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SUMMARY
Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about
how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA
sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an
upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cogni-
tively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in mono-
cytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory
cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6
ligand, C-X-Cmotif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects,
suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumu-
latively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cogni-
tive impairment.
INTRODUCTION

Neuroinflammation is a pathological hallmark of age-related

neurodegenerative disease.1 The brain is surrounded by the

meninges, amembranous covering that contains the cerebrospi-

nal fluid (CSF). The meningeal lymphatic system carries fluid and

immune cells from the CSF to the deep cervical lymph nodes,

enabling peripheral immune cells to respond to brain antigens

under pathological conditions.2,3 Adaptive immune T cells that

initially encounter antigen in the periphery can enter the CSF

via the systemic circulation and patrol the intrathecal space.4–7

The choroid plexus, which produces the CSF, serves as an inter-

face between the brain and circulation and is a site of age-related

chronic neuroinflammation in mice.8,9 Recent studies indicate

the CSF provides molecular cues to immune cells of the skull

bone marrow to alter CSF myeloid populations in mice.10–12

However, the influence of age on the molecular mechanisms
5028 Cell 185, 5028–5039, December 22, 2022 ª 2022 The Author(s)
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regulating CSF immunity in humans is not clear. Moreover,

whether changes to the CSF immune system relate to behavioral

changes such as cognitive impairment (CI) remains unknown.

Our recent studies indicate that CSF immune changes reflect

the pathobiological events of age-related neurodegenerative

disorders such as Alzheimer’s disease (AD)13 and Lewy body de-

mentia.14 We thus hypothesized that comparing the CSF im-

mune transcriptomes associated with healthy cognitive aging

and CI would provide insights into the pathophysiology of age-

related neuroinflammation in neurodegenerative disease. Our re-

sults reveal age-related CSF immune perturbations in cognitively

normal subjects, underscored by altered expression of lipid

transport genes. Further, we detected an upregulation of C-X-

C motif chemokine receptor 6 (CXCR6) in clonally expanded

CD8+ T effector memory (TEM) cells of cognitively impaired sub-

jects. The CXCR6 ligand, C-X-C motif chemokine ligand 16

(CXCL16), is a pleiotropic protein that functions as a T cell
. Published by Elsevier Inc.
tivecommons.org/licenses/by-nc/4.0/).
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chemoattractant and scavenger receptor for oxidized

lipoprotein. CXCL16 was elevated in CSF of cognitively impaired

subjects and was associated with neuroaxonal damage. We

localized CXCR6+ T cells and CXCL16+ myeloid cells to

amyloid plaques in AD post-mortem brains. Therefore, our

single-cell transcriptomics resource identified the CXCL16-

CXCR6 signaling axis as a potential mechanism for T cell entry

into brains with neurodegeneration. Finally, we uncover an unex-

pected level of significantly altered AD risk genes in CSF T cells

of cognitively impaired subjects. Altogether, these findings high-

light the utility of measuring CSF immune changes to identify

disease-associated neuroinflammation in cognitively impaired

individuals.

RESULTS

Assessing CSF immunity in healthy brain aging and
cognitive impairment by scRNA-seq
We first established age-related CSF immune transcriptome

changes that occur with healthy brain aging. Extant studies on

CSF immunity have suffered from biases associated with small

sample sizes and limitations of conventional methods such as

flow cytometry.15,16 To circumvent these issues, we utilized

our established droplet-based single-cell RNA sequencing

(scRNA-seq) method13,14,17 (Figure 1A). We generated CSF im-

mune system profiles of 45 cognitively normal subjects ranging

from 54 to 82 years old. We then compared CSF immune tran-

scriptomes of this healthy cognitive aging group with 14 age-

and sex-matched patients with clinical diagnoses of AD or pro-

dromal mild cognitive impairment (MCI) (Figures 1B, S1A, and

S1B). Comparison of Montreal cognitive assessment (MoCA)

scores confirmed reduced cognitive abilities in MCI and AD sub-

jects (Figure 1C). We also measured CSF biomarkers, which re-

vealed higher levels of tau phosphorylated at residue 181

(pTau181) in cognitively impaired subjects (Figure 1C). Demo-

graphics and CSF biomarker data for these subjects are pre-

sented in Table 1.

Overall, we analyzed 70,391 quality-controlled CSF immune

cells. Importantly, we did not observe diagnostic differences

by dimensionality reduction (Figure S1C). Further, quality control

metrics indicated limited amounts of mitochondrial reads and

expected numbers of counts and features per group (Fig-

ure S1C). We then removed low levels of ambient RNA contam-

ination with SoupX18 (Figures S1D and S1E). We resolved CSF

immune cell types including CD4+ and CD8+ T cells, T regulatory

cells (Tregs), natural killer (NK) cells, plasma cells,

B cells, dendritic cells, and three populations of classical, inter-

mediate, and non-classical monocytes distinguished by varying

CD14 and CD16 expression and pseudotime analysis

(Figures 1D and S1F). CSF immune clusters were annotated

based on their expression of cardinal marker genes (Figure 1E).

Number of counts and mitochondrial reads were also consistent

per sample (Figure S1G). We did not observe overt changes in

cell type composition with age (Figure S1H). Samples were pro-

cessed on two separate days, but this did not introduce observ-

able batch effects (Figure S1I).We quantified cell type frequency,

which revealed the majority of CSF immune cells as CD4+ and

CD8+ T cells (Figure 1F). Finally, our full dataset can be explored
online using a data portal located at gatelabnu.shinyapps.io/

csf_aging.

Linear CSF immune transcriptome changes associated
with healthy brain aging
We began by assessing age-related transcriptomic changes to

each cell type using linear regression. We noted that CD4+ and

CD8+ T cells and non-classical monocytes had the most differ-

entially expressed genes (DEGs) with age (Figure 1G;

Table S1). Plotting DEGswith age revealed increased expression

of cluster of differentiation 74 (CD74) among CD4+ and CD8+

T cells (Figure 1H). CD74 encodes the human leukocyte antigen

(HLA) class II histocompatibility antigen gamma chain, which is a

marker of T cell activation.19–22 CD4+ and CD8+ T cells also up-

regulated with age expression of genes encoding the granzyme

family of serine proteases (Figure 1H; Table S1). Granzymes are

released by cytotoxic T cells to induce apoptosis in the target

cell.23 Interestingly, non-classical monocytes exhibited a pro-

nounced reduction in expression with age of cytokine genes

such as C-Cmotif chemokine ligand 3 (CCL3), C-Cmotif chemo-

kine ligand 4 (CCL4), tumor necrosis factor (TNF), and interleukin

1 beta (IL1B). This reduction in cytokine gene expression was

accompanied by increased expression of genes involved in lipid

transport, including apolipoprotein E (APOE), apolipoprotein C1

(APOC1), and phospholipid transfer protein (PLTP) (Figure 1H).

Notably, mutations in APOE and APOC1 are associated risk fac-

tors for AD.24–30 Further, the PLTP gene encodes a key determi-

nant of lipoprotein metabolism involved in regulating inflamma-

tion, including by modulating adaptive immune functions

through alternation of T cell polarization.31 Thus, linear modeling

(LM) revealed age-related changes to the CSF immune system.

These changes were underscored by altered expression of

genes involved in lipoprotein metabolism that are also estab-

lished genetic risk factors for age-related neurodegeneration.

Non-linear CSF immune transcriptome changes
associated with healthy brain aging
When visualizing gene expression with age, we noted that CSF

immune genes fluctuated in distinct, non-linear patterns. We

thus sought to visualize non-linear changes to CSF immune

genes and to compare gene expression trajectories of CSF im-

mune cells with age. Plotting expression of the 7,980 genes de-

tected in non-classical monocytes with age by locally estimated

scatterplot smoothing (LOESS) revealed wave-like expression

trajectories (Figure 2A). We used hierarchical clustering to iden-

tify distinct patterns of gene expression changes with age

(Figures 2B and S2; Table S1). To further validate gene expres-

sion changes with age, we divided healthy control (HC) subjects

into middle (<70 years) and advanced (R70 years) age groups

using the median age of 70 years old as a cutoff. We then per-

formed differential expression (DE) by model-based analysis of

single-cell transcriptomics (MAST)32 (Figures 2C and S3B;

Table S2). Importantly, we did not observe major effects of sex

on the CSF immune transcriptome by MAST DE (Figure S3A;

Table S2). However, DE of advanced and middle-aged groups

also showed the highest level of immune dysregulation in non-

classical monocytes (Figure 2C; Table S2). We then plotted up-

regulated genes of non-classical monocytes by LOESS, which
Cell 185, 5028–5039, December 22, 2022 5029
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Figure 1. Study design and CSF immune cell gene expression changes by linear modeling

(A) Schematic depicting study design. CSF was isolated by lumbar puncture from living individuals. Single cells were loaded into droplets; then, libraries were

amplified for whole transcriptome or targeted TCR sequencing.

(B) Study demographics indicating age and sex of each individual.

(C) MoCA cognitive scores and pTau181 levels in control vs. cognitively impaired subjects. Mean ± SEM; Mann-Whitney U test.

(D) UMAP plot showing clusters of CSF immune cells.

(E) Heatmap of marker genes utilized to annotate cell clusters.

(F) Donut plot indicating the distribution of CSF immune cell types.

(G) UpSet plot showing the number of DEGs per CSF immune cell cluster.

(H) Volcano plots depicting DEGs of the most altered clusters by linear modeling (LM).

See also Figure S1 and Table S1.
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confirmed increased, non-linear expression of lipid transport

genes APOE, APOC1, and PLTP with age (Figure 2D). Thus,

our non-linear analysis uncovered changes to lipid processing

genes of non-classical monocytes that dovetailed with our linear

analysis.

We next sought to measure the age at which most gene

expression changes were occurring. To measure non-linear
5030 Cell 185, 5028–5039, December 22, 2022
gene expression changes, we used the algorithmDE-sliding win-

dow analysis (DE-SWAN).33 We used DE-SWAN to analyze gene

levels within a window of 4 years by comparing groups in parcels

of 2 years (e.g., 60–62 years compared with 62–64 years), then

sliding the window in increments of 2 years from youngest to old-

est (Figure 2E). Using DE-SWAN, we detected a peak of DE for

several CSF immune clusters at age 78 (Figure 2F; Table S3).



Table 1. Demographics and biomarker data of study subjects

Healthy controls Cognitively impaired p value

Demographics

Cognitive impairment, n (%) HC 45 (100.0%) 0 (0.0%) <0.001

MCI 0 (0.0%) 8 (57.1%) –

AD 0 (0.0%) 6 (42.9%) –

Sex, n (%) female 27 (60.0%) 7 (50.0%) 0.725

male 18 (40.0%) 7 (50.0%) –

Age median (interquartile range [IQR]) 69.0 (65.0 to 73.0) 72.5 (64.0 to 76.8) 0.475

Race, n (%) Asian 3 (6.7%) 1 (7.1%) 0.565

Native Hawaiian or Other Pacific Islander 1 (2.2%) – –

White 35 (77.8%) 9 (64.3%) –

N/A 6 (13.3%) 4 (28.6%) –

APOE genotype n = 38 n = 10

E3/E2 4 (10.5%) 1 (10.0%) 0.360

E3/E3 16 (42.1%) 2 (20.0%)

E3/E4 16 (42.1%) 5 (50.0%)

E4/E4 2 (5.3%) 2 (20.0%)

MoCA score n = 22 n = 12

median (IQR) 27.0 (26.0–28.0) 20.5 (15.0–24.2) <0.001

CDR n = 42 n = 11

median (IQR) 0.0 (0.0–0.0) 1.0 (1.0–3.2) <0.001

CSF biomarkers (pg/mL) n = 37 n = 10

pTau181 median (IQR) 40.1 (32.9–61.2) 91.1 (67.2–141.8) 0.012

Total tau median (IQR) 302.0 (265.0–412.3) 604.6 (453.3–819.7) 0.006

Ab42 median (IQR) 1,000.0 (811.3–1,231.3) 870.1 (673.8–1,014.8) 0.311

Ab40 median (IQR) 10,565.0 (8,816.0–12,383.0) 12,061.5 (9,888.0–13,718.5) 0.203

CSF biomarker ratios n = 37 n = 10

Ab42/Ab40 median (IQR) 0.115 (0.078–0.126) 0.073 (0.063–0.115) 0.264

Ab42/total tau median (IQR) 3.900 (2.033–4.577) 1.247 (1.036–2.611) 0.015
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Comparing DEGs by DE-SWAN and LM underscored the effects

of advanced age on non-classical monocytes (Figure 2G). We

then plotted genes of each cluster by the significance of their

DE at age 78, which revealed a large set of changing genes of

Tregs and non-classical monocytes (Figures 2H and S3C;

Table S3). Notably, we detected dysregulated progranulin

(GRN) expression in non-classical monocytes at age 78 (Fig-

ure 2H). Mutations in GRN are associated with AD34 and fronto-

temporal dementia.35–37 Intriguingly, GRN encodes a key regu-

lator of lysosomal function38 and lipid accumulation in brain

microglia.39 Lipid processing genes were also altered in non-

classical monocytes at age 78, including APOC2 and apolipo-

protein B receptor (APOBR) (Figure 2H).

Non-classical monocytes communicate with CD8+

T cells via CXCL16-CXCR6 in cognitively impaired CSF
Having established gene expression patterns of CSF immune

cells in healthy aging, we next aimed to compare these changes

with subjects with CI. To our surprise, MAST DE of cognitively

impaired vs. cognitively normal controls revealed the highest

level of transcriptomic dysregulation in Tregs (Figure S4A;

Table S4). Analysis of individual DEGs showed upregulated
expression of forkhead box P3 (FOXP3) and interleukin 32

(IL32) in Tregs (Figure S4B; Table S4). Populations of classical

and non-classical monocyteswere also highly dysregulated (Fig-

ure S4A). Interestingly, we noted downregulated expression of

APOC1 in non-classical monocytes (Figure S4B). This prompted

us to plot the expression of lipid processing genes of non-clas-

sical monocytes from cognitively impaired vs. cognitively normal

subjects with age. Plotting APOE, APOC1, and PLTPwith age by

LOESS demonstrated reduced expression of all three genes in

cognitively impaired subjects at later ages (Figure 2I). We thus

performed MAST DE on non-classical monocytes comparing

advanced age cognitively impaired subjects with advanced

age cognitively normal subjects (Figures S3D and S3E). By this

method,APOE andAPOC1were highly downregulated, verifying

reduced expression of lipid processing genes in cognitively

impaired subjects with age (Figure 2J; Table S4).

We next aimed to determine whether reduced lipid processing

gene expression among non-classical monocytes coincided

with altered intercellular communication in the CSF. To infer

cell-cell communication, we utilized CellChat. CellChat uses a

signaling molecule interaction database of ligand-receptor

interactions to analyze intercellular communications from
Cell 185, 5028–5039, December 22, 2022 5031
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Figure 2. Upregulated lipid processing gene expression in non-classical CSF monocytes with age

(A) LOESS trajectories (upper) and a corresponding heatmap (lower) demonstrating wave-like expression patterns of non-classical monocytes with age.

(B) Sets of genes ordered by hierarchical clustering and displayed using LOESS trajectories display distinct wave-like patterns with age.

(C) Volcano plot from MAST differential expression analysis showing downregulation of cytokine genes and upregulation of lipid processing genes.

(D) LOESS trajectories of APOE, APOC1, and PLTP expression in non-classical CSF monocytes with age.

(E) Representative genes JUNB and RGCC display distinct non-linear changes with age. DE-SWAN was used to measure the age at which most differential

expression occurs.

(F) The results of DE-SWAN analysis indicating a consistent dysregulation of CSF immune cell types at age 78.

(G) UpSet plot comparing the number of DEGs for non-classical CSF monocytes from DE-SWAN and linear modeling.

(H) Manhattan plot indicating genes that were differentially expressed by each cluster at age 78.

(I) LOESS trajectories of lipid processing genes comparing HC to CI subjects.

(J) Volcano plot showing reduction of lipid processing genes APOE and APOC1 comparing only advanced aged subjects.

See also Figures S2 and S3 and Tables S1, S2, S3, and S4.
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Figure 3. Cell-cell communication algorithm indicates non-classical monocytes communicate with CD8+ T cells via CXCL16-CXCR6

signaling in cognitive impaired CSF

(A) Circle plots of signaling networks of healthy and cognitively impaired CSF immune systems.

(B) Cell-cell interaction strengths plotted for all cell types indicating incoming and outgoing interactions.

(C) Dot plot indicating signaling molecules between non-classical monocytes and T cells in cognitively impaired CSF.

(D) CXCL16-CXCR6 signaling between non-classical monocytes and CD8+ T cells is unique to cognitively impaired CSF.

(E) The signaling network for CXCL16-CXCL6 indicates activated monocytes as the primary source of CXCL16 for CXCR6 on CD8+ T cells.

(F) Violin plots indicating which cell types express CXCR6 and CXCL16 in the CSF.

(G) UMAP showing expression of CXCR6 by T cells and CXCL16 by myeloid cells.

(H) Distribution of clonal and nonclonal CSF T cells.

See also Figure S2.
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scRNA-seq data.40 Within our scRNA-seq data, cell-cell interac-

tions of cognitively normal and cognitively impaired CSF ap-

peared highly similar (Figure 3A). We detected the strongest

incoming interactions among CD8+ T cells and the strongest out-

going interactions coming from non-classical monocytes (Fig-

ure 3B). We then probed the cell-cell interactions of cognitively

impaired CSF, which indicated strong communication probabil-

ities between non-classical monocytes and CD8+ T cells via
HLA-A, HLA-B, HLA-C, and HLA-E binding CD8A and CD8B

(Figure 3C). In fact, most signaling pairs between non-classical

monocytes and CD8+ T cells that were increased in cognitively

impaired CSF were also increased in cognitively normal CSF.

However, signaling between CXCL16 and CXCR6 was unique

to cognitively impaired CSF (Figure 3D). Notably, CXCR6 is a sur-

face chemokine receptor that regulates T cell migration to

various tissues.41 We then plotted the cell-cell interactions of
Cell 185, 5028–5039, December 22, 2022 5033
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CXCL16-CXCR6 signaling in cognitively impaired CSF, which

indicated non-classical monocytes as the primary source of

CXCL16 for CXCR6 expressed on CD8+ T cells (Figure 3E). We

measured CXCL16 and CXCR6 among CSF cell types, which

indicated expression of CXCL16 by myeloid cells and CXCR6

by T cells (Figures 3F and 3G). We next sequenced CSF T cell re-

ceptors (TCRs) from the same cells as above and noted an asso-

ciation ofCXCR6 expression with clonal T cells (Figure 3H). Alto-

gether, these results show that myeloid cells communicate with

clonal CD8+ T cells via CXCL16-CXCR6 in cognitively impaired

CSF. Interestingly, we also detected clonally expanded Tregs

(Figure S4C), but these cells were too sparse to perform DE.

Dysregulation of clonally expanded CSF T cells of
cognitively impaired subjects
We previously showed that clonally expanded T cells patrol the

CSF in AD.14 However, the mechanism by which antigen-spe-

cific T cells enter the CSF remains poorly understood. We there-

fore assessed the transcriptomes of clonally expanded T cells

between cognitively impaired vs. cognitively normal CSF im-

mune systems. We then asked whether CSF TCRs from cogni-

tively impaired subjects were similar in protein sequence to

those of cognitively normal subjects of advanced age. We

used our established TCR Levenshtein similarity (Lsim)

networking method13,17,42 to compare TCRs of cognitively

impaired patients with cognitively normal subjects of four

equal-sized age bins (early and late middle age and early and

late advanced age). These results showed increased similarity

of TCRs from cognitively impaired subjects with the two oldest

age bins (early and late advanced age) (Figure 4A; Table S4).

Conversely, no similarities were detected between TCRs from

cognitively impaired subjects with the two youngest age bins

(Figures 4A and 4B; Table S4).

We next sought to determine whether clonally expanded, an-

tigen-specific T cells were transcriptionally distinct in cognitively

impaired vs. cognitively normal CSF immune systems. We thus

performed DE on clonally expanded CD4+ and CD8+ T cells of

cognitively impaired vs. cognitively normal CSF. MAST DE of

nonclonal and clonal CD4+ and CD8+ T cells revealed T cell

clonal expansion as a driver of transcriptional dysregulation in

cognitively impaired vs. cognitively normal CSF (Figure 4C).

We noted a shift from CXCR4 to CXCR6 chemokine receptor

gene expression in clonally expanded CD4+ and CD8+ T cells

(Figures S5A and S5B). Notably, clonally expanded CD8+

T cells upregulatedCXCR6 in cognitively impaired vs. cognitively

normal CSF (Figure 4D; Table S4). We further confirmed an

increased CXCR6 expression by CD8+ T cells in cognitively

impaired subjects on the pseudobulk level (Figure S5C).

We next aimed to obtain finer resolution of the CD8+ T cell

subtype associated with CI. To do so, we utilized a cellular in-

dexing of transcriptomes and epitopes by sequencing (CITE-

seq) reference dataset43 and supervised clustering to reanno-

tate the same CSF cells (Figures S5D and S5E). To our surprise,

CD14+ monocytes were the most dysregulated cell type among

reannotated clusters (Figure S5F; Table S5). Having finer reso-

lution of CSF immunity, we then measured CXCR6 expression

in T cell subsets, which distinguished CD8+ and CD4+ TEM cells

as the primary expressors of CXCR6 (Figures 4F and S5G). We
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also observed increased CXCR6 expression in CD8+ TEM cells

on the pseudobulk level (Figure S5H). We then reassigned

TCRs to these reannotated cells to identify clonal populations

of CSF T cells (Figures 4G and S5I). We quantified single-cell

expression of CXCR6 on CD8 TEM cells which revealed higher

levels of expression among cognitively impaired subjects

(Figure 4H).

Finally, we sought to measure levels of CSF CXCL16 protein in

larger groups of subjects and to compare CXCL16 levels with

neurodegenerative disease biomarkers. We first utilized a prox-

imity extension assay (PEA), which detected higher levels of

CXCL16 in CSF of cognitively impaired vs. cognitively normal

subjects (Figures 4I and S6A). Notably, levels of CXCL16 highly

correlated with levels of neurofilament light (NEFL) in cognitively

impaired and cognitively normal subjects (Figure 4J; Table S6).

NEFL is a biomarker for neuroaxonal damage which predicts

neurodegeneration and clinical progression in presymptomatic

AD.44 CXCL16 also correlated with levels of CSF glial fibrillary

acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1

(UCHL1). Interestingly, CXCL16 did not correlate with either

Ab40 or Ab42 but did correlate with pTau181 in subjects who

were diagnosed with MCI and progressed to AD (Figure 4J).

We confirmed our PEA results by detecting a positive correlation

between CXCL16 and NEFL by slow off-rate modified aptamer

(SOMAmer) assay (Figure 4K; Table S6). However, although

the SOMAmer assay detected increased levels of CXCL16 in

cognitively impaired subjects, we did not observe significant

group differences (Figure S6B).

Interestingly, public datasets indicate that microglia/macro-

phages are the main expressors of CXCL16 in human brain

(Figure S6C).45 Further, microglia express higher levels of

CXCL16 than monocytes (Figure S6D).46 In AD brain,

CXCL16 is more highly expressed in the temporal cortex of

AD subjects than controls (Figure S6E).47 Thus, we aimed to

confirm protein expression of CXCL16 in AD brain myeloid

cells. Indeed, we identified CXCL16+Iba1+ plaque-associated

myeloid cells in AD brain (Figure S6F). We confirmed intracel-

lular expression of CXCL16 by Iba1+ cells by generating a z

stack through an Iba1+ myeloid cell body (Figure S6G). Finally,

we identified CD3+ T cells expressing the CXCR6 receptor in

close proximity to Iba1+ myeloid cells in two separate AD

post-mortem brains (Figure S6H). Cumulatively, these results

indicate altered CXCR6-CXCL16 signaling as a mechanism

for antigen-experienced T cell entry into the brains of subjects

with neurodegeneration.

Our results uncover T cell transcriptomic changes associated

with CI. Historically, innate immunity has been studied in greater

detail than adaptive immunity in AD. The identification of AD risk

genes via genome-wide association studies (GWASs)48,49

further compelled AD researchers to interrogate brain innate im-

munity, since many AD risk genes are expressed by brain innate

immune cells. However, when we probed AD risk genes for

expression among CSF immune cells,50 we identified CD4+

and CD8+ T cells as having the most significantly altered genes

(Figure 5). Among supervised clusters, CD4+ TEM and CD8+

TEM cells had the most altered AD risk genes (Figure S6I). Alto-

gether, these results uncover a potential, unexpected role of

T cells in AD risk.



Figure 4. Clonally expanded T cell disruption in CSF of patients with cognitive impairment

(A) TCR networking plot depicting Levenshtein similarities >0.9 for all clonal CSF TCRs. Healthy, cognitively normal patients were binned into equal-sized groups.

(B) Quantification of the proportion of TCRs for each age group that had Levenshtein similarity >0.9.

(C) UpSet plot showing that clonally expanded CD4+ and CD8+ T cells have more DEGs that nonclonal T cells.

(D) Volcano plots showing DEGs of clonal vs. nonclonal CD8+ T cells between cognitively impaired and healthy CSF.

(E) Quantification of average single-cell expression of clonal and nonclonal CD8+ T cells from cognitively impaired and healthy CSF. p values are from MAST

differential expression.

(F) Single-cell quantification of CXCR6 expression by CD8+ T cell subtypes showing increased expression among CD8+ TEM cells. Wilcox test, BH corrected.

(G) UMAP showing distribution of T cell subtypes and clonality using supervised clustering.

(H) Single-cell quantification of CXCR6 expression in clonal CD8+ TEM cells showing higher expression among cognitively impaired subjects. Wilcox test.

(I) PEA assaymeasurement of CXCL16 protein showing higher levels in cognitively impaired subjects. ANCOVAwith sex and age as covariates. Error bars indicate

upper or lower interquartile range (IQR) plus or minus 1.5*IQR.

(J) Correlations of CXCL16 with CSF biomarkers. Spearman partial correlation with sex and age as additional covariates.

(K) Correlations between CSF CXCL16 and NEFL using SOMAmer measurements. Spearman partial correlation with sex and age as additional covariates.

See also Figures S4, S5, and S6 and Tables S4, S5, and S6.
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AD GWAS genes across all major CSF im-
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Asterisks denote the most highly altered genes by

adjusted p value. Note that T cells differentially ex-

press numerous AD risk genes in CI CSF.

See also Figure S6.
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DISCUSSION

Our CSF immune transcriptomic profiling provides insight into

the influence of age on healthy brain aging and into the patho-

physiology of CI. In healthy brain aging, we identified a popula-

tion of non-classical CSF monocytes with increased expression

of genes encoding lipid processing proteins. Some of the genes

associated with CSF monocyte aging are genetic risk factors for

AD, including APOE and APOC1. Increased expression of these

genes by intrathecal monocytes highlights the critical role of lipid

metabolism in innate immunity and immunoregulation.51 Partic-

ularly intriguing was the concomitant downregulation of cytokine

genes, suggestive of a metabolic and functional shift of non-

classical monocytes with age. These changes might reflect

parenchymal myeloid cell pathophysiology, such as the accu-

mulation of lipid droplets in brain microglia with age.39

Our results also indicate disparate age-related CSF immune

systemperturbations in cognitively impaired subjects. These tran-

scriptional changesmay reflect alterations toCSF immunityduring
5036 Cell 185, 5028–5039, December 22, 2022
the neurodegenerative disease course.

Among significantly altered CSF immune

cells were non-classical monocytes,

which show decreased expression of lipid

transport genes concomitantwith increased

signaling to CD8+ T cells via CXCL16-

CXCR6. Intriguingly, CXCL16 has a dual

role as a scavenger receptor that mediates

internalization of oxidized low-density lipo-

proteins.52 Thus, increased CXCL16 in the

CSF of cognitively impaired subjects may

be compensatory to reduced lipid trans-

portgeneexpression innon-classicalmono-

cytes. Additionally, CXCL16 is a receptor for

phosphatidylserine-coated particles such

as apoptotic bodies. Therefore, the correla-

tion between CXLC16 and neuroaxonal

damage may reflect the immune response

to neuronal death.

Our results show that TCRs of cognitively

impaired subjects more closely resemble

those from advanced ages than younger

age groups. This suggests that the TCR

repertoire of cognitively impaired subjects

resembles an ‘‘advanced aging’’ CSF adap-

tive immune system. Moreover, we identify

an association between CXCR6 expression

in clonally expanded T cells and CI. Our re-

sults suggest that CXCR6 regulates homing

of antigen-specific T cells from the periph-
eral circulation to the CSF via brain myeloid expression of

CXCL16. This finding is particularly enlightening in conjunction

with recent evidence that CXCR6/CXCL16 signaling functions

as a maintenance factor for brain resident T cells that drive syn-

apse elimination during viral recovery in mice.53

Altogether, our results highlight the potential to utilize CSF im-

mune transcriptome changes to identify disease-associated

neuroinflammation in cognitively impaired individuals. As such,

CSF immunophenotyping may be useful to gain further

insight into T cell-antigen complexes involved in the pathophys-

iology of CI. Here, we uncover CXCL16-CXCR6 signaling as a

potential mechanism of antigen-specific T cell entry into the

intrathecal space of patients with CI. These findings could be

used to improve anti-inflammatory therapeutics or to estimate

levels of neuroinflammation in cognitively impaired patients.

Limitations of the study
This study is comprised entirely of human data, and our claims

are based primarily on bioinformatic approaches that rely on
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underlying assumptions of algorithms. As such, there are limita-

tions regarding functional or mechanistic evidence. Ideally,

in vivo experiments in animals would further elucidate the neces-

sity and sufficiency of CXCL16-CXCR6 signaling in T cell brain

homing and its impact on cognition. We encourage animal re-

searchers to interrogate this pathway. Additionally, females

comprised most of the younger healthy controls, whereas males

comprised most of the older healthy controls in this study. Thus,

while we did not observe sex effects in this study, we suggest

further interrogation of potential sex differences in CSF

immunity.
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Ellwart, J.W., Klinkert, W.E., Flügel-Koch, C., Issekutz, T.B., Wekerle, H.,

and Flugel, A. (2009). Effector T cell interactions with meningeal vascular

structures in nascent autoimmune CNS lesions. Nature 462, 94–98.

https://doi.org/10.1038/nature08478.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-CD3 Abcam ab11089; RRID: AB_2889189

Rabbit monoclonal anti-CXCR6 Abcam ab273116; RRID: AB_2925220

Mouse monoclonal anti-CXCL16 Thermo Fisher MA5-27845; RRID: AB_2735159

Rabbit monoclonal anti-amyloid-b Cell Signalling 8243; RRID: AB_2797642

Goat polyclonal anti-Iba1 Abcam ab48004; RRID: AB_870576

Biological samples

Adult CSF Stanford Aging and Memory Study (SAMS) N/A

Adult CSF Stanford University Alzheimer’s Disease

Research Center (ADRC)

N/A

Adult CSF University of California at San

Francisco ADRC

N/A

Adult CSF University of California at San Diego

ADRC

N/A

Critical commercial assays

10x Genomics Chromium Next GEM Single

Cell 5’ v2 with immune profiling kit

10xGenomics PN-1000263

Deposited data

Raw and processed data This study GEO: GSE200164

Code for analysis This study Github: https://github.com/gatelabnw/csf_aging

ShinyCell app for interactive data analysis This study ShinyApps: gatelabnu.shinyapps.io/csf_aging

Software and algorithms

Cellranger v6.0.0 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

what-is-cell-ranger

SoupX v1.5.2 Young and Behjati18 https://github.com/constantAmateur/SoupX

DoubletFinder v2.0.3 McGinnis et al.54 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Seurat v4.1.0 Hao et al.42 https://satijalab.org/seurat/

DEswan v0.0.0.9001 Lehallier et al.33 https://github.com/lehallib/DEswan

CellChat v1.4.0 Jin et al.40 http://www.cellchat.org

RecordLinkage v0.4-12.3 Sariyar and Borg42 https://cran.r-project.org/web/packages/

RecordLinkage/index.html
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, David Gate (dgate@

northwestern.edu).

Materials Availability
No new unique reagents were generated for this study.

Data and Code Availability
d All raw data used in this study can be found on GEO: GSE200164. Raw count and log-normalized expression matrices are also

available under the same accession number.
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d All code used to generate the figures in this study can be found at https://github.com/gatelabnw/csf_aging.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
For scRNAseq experiments, CSF samples were acquired through the Stanford Aging andMemory Study (SAMS), Stanford University

Alzheimer’s Disease Research Center (ADRC), the University of California at San Francisco ADRC and the University of California at

San Diego ADRC. Collection of CSF was approved by the Institutional Review Board of each university and written consent was ob-

tained from all subjects. scRNAseq and scTCRseq were performed on CSF of 59 subjects of both sexes aged 47-82 years. Of these

subjects, 45 were assessed as healthy controls while the remaining 14were patients with cognitive impairment (MCI or dementia due

to AD). Age and sex demographics are presented in Figures S1A and S1B. SAMS eligibility included normal or corrected-to-normal

vision/hearing, native English speaking, no history of neurologic or psychiatric disease, a Clinical Dementia Rating (CDR) global score

of zero, and performance within the normal range on a standardized neuropsychological test battery.55,56 In the ADRCs, all healthy

control participants had CDR scores of zero andwere deemed cognitively unimpaired during a clinical consensusmeeting consisting

of neurologists, neuropsychologists, and research coordinators. All healthy control and cognitively impaired study subjects under-

went neurological examinations, CDR ratings, and standardized neuropsychological assessments to determine cognitive and diag-

nostic status, including procedures of the National Alzheimer’s Coordinating Center. All cognitively impaired participants had a CDR

score greater than zero. For histology experiments, de-identified human dorsolateral prefrontal cortex samples from AD subjects of

various ages were obtained through collaboration with the Stanford University ADRC.

METHOD DETAILS

Sample Preparation
CSF was collected via lumbar puncture and cells were cryopreserved according to our established protocol.17 All 59 CSF samples

were processed and cryopreserved by the same technician over the course of two years. Cells were sorted by FACS for live singlets

using Sytox blue live/dead dye before performing droplet-based scRNAseq and scTCRseq.

Protein biomarker measurements
We measured protein biomarkers in CSF with two separate methods. We used PEA technology (Olink Proteomics) to measure

CXCL16 and NEFL as in Figures 4I and 4J. Protein levels are presented in Normalized Protein eXpression (NPX) units. NPX is Olink’s

arbitrary unit, which is in Log2 scale. NPX is calculated from Ct values and data pre-processing (normalization) is performed to mini-

mize both intra- and inter-assay variation. Separately, we used single molecule array (Simoa) ELISA technology (Quanterix) to mea-

sure NEFL, Ab42 and Ab40, as in Figure 4J. We also measured CXCL16 and NEFL using SOMAmer technology (SomaLogic), as in

Figure 4K.

Droplet-based scRNA and TCRseq
The 10x Genomics ChromiumNext GEMSingle Cell 5’ v2 with immune profiling kit was used for scRNA and TCRseq of CSF samples.

Libraries were prepared according to 10x Genomics protocols. Libraries were sequenced by Novogene on an Illumina Novaseq 6000

instrument. Bases were called using the Illumina RTA3method. RNA reads were aligned to the hg38 genome build and gene expres-

sion matrices were generated using Cell Ranger 6.0.0 software. TCR reads were also aligned to the hg38 genome build and clono-

type/contig matrices were generated using Cell Ranger.

scRNA and TCRseq quality control
Empty droplets were removed via Cell Ranger 6.0.0 using the EmptyDrops method per 10x Genomics’ protocol. Gene expression

matrices were corrected for background contamination using R package SoupX 1.5.2. Known monocyte/dendritic markers

(CD14, CD68, MS4A7, and CD16) were used to estimate the contamination fraction of each sample. Counts were adjusted using

the SoupX subtraction method using the calculated contamination fraction on a per-sample basis. Doublets were removed using

R package DoubletFinder 2.0.354 using an approximate doublet formation rate of 1%which is consistent with the expected multiplet

rate according to 10x Genomics Single Cell 5’ v2 kit protocol. Any cells with fewer than 200mapped features were eliminated, as well

as any features present in fewer than three cells. Any cells with greater than 10%mitochondrial reads were also eliminated. TCR clo-

notypes and contigs were also filtered for empty droplets using Cell Ranger 6.0.0. Only TCR sequences associated to cells annotated

with a T cell identity by RNAseq were retained.

Cell type annotations
Corrected and filtered gene expression matrices were SCTransformed with Seurat 4.1.043 on a per sample basis and then integrated

through harmonizing ‘anchors’ as recommended for cell type identification in Seurat documentation. Number of reads, number of
Cell 185, 5028–5039.e1–e4, December 22, 2022 e2
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features, and percent of mitochondrial reads were regressed out in the data scaling step of SCTransform, and the top 1000 most

variable features were used. Principal component analysis (PCA) was then run on the integrated assay. The first fifteen principal com-

ponents (PCs) were then used to generate a shared nearest-neighbor graph which was then clustered under the Louvain algorithm

with a resolution of 0.3. Uniform manifold approximation and projection (UMAP) was then performed using the first 15 PCs and 30

nearest neighbors. Canonical cell type markers were used to identify expected cell types (markers used are shown in Figure1D). Pan

T cell and monocyte clusters were then isolated, and the clustering procedure was repeated to differentiate more specific cell types.

Differential expression by linear modelling
We first aimed to identify genes with linear expression changes across age. The following model was implemented:

Expression�a+ b1age+ b2sex + ε

Log-normalized counts were used for expression values as recommended for differential expression analyses by the developers of

Seurat. a represents the y-intercept, b values represent the associated slope with the variable of interest, and ε represents residual

error. Sex was included as a covariate to account for variations in sex composition of the cohort across age. Only genes expressed in

at least 10% of cells in the respective cell type were used for differential expression throughout the study. Linear models were gener-

ated using the R package stats function, lm. Type II sum of squares were calculated using the R package car function, Anova. P

values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. Thresholds of 0.01 for adjusted p value

and 0.005 for b were used to determine significant DEGs.

DE-SWAN analysis
DE-SWAN was implemented to identify more transient gene expression changes across age. The following model was used:

Expression�a+ b1Ik low=high + ε

Ik low=high represents the binarization of age binned above and below k centers. 10 centerswith windows of ± 2 years fromages 62 to

82 were used. Number of cells per age bin per cell type differed dramatically from one center to the next. To mitigate the effect of cell

number on number of DEGs, we randomly sampled 200 cells with replacement from each age for each cell type. Gene counts for

every twenty cells were summed to generate a ‘pseudocell’ and then log-normalized. Type II sum of squares were calculated using

the R package car function, Anova. P-values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. Sig-

nificant DEGs were identified with thresholds of 1e-4 for adjusted p-value and 1e-4 for b.

LOESS trajectory analysis
LOESS was employed to identify non-linear patterns of gene expression over age. We initially focused on healthy aging and thus

selected cognitively normal samples only. To avoid variable cell number per sample skewing the analysis, we proceeded with pseu-

dobulked expression values. Counts for each cell type per sample were summed and then log-normalized. Genes were filtered for

expression by at least 10% of cells per cell type and expression values were scaled and centered. A LOESS regression of span 0.75

was fit to each gene using the loess function of the R stats package. The predicted expression trajectories over age were then sub-

divided into 6 and 12 groups by hierarchal clustering via hclust function from the R stats package. LOESS curves of average expres-

sion per age point in each cluster are also reported with their associated standard errors.

Differential expression by MAST
The Seurat function FindMarkers was used to identify DEGs across age and diagnosis. MAST was chosen to test significance as it

employs a hurdle model specifically tailored to bimodal expression distributions often observed in scRNAseq. Only genes expressed

in at least 10%of cells were tested. Sexwas included as a latent variable to account for sex composition changes in the cohort across

age. P values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. Genes with an adjusted p value less

than 0.01 and average log-fold change magnitude greater than 0.25 were considered significantly differentially expressed.

CellChat analysis
The R package CellChat40 was used to quantitatively infer and analyze intercellular communication networks from our scRNAseq

data. CellChat uses network analysis and pattern recognition approaches to predict major signaling inputs and outputs for cells

and how those cells and signals coordinate for functions. CellChat classifies signaling pathways and delineates conserved and

context-specific pathways through manifold learning and quantitative contrasts. CellChat calculates the communication probability

of a ligand-receptor pair between two cell types using a law of mass action model which depends on ligand and receptor concen-

tration, any known cofactor concentrations, and the number of cells in each cell type. Significance is determined by if this commu-

nication probability is statistically higher between these known cell types than between randomly permuted groups of cells.

Levenshtein similarity network
Clonotypes with unambiguous CDR3 regions on both a and b chains and a frequency of at least 2 were retained to assess TCR sim-

ilarity. BothCDR3 regionswere concatenated together for each cell and Levenshtein similarity (Lsim)42 was calculated between every
e3 Cell 185, 5028–5039.e1–e4, December 22, 2022
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possible TCR pair within and between all samples. Lsim was calculated by first finding the minimum number of deletions, additions,

or substitutions needed to change one string to another, this value being the Levenshtein distance. This distance was then divided by

themaximum length of both strings and subtracted from 1 to generate the Lsim. Individuals were binned into four healthy, cognitively

normal age groups of equal size and one cognitively impaired group. TCR pairs with Lsim > 0.9 were used for visualization on the

network plot.

Clone expression scatterplot
We aimed to evaluate the heterogeneity of gene expression in cells of expanded or individual T cell clones in healthy versus cogni-

tively impaired individuals. The top fivemost expanded clones in healthy and diseased individuals were selected. To create nonclonal

bootstrap cells, fifty clones of frequency 1 were randomly selected from each diagnosis group. These 50 cells were sequestered into

5 groups and gene counts were summed then log-normalized. Average expression of all cells within an expanded clone as well as the

percentage of cells in a clone/bootstrap expressing the gene of interest were calculated.

Immunohistochemistry and confocal imaging
We stained 5mm paraffin-embedded brain tissue sections using antibodies rat anti-CD3 (Abcam ab11089), rabbit anti-CXCR6 (Ab-

cam ab273116), mouse anti-CXCL16 (Thermo MA5-27845), rabbit anti-amyloid-b (Cell Signaling 8243) and goat anti-Iba1 (Abcam

ab48004). Sections were deparaffinized, then antigen retrieval was performed using citrate buffer pH 6.0 for 30min at 98�C. Sections
were blocked in phosphate-buffered saline containing 10%normal donkey serum and 0.3% triton-x. Sections were stained overnight

in primary antibodies. The following morning, sections were incubated with highly cross-absorbed, species-appropriate secondary

antibodies. Sections were imaged on a Nikon AXR confocal microscope with a 60x objective.

ShinyCell
ShinyCell is an R package developed to quickly generate interactive Shiny-based web applications to visualize the core analysis of

scRNAseq data. We have released a modified ShinyCell app allowing users to view metadata and gene expression on a UMAP,

compare gene expression between various groups via violin/box plots, and other built-in analyses. Notably, we added an additional

page allowing the user to view LOESS trajectories of any gene of interest between HC andCI patients in a selected cell type aswell as

download the associated pseudobulk data.

QUANTIFICATION AND STATISTICAL ANALYSIS

R 4.1.1 and Prism 9.2.0 were used for all statistical analyses. Statistical methods are described in the figure legends or main text as

appropriate.
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Figure S1. Quality control metrics for scRNA-seq experiments, related to Figure 1

(A) Age demographics of subjects analyzed by scRNA-seq. Mean ± SEM; Mann-Whitney U test.

(B) Sex demographics of subjects analyzed by scRNA-seq.

(C) PCA plot showing overlapping distribution of CSF cells from healthy and cognitively impaired subjects. Mitochondrial reads, counts and number of features

per cell for each diagnosis are also shown.

(D) Quantification of SoupX contamination for all samples. Error bars indicate minimum and maximum.

(E) Representative SoupX quality control showing reduction of limited amounts of contaminating background CD14 RNA.

(F) Co-expression of CD14 and CD16, with accompanying cluster labels and pseudotime analysis used to distinguish classical, intermediate and nonclassical

monocytes.

(G) Number of counts and mitochondrial reads per sample.

(H) Composition of cell types with age.

(I) UMAP divided by sample sort day showing lack of batch effects by processing day.
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Figure S2. Distinct wave-like patterns of gene expression with age, related to Figure 2

Gene cluster trajectories plotted by LOESS. Genes expressed by at least 10% of cells for a given cell type were plotted by LOESS, then grouped into six clusters

by hierarchical clustering. Patterns of gene expression with age are shown for all clusters.
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Figure S3. Non-linear gene expression changes in CSF cells with age, related to Figure 2

(A) UpSet plot showing the number of DEGs per cell cluster by MAST differential expression between female and male cognitively normal subjects.

(B) UpSet plot showing the number of DEGs per cell cluster by MAST differential expression between advanced and middle-aged cognitively normal subjects.

(C) Heatmaps showing gene expression changes with age from DE-SWAN analysis of nonclassical monocytes and Tregs.

(D and E) (D) Age and (E) sex makeup of middle-aged healthy versus advanced age healthy subjects and advanced age healthy versus advanced age cognitively

impaired subjects. Error bars indicate minimum and maximum.
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Figure S4. Immune disruption in CSF of cognitively impaired subjects, related to Figure 4

(A) MAST differential expression of cognitively impaired vs. cognitively normal controls revealed the highest level of transcriptomic dysregulation in Tregs and

monocytes.

(B) Differentially expressed genes showing upregulated expression of FOXP3 and IL32 in Tregs. Nonclassical monocytes were also highly dysregulated. Note the

downregulated expression of APOC1 in nonclassical monocytes.

(C) UMAP distribution of FOXP3 expression with normalized clonal T cell frequency of T regulatory cells.
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Figure S5. Clonal T cell disruption in CSF of patients with cognitive impairment, related to Figure 4

(A) UMAP plots showing the distribution of T cells expressing CXCR6 or CXCR4.

(B) Single-cell quantification of CXCR4 and CXCR6 showing a shift down in CXCR4 and a shift up in CXCR6 expression in clonal T cells of cognitively impaired

subjects. p values are from MAST differential expression.

(C) Pseudobulk quantification of expression of clonal and nonclonal CD8+ T cells from cognitively impaired and cognitively normal CSF. p values are from

one-way ANOVA.

(D) UMAP plots showing distribution of CSF cells using supervised clustering via a CITE-seq reference dataset.

(E) Donut plot showing the percentages of CSF immune cell subtypes.

(F) UpSet plot of MAST differential expression between cognitively impaired and healthy showing CD14 monocytes as most dysregulated.

(G) Single-cell CXCR6 expression among CD4+ T cells showing CD4+ TEM cells as the main expressors of CXCR6. Wilcox test, BH corrected.

(H) Pseudobulk quantification of CXCR6 in CD8 TEM T cells. t-test with Welch’s correction. Error bars indicate minimum and maximum.

(I) Percentages of T cell subtypes of clonal and nonclonal CSF T cells in cognitively normal and cognitively impaired subjects.
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Figure S6. CXCL16-CXCR6 signaling in Alzheimer’s disease, related to Figures 4 and 5

(A) Quantification of CXCL16 using proximity extension assay. p values are fromANCOVA analysis using age and sex as covariates. ANCOVAwith sex and age as

covariates. Error bars indicate upper and lower interquartile range (IQR) plus or minus 1.5*IQR.

(B) Quantification of CXCL16 using SOMAmer assay. p values are from ANCOVA analysis using age and sex as covariates.

(C) CXCL16 expression among human brain cells indicates microglia/macrophages as the highest expressors. Error bars indicate minimum and maximum.

(D) Microglia express higher levels of CXCL16 than monocytes in the brain. Unpaired t test, two-tailed. Error bars indicate minumum and maximum.

(legend continued on next page)
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(E) CXCL16 is significantly higher in AD than control temporal cortex. Unpaired t test, two-tailed. Error bars indicate minumum and maximum.

(F) Iba1+ myeloid cells expressing CXCL16 adjacent to an amyloid-b plaque.

(G) Confocal z stack demonstrating intracellular expression of CXCL16 in an Iba1+ myeloid cell adjacent to an amyloid-b plaque.

(H) CD3+ T cells expressing CXCR6 adjacent to Iba1+ myeloid cells in two separate AD post-mortem brains.

(I) Differential expression of the top 45 ADGWAS genes across all supervised CSF immune cell types. Asterisks denote the most highly altered genes by adjusted

p value. Note that subsets of T cells differentially express numerous AD risk genes in CI CSF.
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