posterior, P L0:tjO0:tð Þ, over thewhole history of latent
variables up to the current time point, t, as a function of the whole history of observations. However, in reality, it is often only the
posterior over the latent variables for the last (or a couple of most recent) time step(s), P LtjO0:tð Þ, that is required by downstream
computations. Moreover, this posterior can typically be computed online, in a recursive manner, such that the posterior
computed in the previous time step can be combined with observations in just the last time step, so that no memory for all
previous observations is required:

P Lt O0:tjð Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{new posterior

∝

P Ot Ltjð Þ|fflfflfflfflffl{zfflfflfflfflffl}
information from

current observations

Z
P Lt Lt � 1jð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
internal model of
latent dynamics

P Lt � 1 O0:t � 1jð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{previous posterior

dLt � 1 ½I�

Note that Equation I also exposes how inference is fully determined by the generative process: the first and second term on
the right hand side, respectively, correspond to the vertical and horizontal arrows in Figure 2A in main text.

Nevertheless, even in the simplest case (such as that shown in Equation I), computing the posterior may still be radically
intractable and so only an approximate version will be computed. The precise nature of the approximations the brain might
be using for this is unknown (see Outstanding questions). Here we simply assume that they are sufficiently accurate to yield
the basic effects of contextual inference we describe later that would follow from (near)-exact computations. In fact, some-
times even simple-looking heuristics can efficiently approximate such complex-looking computations [11,58,85,143–145].
For example, it may be possible to show that successful process-level models of contextual effects on episodic memory
[4,146] correspond to approximate forms of inference under a model such as the one we present here.

Approximate forms of inference may even provide a better account of data than exact inference. For example, it has been
suggested that the classical, smoothly increasing (and eventually asymptoting) learning curve in classical and operant
conditioning (such as those simulated in Figure 4 in main text) is an artifact of group averaging. Instead, individual subjects
show abrupt steps in behavioral responses that fluctuate bidirectionally, with decreases as well as increases in perfor-
mance after an initial rise to an unstable asymptote [147]. Behaviors such as these cannot easily be accounted for by exact
contextual inference, where both the estimated contingencies and context probabilities change gradually over time. How-
ever, they may arise from a particularly powerful approximation that is based on using Monte Carlo samples to represent
complex posterior distributions [78]. Indeed, sampling-based approximations have been suggested to underlie a number
of cognitive [148] as well as neural phenomena [100]. Specifically, in the context of learning, they have also been suggested
to underlie contextual inference and account for the kind of abrupt and bidirectional fluctuations in performance that had
been described empirically [149].
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memory: that corresponding to the current context. However, given that, in general, there is un-
certainty about the current context, as expressed by the posterior over ct, in principle the mem-
ories for all contexts need to be consulted [13,58,84–87]. Specifically, according to the rules of
Bayesian decision theory [88], the expected utility of each action can be computed by averaging
its utility across contexts, weighted by the posterior context probabilities, and the action with the
highest expected utility can be chosen. When the utility of an action is defined as the squared
error from some context-dependent target action (for every context), such as in motor control
[89] (but see [90–92]), the action with the highest expected utility is simply the weighted average
of the target actions in each context, with the weights given by the posterior context probabilities.

The critical insight in all these cases is that the contents of several memories (those associated
with contexts that have a non-zero probability) need to be mixed for optimal behavior. This is
notably different from classical accounts of memory recall that focus on how a single memory
is retrieved at a time [93,94]. Similar to these classical theories, several recent models of
context-dependent learning also express a single memory on each trial (the memory associated
with the single most probable context) rather than mix memories [59,76,95]. In doing so, they
ignore uncertainty about the context, which, in general, will lead to suboptimal action selection.
52 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1
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Interestingly, in the domain of motor control, the idea that the output of different modules mix
linearly ‘on demand’ has been quite well accepted [11,96–98], but its relationship to contextual infer-
ence and more generally the factors governing the mixing proportions have not been explored until
recently [13]. By contrast, there have only been sporadic suggestions for such mixing of memories
in the domains of episodic [86], spatial memory [10], and human instrumental learning [58] and
these have not been supported experimentally by a systematic analysis of behavior.

Contextual de-mixing for memory updating and creation
Once feedback is received, after having executed an action, the contextual learner is faced with a
difficult credit assignment problem [11,85]. As it is uncertain which context is currently ‘active’, it is
not obvious which context was responsible for the feedback and, hence, which memory should
be updated by it. Once again, the posterior distribution over contexts holds the normative solution
to this problem [13,58,87,99–101]. In particular, the same feedback now needs to be de-mixed,
such that all memories are updated in proportion to the posterior probabilities of their corre-
sponding contexts. In other words, the same memory needs to be updated with an effective
learning rate that is dynamically modulated, depending on the posterior probability assigned to
its corresponding context at any given time.

Given that exact inference in multiple-context models is often intractable (Box 2), a computation-
ally cheap alternative that is commonly used in models of human learning [59,76,86,95] is to
definitively assign each trial to the context with the highest probability. However, this approxima-
tion ignores uncertainty about the context and leads to only a single memory being updated on
each trial. This non-Bayesian heuristic has been justified on the basis that it does not qualitatively
affectmodel behavior [86,95] comparedwithmore properly Bayesianmethods [13,58]. However,
this is likely to only be true for paradigms that do not directly test howmemories are updated on a
single-trial basis, as we discuss next.

Just as memory recall should not be confined to retrieving a single memory, in general, memory
updating also needs to occur in parallel for multiple contexts. Although this may sound some-
what unorthodox, compared with conventional concepts of memory processing (e.g., the
updating of episodic memories by consolidation or reconsolidation [102]), there is experi-
mental evidence for such de-mixed memory updating. In motor learning, a recent experiment
specifically introduced a cue-conflict situation to increase contextual uncertainty at the time
of memory updating [13]. This allowed the demonstration of the graded (de-mixed) updating
of two different motor memories as predicted by contextual de-mixing. While this graded
updating was evident at the level of individual subjects, whether it was also graded at the
level of individual trials, or might have been approximated by probabilistic all-or-none updating,
has not been resolved (see Outstanding questions).

Sometimes, all existing memories seem inappropriate in a situation and so updating them, even if
with the appropriate de-mixing, would be inappropriate and instead an altogether new memory
needs to be created. Indeed, classical accounts of memory creation often highlight the impor-
tance of novelty or prediction errors in mediating this process [3,5]. In line with this, if contextual
inference is performed over an open-ended set of contexts, also allowing for yet-unseen novel
contexts, contextual de-mixing automatically gives rise to memory creation when the posterior
probability of a novel context (the formal definition of ‘novelty’ in this framework) is sufficiently high.

A fundamental prediction of memory creation being driven by contextual inference is the widely
observed hysteretic ‘boiling frog effect’: a single abrupt change in the environment often triggers
the creation of a new memory, but many small changes adding up to the same total effect
Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1 53
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typically do not. This is because after each small change, the memory of the current context may
still seem appropriate, albeit a little off, and so updating it is justified by contextual inference, that is
its probability under the posterior is high (Figure 3A, top). An abrupt transition to a novel situation
leads to the probabilities of all known contexts being low and, thus (because probabilities need to
sum to one), the probability of a novel context must necessarily be high (Figure 3A, bottom). This
effect has been described in a number of different domains. In episodic memory, small changes
to sensory stimuli have been suggested to lead to a gradual updating of their memories, whereas
abrupt changes lead to the laying down of new memories [86]. This principle was shown to also
account for event segmentation in naturalistic videos [103]. Analogous effects are seen in place
cell remapping, a putative neural correlate of the inference of a new context [104], and the con-
comitant creation of new spatial memories [105] (but see [106]): remapping depends nonlinearly
on the similarity of environments [107] and is diminished by the gradual introduction of environ-
mental changes [108]. In motor control, savings is greater for an abruptly (vs. gradually) intro-
duced perturbation [109] and de-adaptation is faster after the removal of an abruptly (vs.
gradually) introduced perturbation [110], as in these cases multiple memories are thought to
have been created (Box 3 and Figure 3), allowing flexible switching between them. Similarly, in
classical conditioning, the gradual extinction of a CS-US pairing prevents fear recovery (sponta-
neous recovery and reinstatement), as the memory learned in the acquisition phase is unlearned,
in contrast to when extinction is abrupt and a new memory is created, thus preserving the original
memory [111,112] (see also Box 3 and Figure 3).
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Figure 3. Classical paradigms explained by contextual inference. Eachparadigm is schematically representedby three rows [two rows in panel (A), top]. The bottom row
[rows in panel (B)] with yellow/brown colored bars shows the time course of the experiment in terms of state feedback (positive, +, negative, –, null, 0, or absent, blank), sensory cues
(yellow and brown), and state [conditioned stimulus (CS)]. For motor control, +, 0, and – reflect the strength and direction of a perturbation applied to the hand during reaching. For
conditioning, + and 0 reflect the presence/absence of an unconditioned stimulus (US). The top rows with red/blue colored bars show the memories that are relevant to the
experiment (red for +, blue for 0 or – ); for each memory, the bar with pale background extends from the time the memory was created until the end of the experiment
(scalloped edge reflects a pre-existing memory). Dark shading within each bar shows the expression of the corresponding memory at each point in time (the height of the dark
shading represents the level of expression, between 0 and 1, with the expression across existing contexts summing to 1). See main text and Box 3 for details of the paradigms
and explanation of the mechanisms. (A) Top: for a gradually introduced perturbation (black expanding triangle in second row), the existing memory is updated (blue changing to
red in first row). Bottom: memory creation occurs for an abruptly introduced perturbation. (B) Paradigms in which an initially learned memory (red) is re-expressed later,
after another memory has been expressed. Re-expression can rely on the state feedback, sensory cues, or spontaneous factors. (C) New memory expression.
Anterograde interference, in which learning a second set of contingencies (here, – perturbation) is slower if another set of contingencies (here, + perturbation) has initially
been learned, with the amount of interference increasing with the length of initial learning (long + vs. short +), that is when the environment is less volatile. Green and purple
arrows to point to rapidly versus slowly changing levels of memory expression, respectively.
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Proper and apparent learning
Contextual mixing and de-mixing also provide a new lens onto one of themost classical phenomena
in experimental psychology: the learning curve. A learning curve shows a gradual improvement in
performance (or ‘adaptation’) on a task over time (typically, consecutive trials) as training, or learning
proceeds. As such, the traditional interpretation of a learning curve has been that a memory (or a
collection of memories) is being incrementally updated and the behaviorally observable gradual
changes in performance are due to these memory updates. Indeed, classical [25,113,114] and
more modern [72] models of learning directly postulate this mechanism. Figure 4A shows a simple
simulated example of such proper learning. However, the dependence of memory expression on
context probabilities means that adaptation can also arise from a distinctly different mechanism:
apparent learning [13]. Apparent learning refers to a change in contextual mixing in memory
expression due to an update in the estimated context probabilities (Figure 4B). Indeed, apparent,
rather than proper, learning may underlie a host of phenomena that had traditionally been attributed
to proper learning (Box 3). Of course, adaptation can also arise from a mixture of proper and
apparent learning (Figure 4C).

Varieties of context-dependent learning models
The theoretical framework developed earlier can bemodified or generalized in a variety of ways to
capture distinct features of the environment and the corresponding features that characterize
learning about the environment. This can be achieved by incorporating alternative modeling
assumptions into the generative process, which in turn alters the inference process and the orga-
nization of experience into context-specific memories.

Single- versus multiple-context models
Most models of learning do not have a notion of context. Some of these have been explicitly cast
in similar Bayesian terms as the contextual learning model we described earlier, such as Kalman
filter-basedmodels of motor learning [115], or classical conditioning [116], or models of economic
decision-making with Bayesian priors on reward contingencies [57,117]. As such, the generative
model underlying these models is a special case of that shown in Figure 2A, in which there is only
one set of contingencies that is always active (Figures 2B and 4A).

Importantly, even classical models that have not been formalized as Bayesian models originally
can often be re-derived as being equivalent to such models (e.g., see [118,119] for Bayesian
treatments of the Rescorla-Wagner model [25] of classical conditioning, and of state-space
models [72,114] in motor learning, respectively). Once formalized in this way, a comparison
with the general multiple-context case of Figure 2A immediately exposes the fundamentally
single-context nature of these models (i.e., that they are analogous to the model shown in Figure
2B). This may be puzzling at first, as some of these models also suggest the presence of several
memory traces (represented as prediction weights associated with different stimuli [25], or pro-
cesses associated with different underlying learning and/or retention rates [72]), which may appear
to be similar to the multiple memories that correspond to distinct contexts in the model of contex-
tual learning we describe earlier (i.e., inferences about xt

(c) for each c). However, there is a critical
difference between these notions of multiple memories. In the contextual learning model, the ob-
servations in each time step are assumed to be generated by a single context at a time. As a con-
sequence, when a context is inferred not to have been responsible for the observations through
some period of time, its memory is preserved (modulo assumptions about the intrinsic ongoing dy-
namics of its contingencies), and, by the virtue of apparent learning, it can be easily reinstated
once the context is inferred to be active again. Single-context models with multiple memory
traces assume, even if implicitly, that all contingencies represented in these traces contribute
(with fixed relative weights) at all times and thus also express and update all these traces at all
Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1 55
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Figure 4. Identical learning curves can arise due to proper or apparent learning, or their combination. Simulations of a
model of contextual learning [13] in response to a step change in contingencies (black line, top row, abstracting the contingencies
into a single scalar) under three different scenarios (A–C). The three scenarios unfold under different parameter settings and initial
conditions (e.g., one vs. two memories). Task performance (top row, cyan) is a mixture of the inferred distributions over the
contingencies of each context (middle row, blue and red). For simplicity, each inferred set of contingencies directly determines a
response magnitude appropriate for the corresponding context. The mixture is weighted by the associated context probabilities
(bottom row, blue and red; gray shows the probability of a potential novel context). (A) Pure proper learning: the ‘contingencies’
corresponding to the relevant state [e.g., defined by the presentation of the conditioned stimulus (CS), or a movement target] can
be summarized by simply a scalar, such as the probability of receiving the unconditioned stimulus (US) as feedback in that state,
or the magnitude of force perturbation when reaching to that target. In naive subjects, the estimate of this scalar is initially 0 and
over training it is increased as the CS is consistently paired with US, or the force perturbation with the target (middle row). This
gives rise to a classical learning curve. Note that in this example, contextual inference plays no role whatsoever, as (the simulated
subject assumes) there is only a single context at play at all times of which the probability can thus only be constant one at all
times (bottom row). (B) Pure apparent learning: an existing (red) memory whose contingencies have previously been updated to
some non-zero level (here taken to be 1, for simplicity) is expressed more over time, relative to a baseline memory (blue, taken to
be at 0), as its associated context is inferred to be active with increasing probability (bottom row, probability of red context
increases). Thus, memory updating plays no role here, as the estimated contingencies for both contexts are constant through
time (middle row). (C) Mixture of proper and apparent learning: a new (red) memory is created and updated but also expressed
more over time. Critically, these distinct forms of learning can produce identical adaptation curves [(A–C), top panels], despite
having radically different internal representations (middle and bottom panels).
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times. As a consequence, there is no ‘going back’ to a previously represented mental state, unless
by relearning. In other words, single-context models are unable to show apparent learning by con-
struction and it is this inability that prevents them from going back. Multiple-context models can fur-
ther differ in the representation that indexes the current context in them. This can be as simple as a
pointer to one of a discrete number of different contexts, as we assumed earlier, or more complex,
using compositional or continuous representations (Box 4).
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Box 3. Apparent learning phenomena

Fundamental to apparent learning is the idea that stored memories can lie dormant without being fully expressed. This is
analogous to the phenomenon of retrieval failure, whereby information stored in memory is temporally inaccessible,
such as when a word is on the tip of the tongue [150]. It has been suggested that retrieval failure, like apparent learning,
occurs when the context inwhich amemorywas encoded (the learning context) differs from the current context (the test con-
text) [18]. Consistent with this interpretation, retrieval failure can be overcome if sensory cues associated with the learning
context are presented at test time [16], reminiscent of reinstatement and evoked recovery. However, whereas the term re-
trieval failure has negative connotations, apparent learning is a consequence of optimal Bayesian contextual inference and
hence memory suppression (retrieval failure) can be viewed as a normative phenomenon.

Apparent learning has recently also been suggested to underlie several classical learning phenomena [13]. According to this
account, rapid reacquisition (savings) occurs because the acquisition context is inferred to be more probable the second time it
is experienced and hence its associated memory is expressed more (see Figure 3B in main text). Spontaneous recovery occurs
because the acquisition context is inferred to be more probable following the passage of time based on the dynamics of context
transitions and hence its associated memory is re-expressed (see Figure 3B in main text). Evoked recovery/reinstatement and
ABA renewal occur because the re-presentation of sensory feedback (evoked recovery/reinstatement) or sensory cues (ABA
renewal) associated with the acquisition phase provides strong evidence that the acquisition context is active again and hence
its associated memory is re-expressed (see Figure 3B in main text). Anterograde interference (or proactive interference)
means that adaptation to a given set of contingencies, or the study of some information (acquisition phase), can slow down sub-
sequent adaptation to a new set of contingencies, or impair the memory of more recently studied information, with this effect be-
coming stronger when the acquisition phase lasts for longer [18,151,152]. This happens because extensive experience with the
first set of contingencies makes the learner believe it is less probable that they will transition to another set of contingencies and
hence thememory associatedwith the second set of contingencies is expressed less (see Figure 3C inmain text). Environmen-
tal consistency (the inverse of between-context volatility, see Box 5) can affect single-trial learning simply through apparent
learning. That is, in a more (less) consistent environment, there is a higher (lower) probability with which the current context
is expected to persist to the next trial, leading to more (less) expression of an updated memory (even though the same
amount of proper learning takes place across those environments).
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OPEN ACCESS
A critical difference between single- and multiple-context models is the way they interpret envi-
ronmental variability, that is volatility. While single-context models have to assign volatility to
changes in the contingencies, multi-context models can assign the same volatility to either
changes in contingencies or to changes in the context (Box 5).
Box 4. Simple versus complex context representations

In the main text, we have formalized the notion of context simply as a discrete latent cause. Such simple latent-cause
models [3,13] assume that exactly one latent cause is active at each point in time and hence there is a one-to-onemapping
between latent causes and contexts. By contrast, compositional latent-causemodels [1,79,80] assume that multiple latent
causes can be active at each point in time and hence a context is formalized as a unique combination of latent causes.
Importantly, such compositional representations allow powerful forms of generalization, as previously experienced latent
causes can be combined in new ways to represent novel contexts [153]. For example, in grid-world navigation tasks,
humans represent the context compositionally (when beneficial to do so) by inferring separate latent causes for the reward
function (goal location) and the state transition function (mapping from states and actions to next states), allowing new
tasks to be learned quickly by representing them as novel combinations of previously experienced reward and state tran-
sition functions [154,155]. Likewise, in motor control, we may be able to draw upon our prior experience with different ob-
jects so as to combine them to control a novel object [156,157].

Contexts may also vary on a continuum, rather than each being an island entire of itself, equidistant from all other contexts.
In this case, the contingencies for different contexts need (and should) not be assumed to be independent a priori and in-
stead their similarities and dissimilarities can be assumed to reflect the metric relationships between the contexts them-
selves. Once again this can result in greatly improved generalization. For example, having learned to control objects that
all lie on the same object manifold (e.g., bicycles of different wheel diameter, weight, and height), we can quickly adapt
to novel objects on the same manifold [158,159].

Whether discrete, compositional, or continuous, all the aforementioned representations are ‘flat’. Instead, contexts may be
hierarchically organized, as in the example given in the introduction: themouse’s encounterwith the ferretmay be associatedwith
multiple contexts at different levels of a hierarchy, identifying the forest in which the encounter happened, the specific clearing
within the forest, and the scrub in the clearing. Moreover, these contexts may evolve on different timescales [51,160]. For exam-
ple, the mouse moves between forests relatively slowly but, within a forest, darts from shrub to shrub. Indeed, there is evidence
that even randommaterial is organized hierarchically in memory [161], suggesting a strong inductive bias for hierarchical context
representations. To accommodate these inductive biases, the generativemodel underlying contextual learning that we proposed
earlier (see Figure 2A in main text) can be extended with a hierarchical representation of contexts [162,163].
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Box 5. Volatility

In classical single-context models of learning, the volatility of the environment is defined as the trial-to-trial variability of the
contingencies. In the Kalman filter [116,164] (see Figure 2B in main text), this variability is determined by the variance of the
‘process noise’, the noise in the temporal evolution of contingencies (x). Greater process noise in the generativemodel pro-
duces greater uncertainty during inference and hence a larger Bayes-optimal learning rate [119,165,166]. However, in
multiple-context models, the term volatility has been used to describe an alternative property of the environment [58],
namely how likely the context is to switch from one trial to the next, as determined by the context transition probabilities.

Unfortunately, these distinct types of volatility, which we refer to as within- and between-context volatility, have sometimes been
conflated. For example, single-context models that estimate within-context volatility have been used to draw inferences about
howhumans learn inmultiple-context economic decision-making tasks, where the reward rate stays fixed for a number of trials
but occasionally switches (e.g., between 0.2 and 0.8) from one trial to the next in a covert manner (i.e., without explicit cues)
[57,165]. When rewards are generated by such a switching multiple-context process, a single-context model learns that the
within-context volatility has increased (as a single, context-invariant reward rate is assumed to have jumped from 0.2 to 0.8,
or vice versa), despite the fact that the true within-context volatility of the generative process is actually zero (the reward rate
in each context never changes). Indeed, the learning rate of subjects exposed to such a process has been shown to increase
with more switching, as revealed by fitting the learning rate of a Rescorla-Wagner model (a paradigmatic single-context model,
as discussed earlier) to their binary choices [57,167]. This is as it would be expected froma single-context learner that adjusts its
learning rate to the volatility of the environment. However, more recently, it has been shown that changes inmemory expression
due to contextual inference in a multiple-context model can mimic changes in the learning rate of a single-context model [13].
Specifically, in an analogous setting in motor adaptation, environmental consistency (the inverse of between-context volatility)
has been shown to underlie apparent changes in learning rate (see Box 3). This leaves open the possibility that earlier results
on the effects of reward rate switching on (apparent) learning rates [57,167] reveal signatures of contextual inference, rather
than providing evidence for the adjustment of (proper) learning rates per se (see also [168]). Using the appropriate (multiple-con-
text)model class for amodel-based (re)analysis of the data will be necessary to properly adjudicate between these hypotheses.

Trends in Cognitive Sciences
OPEN ACCESS
Static versus dynamic contingencies
A critical design choice is whether the context-specific contingencies are assumed to be static over
time or time varying. (Note that even inferences about static contingencies will vary over time asmore
experience is accrued.) This choice remains relevant even for non-Bayesian models of learning. For
example, models in which memories are biased towards recent observations (e.g., by using a
constant learning rate) and/or change even in the absence of experience (e.g., due to adaptive
forgetting) implicitly assume that contingencies are time varying [25,59,72]. By contrast, models in
which memories depend equally on all past observations (at least within the same context, e.g.,
by using a learning rate that scales inversely with the number of observations) and do not change
in the absence of experience implicitly assume that contingencies are static [120].

All current models of motor learning (regardless of whether they assume the environment consists
of a single context or multiple contexts) agree that time-varying contingencies are critical for
capturing the dynamics of motor memories [12,13,70,72,76,99,114,119,121–128]. Similarly,
the most widely used models of conditioning and simple economic decision-making tasks
use a constant learning rate, thus implicitly assuming time-varying contingencies [25,129]. By
contrast, models of context-dependent economic decision-making tasks have typically not
considered the notion of time-varying contingencies [58,59,85,95]. Bayesian models of these
tasks assume that contingencies (reward functions) are static and thus weight all observations
within the same context equally [58,95].

Context transition dynamics
Once the notion of multiple contexts is introduced, inferring the current context becomes critical,
as memory creation, expression, and updating all depend on this inference. In turn, this inference
depends on the context dynamics, that is the transition probabilities between contexts. The
simplest class of models assumes uniform transition probabilities (with the potential exception
of a self-transition bias that makes the ‘from’ context the most probable), thus implying some
58 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1

CellPress logo


Trends in Cognitive Sciences
OPEN ACCESS
fixed level of between-context volatility [59] (Box 5). A somewhat richer class of models breaks this
(near) uniformity by having transition probabilities depend on the ‘to’ context (thus differentiating the
overall frequency of contexts) but still constraining them to be the same for each ‘from’ context
[95,104]. Again, a self-transition bias can be added [86], which might itself change over time in
varying-volatility models (i.e., models with time-varying between-context volatility) [58]. Such models
are not able to account for differences in learning that arise in environments that differ only in the tran-
sitions between contexts, such as the effect of environmental consistency on single-trial learning [70]
(Box 3), spontaneous recovery, and the recently demonstrated learning of rich context transition
structures in a two-step sequential decision-making paradigm [65].

At the other extreme are models in which transition probabilities depend on both the ‘from’ and ‘to’
contexts, without any additional constraints [84]. While these models are very flexible (i.e., they can
learn any context transition matrix), they afford no generalization across contexts, such that the
transition probabilities from each newly encountered context need to be learned from scratch
(see also ‘Hierarchy’ later). A compromise between complete uniformity and extreme flexibility is
provided by hierarchical models, in which transition probabilities also depend on both the ‘from’

and ‘to’ contexts but are expected, a priori, to exhibit some degree of similarity between each
‘from’ context (Figure 2C), thereby supporting generalization and learning-to-learn. Such a
model has recently accounted for empirical data from a large set of different paradigms using a di-
verse array of context transition structures [13].

Known versus unknown number of contexts
Some models assume that the learner knows the true number of contexts in the environment
(e.g., by fixing the number of contexts/modules in the model) [11,12,58,85,99,130]. These models
have no notion of memory creation as the number of memories is fixed from the start. However,
in most real-world scenarios, it is unrealistic to assume that the learner knows the true number of
contexts, as this number is in general only knowable through experience. Therefore, another
class of models learns the number of contexts in the environment from experience. These models
either assume that there is a finite number of contexts that really exist, we just do not know a priori
what this number is [1,79,80,131], while others [so-called Bayesian nonparametric models,
e.g., the hierarchical Dirichlet process (HDP), see also later under ‘Hierarchy’] assume that
there really is an infinite number of contexts and it is only the number of contexts we experience
over any limited time that remains necessarily finite [3,13,59,86,87,95,104]. Either way, these
models create a newmemory whenever a novel context is inferred. It is currently an open question
(see Outstanding questions) whether the brain uses a fixed number of memories at all times and
just discounts those that have not been linked to a previously encountered context (by setting
the corresponding context probabilities to zero for expression and updating), or it dynamically
adds new memories on the go as the need arises (whenever a new context is encountered).

Reorganization of context-specific memories
In addition to creating new memories when novel contexts are encountered, in a resource-
rational framework [132], it may also be beneficial to reorganize existing memories. For example,
if a context has not been encountered for a long time, it may be useful to prune the memory of this
context to free up computational resources [175]. Similarly, if multiple memories become suffi-
ciently similar, it may justify the merging of these memories. Although heuristics for deciding
when to prune or merge memories have been proposed [133,134], a principled Bayesian ac-
count of memory pruning and merging would require that these pruning and merging operations
emerge naturally as a consequence of inference in an appropriately defined generative model
(e.g., a model in which novel contexts can appear and previously encountered contexts can dis-
appear or merge). One example of such a generativemodel is themultiple target trackingmodel in
Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1 59
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Outstanding questions
Current models of context-dependent
learning only ever update existing
memories or add new ones. Does the
brain also reorganize existing memo-
ries, such as by pruning or merging
existing memories? Does sleep play a
role in the reorganization of memories?
How are these operations related
to classically described memory pro-
cesses such as consolidation and
reconsolidation?

How can proper and apparent learning
be measured and distinguished at the
behavioral and neural levels? Beside
recently described effects on overt
behavior, are there covert behavioral
signatures of proper and apparent
learning? For example, does contextual
uncertainty, a hallmark of apparent
learning, manifest in reaction times,
reflex gains, or pupil size?

How does the brain represent
contexts in a compositional manner?
By composing novel contexts from
other known contexts, compositional
representations can support
combinatorial generalization.

Does the brain represent contexts and
the signal processing literature, where novel targets (akin to contingencies) can be ‘born’ at differ-
ent points in time and existing targets can split, merge, and ‘die’ [135–137]. Making an optimal de-
cision about whether to prune an existing memory may involve weighing the benefits of freeing up
memory and computational resources against the costs of removing a memory that is needed
later. It is again an open question whether such reorganization actually takes place and, if so,
whether sleep has a special role in such reorganization, as is suggested by a diverse array of bene-
ficial effects of sleep on motor and perceptual skills [138–140].

Hierarchical contingencies and learning-to-learn
Although the creation of separate memories for different contexts prevents interference, it also
prevents the beneficial transfer of context-general knowledge when contexts share common
properties and features. The ability to share knowledge across contexts is crucial for transfer
learning and learning-to-learn. Therefore, in multiple-context environments, it is desirable not only
to create separate memories for each context but to also allow those memories to share common
elements. Hierarchical Bayesian models naturally achieve this trade-off between specialization and
generalization (Box 6) by exploiting an inductive bias that states that the contingencies of different
contexts share some common structure [141].

Concluding remarks and future directions
A growing body of experimental and modeling work suggests that humans and other animals
segment their continuous stream of sensorimotor experience into distinct contexts. This is true
in multiple domains of cognition, including classical conditioning, episodicmemory, reinforcement
learning, spatial cognition, and motor learning [3,7,13,38,95]. At the heart of segmentation lies
contextual inference, which controls how memories are created, updated, and expressed. Im-
portantly, the dependence of memory expression on contextual inference gives rise to a form
of learning that until recently has been unappreciated: apparent learning.
Box 6. Hierarchical Bayesian models

Bayesian models encode inductive biases over ‘local’ parameters (the context-specific contingencies) by placing prior distribu-
tions over them. In addition, in hierarchical Bayesian models, these local priors depend on a shared set of ‘global’
hyperparameters, which themselves have a hyperprior distribution of their own. During inference, both the local parameters
and the global hyperparameters of the prior distributions are learned, with the latter supporting learning-to-learn ormeta-learning.
Thus, this hierarchical organization induces dependencies between the contingencies of each context during learning. That is,
experience in one context will lead to the global hyperparameters being updated and this in turn will cause the contingencies
of all contexts to be updated.Consequently, in the small-data regime, hierarchicalmodels supportwell-informed inferences about
the contingencies of previously experienced contexts (backward transfer) as well as future contexts that have yet-to-be experi-
enced (forward transfer). In particular, rather than having to learn the contingencies of each new context from scratch, which
would be inefficient, the learned prior distributions of the contingencies can be exploited to initialize the contingencies of a new
context in a sensible way such that they only require fine-tuning, thus allowing rapid improvement in performance [169,170].

In cognitive science, hierarchical Bayesian models have been used to explain how humans learn concepts [171], abstract
knowledge [172], and inductive biases [173]. In the context of contextual learning, the hierarchical Dirichlet process (HDP)
is a Bayesian nonparametric model [174] that has been proposed as a model of how humans balance the trade-off be-
tween specialization and generalization in multiple-context environments [13]. Specifically, the HDP was used to define
a distribution on a context transition matrix in a hierarchical manner, such that each local transition distribution (row of
the transition matrix), corresponding to the transition probabilities when starting from each specific context, depended
on a global transition distribution that was shared across contexts, determining the expected overall frequency of each
context (see Figure 2C in main text).

While building on the same theoretical concepts, this hierarchy in the contents of contexts (the contingencies) is different from
the hierarchical representation of the contexts themselves we discuss in Box 4. For example, even with a simple ‘flat’ represen-
tation of contexts, contingencies can still be organized hierarchically. Indeed, a hierarchical representation of the transition prob-
abilities between contexts (one component of their contingencies) has been shown to underlie spontaneous recovery and
anterograde interference in motor learning, without invoking a hierarchical representation of contexts per se [13].

60 Trends in Cognitive Sciences, January 2023, Vol. 27, No. 1

their contents hierarchically and, if
so, what kind of hierarchy is it (which
aspects of the contingencies does it
involve, beside transition probabilities)
and how deep is the hierarchy?

How domain-general is the simultaneous
and graded expression and updating of
multiple memories that has so far only
been demonstrated empirically in motor
adaptation? When expressing multiple
memories, are there ways of combining
them other than just a simple average?
Can multiple memories be updated
simultaneously on a single trial, or is only
one memory updated at a time, with
graded updating emerging only due to
averaging across trials?

Does the brain use a fixed number
of memories at all times, simply
discounting those that have not been
linked to a previously encountered
context, or does it dynamically add new
memories on the go as the need arises?

Is there a specialized brain area for
computing general-purpose contextual
inferences, or are there distinct areas
performing domain-specific forms of
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contextual inference, perhaps at dif-
ferent timescales?

How are the effects of contextual
inference on memory creation,
updating, and expression implemented
mechanistically in neural circuits? Given
that exact contextual inference
is intractable, what approximate
algorithms does the brain use for it?
What neural code is used to encode
graded uncertainty about context?
How do these processes play into
continual learning in biological circuits?
Apparent learning has important implications for the future of studying learning and memory (see
Outstanding questions), as it implies that observed behavior does not provide a direct window
into proper learning. Thus, to appropriately interpret behavioral data, and to study the neural
mechanisms of learning, a more nuanced approach will be necessary. Given that adaptive
changes in behavior can arise from a combination of proper and apparent learning, contextual
inference must be considered so as to identify reliably the individual contributions of these
processes. In general, contextual inferences could either be measured (e.g., using neural
measurements) or inferred from behavior (e.g., using a computational model). In lieu of reliable
methods for measuring contextual inferences directly, a model capable of exhibiting both proper
and apparent learning could be fit to the data of a participant to discern the contributions of
these two forms of learning [13]. Dissecting the contributions of proper and apparent learning to
behavior will be instrumental for identifying their respective neural underpinnings.
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