A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation

Graphical Abstract

Highlights
- The ALS-associated protein FUS forms liquid compartments in vivo and in vitro
- Liquid compartment formation is dependent on the prion-like low-complexity domain
- Liquid compartments of FUS convert with time into an aberrant aggregated state
- ALS patient mutations accelerate aberrant phase transitions of FUS

Authors
Avinash Patel, Hyun O. Lee, Louise Jawerth, ..., David Drechsel, Anthony A. Hyman, Simon Alberti

Correspondence
hyman@mpi-cbg.de (A.A.H.), alberti@mpi-cbg.de (S.A.)

In Brief
The ALS-associated protein FUS assembles into a liquid-like compartment to operate in vivo, but a risk of the functionality conferred by the liquid phase is aggregation to the disease-linked solid phase. Aging diseases caused by aggregation-prone proteins may arise from a failure to maintain liquid-phase homeostasis.

Patel et al., 2015, Cell 162, 1066–1077
August 27, 2015 ©2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2015.07.047
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation

Avinash Patel,1,6 Hyun O. Lee,1,6 Louise Jawerth,1,2 Shovamayee Maharana,1 Marcus Jahnel,1 Marco Y. Hein,3 Stoyno Stoynov,4 Julia Mahamid,5 Shambaditya Saha,1 Titus M. Franzmann,1 Andrej Pozniakovski,1 Ina Poser,1 Nicola Maghelli,1 Loic A. Royer,1 Martin Weigert,1 Eugene W. Myers,1 Stephan Grill,1 David Drechsel,1 Anthony A. Hyman,1,* and Simon Alberti1,*

1Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
2Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
3Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
4Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., Sofia 1113, Bulgaria
5Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
6Co-first author
*Correspondence: hyman@mpi-cbg.de (A.A.H.), alberti@mpi-cbg.de (S.A.)
http://dx.doi.org/10.1016/j.cell.2015.07.047

SUMMARY

Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro “aging” experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.

INTRODUCTION

Cells have a problem: How do they organize their complex biochemistry in time and space? Eukaryotic cells have addressed this problem by using functionally distinct compartments, many of which are bound by membranes. In these cases, it is easy to understand how the biochemistry is constrained in one place: the membrane prevents the diffusion of molecules in the absence of specific transport systems. However, many, if not most, cellular compartments are not membrane enclosed (Hyman and Brangwynne, 2011; Hyman et al., 2014; Li et al., 2012; Weber and Brangwynne, 2012). Examples include germ (P) granules (Brangwynne et al., 2009), processing (P/GW) bodies (Kedersha et al., 2005), stress granules (Wippich et al., 2013), nucleoli (Brangwynne et al., 2011), Cajal bodies (Strzelecka et al., 2010) and likely signaling compartments (Banjade and Rosen, 2014; Li et al., 2012). These structures are highly dynamic, and the components within them are in constant exchange with the surrounding cytoplasm or nucleoplasm. Recently, an increasing number of these non-membrane-bound compartments have been shown to behave like condensed liquid phases of the cytoplasm or nucleoplasm (Aggarwal et al., 2013; Brangwynne et al., 2009, 2011; Hubenberger et al., 2013; Lee et al., 2013; Wippich et al., 2013). It is thought that these structures form by liquid-liquid demixing, often upon a specific triggering event.

Domains of low-sequence complexity (LC domains) have been implicated in the formation of membrane-less compartments (Decker et al., 2007; Gilks et al., 2004; Han et al., 2012; Kato et al., 2012; Malinovska et al., 2013; Toretsky and Wright, 2014). LC domains are also present in yeast prion proteins, which have the ability to interconvert into fibers rather than a liquid state (Alberti et al., 2009). Thus, proteins harboring these domains have been called “prion-like.” Prion-like LC domains are particularly abundant in RNA- and DNA-binding proteins and have been conserved across evolution (Kim et al., 2013; King et al., 2012; Malinovska et al., 2013). However, mutations in prion-like proteins also cause devastating protein misfolding diseases, and these diseases are typically accompanied by the formation of solid aggregates (Gitler and Shorter, 2011; King et al., 2012; Malinovska et al., 2013). Thus, determining how prion-like proteins organize cellular compartments will not only advance our understanding of compartment formation but will also provide important insight into a diverse set of aging-associated pathologies.

One prototypical prion-like protein involved in the compartmentalization of cells is the RNA-binding protein FUS. It is enriched in the nucleus and involved in transcription, DNA repair, and RNA biogenesis (Polymenidou et al., 2012; Wang et al., 2008, 2013). Mutations in FUS are associated with amyotrophic lateral sclerosis (ALS) and rare forms of frontotemporal lobar...
Degeneration (FTLD) (Deng et al., 2014; Woulfe et al., 2010). Recent reports show that the prion-like LC domains of FUS can polymerize into fibrous amyloid-like assemblies in a cell-free system (Han et al., 2012; Kato et al., 2012; Kwon et al., 2013, 2014). Once assembled, these structures exhibit the macroscopic behavior of hydrogels. However, it has been difficult to understand the relationship between amyloid-like hydrogels that form in vitro and the in vivo function of the protein, because there has been little work on the dynamics of FUS in living cells and the relationship between this dynamic behavior and the onset of disease.

Here, we show that both in vivo and at physiological concentrations in vitro FUS forms liquid-like droplets. We further demonstrate that the liquid-like state can convert into a solid state and that this conversion is exacerbated by disease-associated mutations in the prion-like domain. Our findings suggest that aberrant phase transitions may be at the heart of many neurodegenerative diseases.

RESULTS

The Prion-like Protein FUS Assembles into Various Dynamic Compartments In Vivo

Previous reports have implicated FUS in the formation of stress-inducible compartments, such as DNA damage sites and stress granules (Li et al., 2013; Mastrocola et al., 2013; Rulten et al., 2014; Wang et al., 2013). These studies often used transient transfection protocols and overexpression plasmids to study the subcellular localization of FUS. We used an approach based on BAC (bacterial artificial chromosome) transgeneOmics (Poser et al., 2008). BACs have the advantage that they allow expression in wild-type cells. BAC transgeneOmics allows for the subcellular localization of FUS. Using FUS-GFP HeLa cells, we found that, in unstressed cells, FUS predominately localized to the nucleus (Figure 1B), in agreement with previous reports. We also noticed that FUS formed small foci in the nucleoplasm (Figure 1B). A similar distribution was observed in mouse ES cells (Figure S1C). Cells treated...
FUS assemblies into compartments that may be associated with transcription or splicing.

FUS has also previously been implicated in DNA repair (Rutten et al., 2014; Wang et al., 2013). Indeed, we found that FUS accumulated at DNA lesions within a second of laser-mediated irradiation (Figures 1D, S1C, and S1D; Movie S1). Next, we exposed the FUS cell line to heat stress to induce previously reported stress-associated compartments in the cytoplasm (Bosco et al., 2010; Li et al., 2013). Indeed, FUS accumulated in the cytoplasm in heat-stressed cells and coalesced into stress granules (Figures 1D and S1E; Movie S1). Formation and dissolution of these stress granules was coupled to changes in cytoplasmic and nuclear FUS levels (Figures 1E, 1F, and S1E; Movie S1), suggesting that the coalescence of these compartments occurs over a certain concentration of soluble components. To further investigate the dynamics of FUS protein in these compartments, we photobleached FUS-containing cellular structures and followed the recovery of the fluorescence over time. Indeed, for all three structures examined, we observed a rapid exchange between assembled and soluble FUS, with a half-time of recovery ranging from hundreds of milliseconds to 1 s (Figures 1G and S1F).

Our data so far support previous work showing that FUS localizes to multiple different compartments, depending on the type of stress the cell is experiencing. Our data further suggest that these compartments are extremely dynamic. In the nucleus, FUS localizes to active sites of transcription and rapidly assemblies on sites of DNA damage. Upon heat shock, FUS shuttles out to the cytoplasm, where it forms a compartment in a concentration-dependent manner. In all these compartments, FUS turns over within hundreds of milliseconds to around 1 s.

FUS Compartments Have Liquid Properties In Vivo

The dynamic nature of FUS compartments is reminiscent of other RNA protein compartments such as P granules and nucleoli, which form by liquid-liquid demixing in the cytoplasm or nucleoplasm. Three characteristics define a liquid-like compartment. First, the components should undergo rapid internal rearrangement. Second, the compartments should be roughly spherical due to surface tension. Third, two droplets should fuse and relax into one droplet. Therefore, we tested whether FUS compartments have these liquid-like characteristics.

The constant mixing of components within a liquid can be tested by a technique known as “half-bleach” (Brangwynne et al., 2009; Hyman et al., 2014). In this method, roughly half a compartment is bleached, and then the distribution of the fluorescence within the photomanipulated structure is determined over time (see Experimental Procedures for details). The spatio-temporal analysis of such half-bleach events showed that FUS was redistributed rapidly within stress granules and nuclear FUS assemblies, from the unbleached area to the bleached area (Figures 2A and 2B; Figure S2A; Movie S2). Thus, we conclude that FUS molecules can diffuse freely in stress granules and nuclear assemblies, in agreement with a liquid material state.

To investigate the shape of stress-induced FUS structures, we observed FUS-GFP-expressing cells with a digital scanned light-sheet microscope (DSLM) with structured illumination, which allows improved 3D imaging of dynamic subcellular objects (Gao et al., 2014). Using this imaging technology, we found that FUS granules are spherical (Figure 2C). The calculated sphericity was close to that of a perfect sphere for both heat-induced and arsenate-induced cytoplasmic FUS granules (Figure 2D). We cannot measure the sphericity of the nuclear structures because they are too small. We then used DSLM microscopy to perform a time-resolved analysis of individual FUS granules in the cytoplasm. We found that FUS granules underwent frequent fusion events and, as soon as they interacted, rapidly relaxed into a spherical shape (Figures 2E and S2B; Movie S2). The relaxation time of these granules was on the order of a few minutes (Figure 2F). Using the relaxation time and the FRAP (fluorescence recovery after photobleaching) times, we approximated viscosity values, as previously described (Brangwynne et al., 2009). We estimate viscosities around 10- to 100-fold of water (10–100 mPa·s). We were unable to see fusion events for nuclear FUS compartments, presumably because they are fixed in place on the DNA.

Therefore, FUS assemblies have all the hallmarks of a liquid state: they turn over quickly; are spherical; and when they fuse, they relax into one spherical assembly (Hyman et al., 2014). Taken together, these experiments show that FUS assemblies are liquid droplets, which probably form by liquid-liquid demixing in the cytoplasm or nucleoplasm.

Recombinant FUS Phase Separates into Dynamic Liquid Droplets In Vitro

Our data so far indicate that FUS is a component of liquid-like compartments in vivo that form by demixing from the cytoplasm. To investigate whether FUS is able to phase separate on its own, we studied the behavior of recombinant GFP-tagged FUS expressed in insect cells (see Experimental Procedures for details) (Figures 3A and 3B; Figures S3A and S3B). For these experiments, we chose a FUS-GFP concentration of 10 μM, which is slightly higher than the measured physiological concentration (Figure S1A) but easier to work with in our imaging-based assays. At this concentration, we found that FUS was diffusely distributed (Figure 3C). At a concentration of 500 μM, about 100-fold higher than the physiological concentration, FUS formed a gel-like state (Figure 3C; Movie S3), as previously reported (Kato et al., 2012).

Because of the discrepancy with our in vivo data, which shows that FUS coalesces into liquid compartments in living cells, we looked for conditions that promote FUS assembly into compartments at physiological concentrations. A 10% solution of either dextran or polyethylene glycol (PEG) induced assembly of FUS into round micrometer-sized structures (Figures 3C and S3C–S3G). To characterize whether these FUS assemblies have liquid-like properties, we performed a series of biophysical experiments. First, we investigated whether FUS molecules can freely move around within the droplets. Indeed, the FUS signal rapidly rearranged from the unbleached region to the bleached region of a half-bleached droplet (Figures 3D–3F and S3H; Movie S4), consistent with a high internal mobility. The ability of a droplet to deform or of two droplets to fuse also helps distinguish...
liquids from solid gels (Hyman et al., 2014). Therefore, we next asked whether FUS droplets are deformable by shear force. Indeed, under such conditions, FUS droplets changed their shape, as would be expected for a dynamic liquid with no memory of its previous state (Figure 3G; Movie S4). Furthermore, we found that when two FUS droplets touched each other, they rapidly fused and relaxed into one larger droplet within seconds (Figures 3H and S3I; Movie S4). Such rapid relaxation times are expected for liquid droplets with low viscosity.

Previous studies had identified the N-terminal prion-like domain as critical for the formation of hydrogels (Kato et al., 2012). Therefore, we generated a deletion mutant of FUS lacking this N-terminal domain (FUS_{DLC}) and purified it from insect cells using the same protocol as for wild-type FUS. When we mixed 10 μM of wild-type or FUS_{DLC} protein with 10% dextran, only wild-type protein formed droplets, whereas truncated FUS remained diffuse (Figure S3J). This indicates that the prion-like domain is essential for forming liquid droplets, presumably because of its sticky nature and ability to undergo many weak interactions.

Therefore, FUS structures have all the hallmarks of liquid droplets both in vivo and in vitro: they are spheres, they fuse, they deform under shear stress, and they rearrange their contents within seconds. This indicates that under physiological conditions, FUS does not assemble into solid-like aggregates or gels but rather forms dynamic droplets that exhibit all the properties of a true liquid. It further confirms that FUS has an intrinsic ability to phase separate and form liquid droplets, suggesting that FUS may play a central role in forming liquid compartments at sites of DNA damage and during stress.

Multivalent PAR Chains Nucleate FUS Droplets In Vivo and In Vitro

Previous studies identified a poly(ADP) ribose (PAR)-binding domain in the C-terminal region of FUS and showed that FUS is rapidly recruited to DNA damage sites in a PAR-dependent manner (Mastrocola et al., 2013). Indeed, we found that PAR polymerase 1 (PARP1) arrives within seconds of DNA damage, and FUS was detectable immediately after arrival of PARP1 (Figure 4A). To investigate whether PAR is required for FUS accumulation, we interfered with PAR formation by adding an inhibitor of PARP1/2 to cells shortly before laser-mediated irradiation (Rulzen et al., 2014). Indeed, inhibition of PARP1/2 prevented the recruitment of FUS (Figures 4B and 4C). Conversely, inhibition of a PAR-degrading enzyme (PARG) prolonged the presence of
FUS at DNA lesions (Figures 4B and 4D). This suggests that PAR polymers are required for the recruitment as well as the prolonged presence of FUS in DNA damage-associated compartments. To study whether PAR affects FUS droplet formation in vitro, we first adjusted the FUS concentration in our cell-free assay to 0.4 mM and lowered the concentration of dextran. At this concentration, we observed no spontaneously formed FUS droplets. However, when purified PAR was added, FUS droplet formation was strongly enhanced (Figures S4A–S4C). In summary, these data provide evidence for the intrinsic ability of multivalent PAR chains to nucleate the formation of FUS droplets. Therefore, we conclude that local PAR synthesis and the cooperative PAR-binding activity of FUS are required to drive the formation of a non-membrane-bound compartment for DNA repair.

Droplets Formed from Mutant FUS Have Different Biophysical Properties

FUS can form pathological protein aggregates, and specific mutations in FUS have been identified in patients suffering from neurodegenerative diseases (Deng et al., 2014). Previous studies have shown that a patient-derived mutation in the prion-like domain of FUS (G156E) has an increased tendency to form aggregates (Nomura et al., 2014). To investigate the link between the compartment-forming abilities of FUS and disease, we expressed G156E FUS-GFP in insect cells and purified the protein using the same protocol as used previously for wild-type FUS (Figures 5A and 5B). When 10 μM wild-type FUS and G156E FUS were incubated in 500 mM salt, only diffuse fluorescence was seen over many hours (Figure S5A). Upon dilution of G156E FUS to a concentration of 10 μM in the presence of dextran, we found that it formed liquid-like structures, similar to those observed for wild-type FUS. We were also unable to observe any obvious differences in the properties of G156E and wild-type droplets (data not shown). In addition, we expressed G156E FUS-GFP from a BAC transgene in HeLa cells, but we could not detect any obvious differences in FUS compartments formed in wild-type cells (data not shown).

Next, we set up an “aging” experiment in which we added dextran to FUS solutions and monitored the behavior of the droplets with time. Using an optical tweezer, we first showed...
that one FUS droplet held by one laser beam can fuse with several other droplets (Movie S5). To quantify this behavior, we used two laser beams to control fusion events (Figure 5C; Movie S6). The results of a typical experiment are shown in Figure 5D. Between 0 and 2 hr after droplet formation, wild-type FUS droplets fused very quickly, often within hundreds of milliseconds (Movie S5). Similar behavior was seen for G156E FUS. However, the relaxation time of G156E FUS was significantly longer than that of wild-type FUS (Figure 5E), and the spread of values became much broader, with some droplets taking as long as 15 s to fuse. More strikingly, as the droplets aged in a test tube, we noticed that an increasing fraction of the G156E FUS droplets no longer fused (Figure 5F; Movie S6) so that, after 8 hr, we could detect no fusion events for G156E FUS, while 81% of the wild-type FUS droplets still fused. By 12 hr, wild-type droplets also stopped fusing. This indicates that there is indeed a change in the biophysical properties of FUS droplets with time. It further suggests that the properties of the G156E FUS droplets are changing more quickly than those of the wild-type FUS droplets. This is consistent with the observation that G156E has a higher propensity to aggregate as observed by Nomura et al. (2014). Concomitant with the decline in fusion ability, we also noticed fibrous structures arising in the G156E FUS droplets (Figure S5B; Movie S7). Therefore, we conclude that FUS droplets age and undergo drastic changes in their biophysical properties and morphology.

Patient-Derived Mutations Promote a Conversion of FUS from a Droplet to a Fiber State

Next, we investigated the aging morphology of FUS droplets by fluorescence microscopy. Figure 6A shows a typical experiment. For wild-type FUS, the droplets increased in size with time so that, by 8 hr, large droplets were observed in all fields. For G156E FUS, the droplets also increased in size. However, by 8 hr, hardly any G156E droplets remained. Rather, only fibrous structures could be seen (Figure 6A). For wild-type FUS, mainly droplets were seen by 8 hr, although some fibers were now detectable as well. By 12 hr, most of the wild-type FUS protein had converted into fibers, but a few droplets could still be observed. Next, we investigated another patient-derived mutant of FUS with a mutation adjacent to the prion-like domain (R244C) and found that R244C also accelerated the conversion of FUS droplets to a fibrous state (Figure 6A).

Therefore, we can conclude that, with time, a solution of FUS containing liquid droplets will convert into fibrous structures. Although wild-type and mutant FUS convert from droplets to fibers, the mutant consistently converts more quickly than the wild-type. When we looked more carefully at the time points containing aggregates, we saw that some of the droplets had short fibers (Figure 6A), while others had much longer fibers emanating from them. We call these structures with small fibers “sea urchins,” because they are reminiscent of similarly named transition structures seen in crystallization studies (Vekilov, 2004), and longer fibers “starbursts” (Figure 6B; Movie S7). Time-lapse imaging of the sea urchins revealed that the fibers protruding from the surface continuously grew until the structure resembled that of a commonly observed starburst (Movie S7). One intriguing possibility is that this structure is the transition structure of a droplet converting into fibers. Such a process is consistent with the droplets acting as centers of fiber nucleation and growth.

To quantify the biophysical properties of the FUS fibers, we performed photobleaching experiments on structures from wild-type and G156E FUS. At t (time) = 0, both wild-type and G156E droplets recovered quickly after photobleaching (Figure 6C). However, by t = 8 hr, the G156E structures no longer recovered, suggesting that they interconverted from a liquid to an aggregated state. Even within one fibrous structure, the fibers projecting out turned over more slowly than the body (Figure S6B). This shows that, over time, a population of FUS protein converts from a liquid to a solid state. We confirmed this by performing cryoelectron microscopy (cryo-EM) studies of the droplet and fiber state. We found that FUS droplets were
amorphous and lacked ordered structures (Figure S6C). The fiber state of FUS, instead, was characterized by many fibrillar assemblies with a diameter of around 9 nm, and many of these fibrils were laterally aligned (Figure S6C). These structures are reminiscent of the amyloid-like aggregates identified in previous work (Kato et al., 2012). Thus, we conclude that the liquid droplet state is metastable and transitions into a thermodynamically more stable aggregated state with time.

Many ALS-associated mutations map to the C-terminal nuclear localization sequence (NLS) of FUS. Mutations in the NLS increase the cytosolic fraction of FUS (Kwiatkowski et al., 2009; Vance et al., 2009). We confirmed this result by making a BAC cell line containing a deletion of the NLS (Figure S6D). Because phase transitions are extremely sensitive to protein concentration, we hypothesized that these NLS mutations could accelerate the conversion of FUS to a fibrous state by increasing the concentration of FUS in the cytoplasm. Indeed, we found that increasing concentrations of FUS had a higher propensity to convert from a droplet to a fibrous state (Figures S6E and S6F). Therefore, we conclude that the aggregation of FUS is concentration dependent and that ALS-associated mutations in FUS may promote the formation of aggregates as seen in patient cells by accelerating the conversion from a liquid droplet to a fibrous state.

DISCUSSION

In this paper, we show that, both in vivo and at physiological protein concentrations in vitro, the prion-like protein FUS forms liquid compartments. The evidence for this is 3-fold. First, the individual FUS molecules rapidly rearrange within the compartment. Second, the compartments formed by FUS are spherical. Finally, two FUS compartments can fuse and relax into one sphere. FUS rapidly shuttles between liquid compartments in the nucleus and the cytoplasm depending on the type of stress. Importantly, we show that, with time, a population of FUS...
droplets converts from a liquid state to an aggregated state, which is reminiscent of the pathological state seen in ALS patients with mutations in the FUS protein. This conversion from liquid to solid is accelerated either by mutations in the prion-like domain that induce the early onset of ALS or by raising the protein concentration, which mimics mutations in the NLS. Therefore, our data suggest that aberrant phase transitions may be at the heart of ALS and potentially other related diseases.

FUS compartments are a member of an expanding set of RNA-protein compartments, such as P granules and nucleoli, which probably form by liquid-liquid demixing from cytoplasm. Demixing, or phase separation, is a powerful way to locally and rapidly form compartments when needed. Indeed, FUS moves to sites of DNA damage within seconds of a triggering event, presumably forming a compartment that recruits myriad additional factors required for DNA damage repair (Dutertre et al., 2014; Lukas et al., 2011). The liquid-like nature of the compartment means that DNA repair enzymes could diffuse rapidly within the compartment, while the phase boundary would maintain a high local concentration of these enzymes and provides identity to the compartment (Hyman and Brangwynne, 2011; Hyman et al., 2014; Weber and Brangwynne, 2012).

Solid aggregates of FUS protein are commonly seen in ALS patients. However, our results clearly show that, under physiological conditions, FUS forms a liquid. Therefore, the onset of ALS must involve, in some way, a transformation from a liquid to an aggregated state. One explanation for this transformation is that the raised concentration of FUS in liquid compartments triggers aggregation. In fact, many experiments in vivo and in vitro have shown that increasing the concentration of FUS converts the protein into an aggregated state (Shelkovnikova et al., 2014; Sun et al., 2011). This is presumably the mechanism underlying patient mutations in the NLS of FUS, which also leads to an increased cytoplasmic concentration (Kwiatkowski et al., 2009; Vance et al., 2009). Indeed, we have shown that, in vitro, the conversion from liquid to a solid-like state is concentration dependent (Figure S6F). The liquid-to-solid phase transition that we observe in vitro is reminiscent of the process of protein crystallization, where formation of a metastable liquid phase often precedes the formation of crystals. Although the chemistry and physics of protein crystallization is not fully understood, it is thought that the higher density of proteins in the liquid phase triggers nucleation of the crystal (Dumetz et al., 2008; Galkin and Vekilov, 2000; Lomakin et al., 2003; Vekilov, 2010). An alternative idea is that the orientation and the altered dynamics of the molecules at the phase boundary promote crystal formation (Vekilov, 2004).

The droplets with fibers protruding from them are remarkably similar to the transition states in protein crystallization studies. For instance, when lysozyme or hemoglobin is crystalized, intermediate liquid droplets can be seen with small fibers emanating from them (Galkin et al., 2002; Galkin and Vekilov, 2000; Vekilov, 2004). These states are also reminiscent of previously reported states that precede the formation of amyloid in in vitro aggregation reactions of the yeast prion Sup35 (Seno et al., 2000). An alternative idea would be that there are two competing reactions in a test tube: liquid compartment formation and fibrous aggregation. Compartment formation is much quicker, but the soluble protein could slowly aggregate in the background, thus depleting the pool of monomeric FUS and leading to disassembly of the FUS droplets over time. We think this idea is less compelling, because we observe a decrease in droplet fusion with time, a change in droplet morphology, and also the droplets increase in size during incubation (compare panels 0 hr and 4 hr in Figure 6A). However, most likely, both conversion of liquid droplets into fibers structures and a fibrous aggregation reaction in the solution are taking place at the same time.

One problem is that we still do not know how pathological aggregates arise in living cells. Do they form in liquid compartments, or do they form in the bulk cytoplasm or nucleoplasm? We speculate that the liquid-solid transformation of FUS initially takes place in subcellular compartments but that later stages of the disease are characterized by aggregation reactions occurring in a compartment-independent manner. This is because...
Cell-like aggregates are highly infectious, and once they have formed, they can seed further aggregation reactions in neighboring cells (Jucker and Walker, 2013).

We were surprised to see that two distinct point mutations induced such a strong effect in vitro, whereas the disease would only manifest in a living organism after many years. However, in vivo, there will be many factors that are working against aberrant conformations, such as molecular chaperones and ATP-consuming degradation machines. As these control mechanisms weaken with age (Taylor and Dillin, 2011), there presumably is a decline in the ability of a cell to counteract the formation of aberrant conformational states in compartment-forming proteins. Indeed, in vitro, we see both the wild-type and mutant FUS droplets changing biophysical properties, although the mutant changes more quickly than the wild-type protein. Therefore, it may be difficult to recapitulate the mutant state of the protein in living cells, because disease formation is a gradual process and young cells have very active quality control machinery in place. Indeed, our preliminary results suggest that when G156E FUS is expressed from its own promoter in HeLa cells, it has similar dynamics as wild-type FUS. Future work in differentiated neuronal systems will be required to identify the specific mechanisms that fail on a pathway to disease.

Recent work has shown that at high concentrations, the prion-like LC domain of FUS forms amyloid-like fibers and that this leads to hydrogel formation in a test tube (Kato et al., 2012). These experiments were operating at \(~100\) times the physiological cellular concentration and, therefore, are unlikely to represent the physiological state of the protein, which we think is a liquid state. However, it seems likely that these amyloid structures are similar or identical to the fibrous aggregates that we see in our in vitro aging experiments. Therefore, taken together, we can propose the following model as to how FUS enters into a disease state (Figure 7): normally, FUS forms liquid compartments in cells. During transcription, FUS assembles into liquid compartments at active genes; during DNA damage, FUS assembles into liquid compartments at sites of DNA damage; under stress conditions, FUS rapidly shuttles to the cytoplasm and forms stress granules. The liquid nature of these compartments allows rapid diffusion necessary for chemical reactions on biological timescales. However, liquid formation comes with a cost: high local concentrations of a conformationally promiscuous protein. As cells age and the activity of the quality control machinery declines, and exacerbated by mutations that increase the aggregation propensity, FUS will convert into an aggregated state. Therefore, if a cell uses a dynamic liquid state to perform a physiological function, it will have to fight its whole life against the thermodynamic drive toward aggregate formation and disease.

We would like to reiterate that we do not think that fibrous aggregates represent the physiological function of FUS. Rather, the physiological function of the FUS protein is to act as a liquid, probably with little fixed structure. However, we currently have no information as to the molecular mechanism that drives the formation of a liquid-like state, apart from the fact that it requires the prion-like LC domain (Figure 7). The prion-like domain of FUS is intrinsically disordered, and the liquid state of FUS probably arises from its ability to sample many conformational states. Anything that increases the strength of interaction between prion-like domains could lead to formation of aggregates rather than liquids. Indeed, a mutant that we selected, G156E, maps to the prion-like domain and has been shown in vitro to exacerbate the aggregation potential of the protein (Nomura et al., 2014). This will presumably involve a number of conformational states, starting off with an increase in viscosity of the liquid and ending in the commonly seen aging-associated aggregates. Our EM data show that, in vitro, the liquid-like droplets are amorphous, without any obvious structure. Therefore, liquid formation itself does not require formation of obvious oligomers or fibers. However, it is possible, in vivo, that small oligomers are constantly forming and being disassembled by the quality control machinery. Future studies using cryo-EM will be required to investigate the structure of FUS compartments in vivo.

Our data do not address the issue of why aggregates are associated with disease. There are two possibilities: the aggregates themselves are toxic, or the proteins themselves, by being locked in a less dynamic state, are no longer able to perform their physiological function. In the case of FUS, this function is to help protect cells against stress, both in the nucleus and the cytoplasm. However, the intermediate biophysical states

Figure 7. Diagram Illustrating the Molecular Mechanisms Underlying the Formation of FUS Compartments and Their Conversion into an Aggregated State

Left: FUS compartment formation upon DNA damage is driven by PAR polymerase and local PAR formation. PAR polymerase and other proteins (X) are modified with PAR chains in the process. PAR formation leads to FUS recruitment and initiates phase separation and compartment formation through LC domain interactions. Other proteins, such as EWS and TAF15 are likely recruited, thus forming a compartment for DNA damage repair. Right: FUS compartments form through phase separation from a concentrated solution of FUS, a reaction probably driven by weak interactions between prion-like LC domains. Liquid FUS droplets convert with time into an aggregated state, which presumably is associated with disease. LC domains are indicated in red; RB, RNA- and PAR-binding domains, indicated in blue.
discussed earlier could make cells more prone to stress, because the decrease in dynamics may impair the formation of stress compartments or the shuttling between the nucleus and the cytoplasm. It is possible that chemicals that slightly increase the fluidity of compartments could help ameliorate the development of the disease.

EXPERIMENTAL PROCEDURES

Detailed methods are available in the Supplemental Experimental Procedures.

Generation of Cell Lines

Stable HeLa cell lines expressing human FUS were generated using BAC recombineering technology (Poser et al., 2008).

DNA Damage Laser Cutting Assay

DNA damage was induced by applying 25 UV pulses at 12 equidistant dots along a 6-μm line within the nucleus using a laser micro-irradiation setup previously described (Behrndt et al., 2012; Mayer et al., 2010).

Stress and Inhibitor Treatment of HeLa Cells

The temperature increase from 37°C to 42°C, 1 mM sodium arsenate, or 720 Osm DMEM was used to induce heat, arsenate, or osmotic stress, respectively. The stress granules were imaged using a fast DSLM microscope with structured illumination (Planchnon et al., 2011). We used 20 μg/ml of PARP inhibitor Abt-888 (Santa Cruz Biotechnology), 300 μM of PARG inhibitor Gallotannin (Santa Cruz Biotechnology), and 2.5 μg/ml of the transcription inhibitor actinomycin D (Sigma-Aldrich).

FUS Protein Purification from Insect Cells

Recombinant versions of FUS-GFP were purified using the baculovirus-pression system (Hoel et al., 2011; Schwartz et al., 2012). Cells were lysed in resuspension buffer (50 mM Tris-HCl, 1 M KCl, 5% glycerol, 0.1% CHAPS, 1 mM DTT, pH 7.4), and FUS-GFP was captured using nickel-nitrilotriacetic acid (Ni-NTA) resin (QIAGEN) and eluted with elution buffer (resuspension buffer + 500 mM imidazole). His and MBP tags were cleaved off using a histidine-tagged prescision protease (in house) during dialysis against FUS dialysis buffer (250 mM imidazole). Furthermore, size exclusion chromatography was performed with a Superdex 200 Increase 10/300 GL column (GE Healthcare Life Sciences) using an Akta Ettan fast protein liquid chromatography (FPLC) system (GE Healthcare Life Sciences).

Hydrogel Formation

MBP-FUS-GFP was concentrated to 500 μM (~50 mg/ml) in FUS dialysis buffer and dialyzed against FUS gelation buffer (20 mM Tris-HCl, 200 mM KCl, 0.5 mM EDTA, 1 mM DTT, pH 7.5) at 4°C for 48 hr to induce gelation (Kato et al., 2012).

In Vitro FUS Assays

FUS-GFP at indicated concentrations was incubated with 10% dextran (T500, Pharmacosmos) in 50 mM Tris-HCl, 500 mM KCl, 2.5% glycerol and 1 mM DTT, pH 7.4, for 10 min. To induce “aging,” the assay was subjected to 12 rpm on a bench top rotator at room temperature.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and seven movies and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2015.07.047.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank the members of the S.A. and A.H. labs for helpful discussions; Barbara Borgono (Chromatography Facility) and Regis Lemaitre (Protein Expression and Purification Facility) for help with protein expression and purification; Benoit Lombardot for image analysis; Bert Nitzsche and Britta Schroth-Diez (Light Microscopy Facility) for help with light microscopy; and Annett Duemmler, Doris Richter, Marit Leuschner, and Andrea Ssykor for assistance with generating plasids and BAC lines. We are grateful to Matthias Mann for support in determining the FUS concentration in HeLa cells and Wolfgang Baumeister for support with the cryo-EM experiments. We thank Suzanne Eaton, Andreas Herrmann, Frank Jülicher, Timothy J. Mitchison, and Christopher A. Weber for helpful discussions and/or comments on the manuscript. We thank Jiri Lukas for sharing data before publication. We gratefully acknowledge funding from the Alexander von Humboldt Foundation (GRO/1156614 STP-2 to A. Patel, USA/1153678 STP to S. Saha, and INI/1155756 STP to S.M.), EMBO ALTF (608-2013 to S. Saha and 1131-2011 to J.M.), Human Frontier of Science (LT000685/2012-L to J.M.), the NSF of Bulgaria (DFNI-BO2/16 to S. Stoynov), and the German Federal Ministry of Research and Education (BMBF 031A399A MaxSynBio to T.M.F. and 031A099 to N.M., L.R., M.W., and E.W.M.). This work is partly funded by the MaxSynBio consortium, which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

Received: January 22, 2015
Revised: May 10, 2015
Accepted: July 14, 2015
Published: August 27, 2015

REFERENCES

Figure S1. FUS Compartments in HeLa and Mouse Embryonic Stem Cells, Related to Figure 1
(A) Concentrations and copy numbers of FUS and selected associated proteins in the context of the HeLa proteome measured by mass spectrometry. (B) The ratio of FUS-GFP fluorescence intensity in different compartments of HeLa cells normalized to the cytoplasmic FUS-GFP fluorescence. Error bars represent SD. (C) Inverted black and white images of FUS-GFP-expressing mouse embryonic stem (mES) cells in Control, DNA damage, and Heat shock conditions. Strong FUS-GFP localization is shown as dark puncta at sites of DNA damage (marked with red lines) and stress granules (marked with red arrows). FUS compartments are magnified in the inset. (D) Fluorescence images of a HeLa cell expressing FUS-mCherry (magenta) and PARP1-GFP (green) from BAC transgenes after DNA damage (arrows point to the site of DNA damage). (E) Fluorescence images of HeLa cells expressing FUS-mCherry (magenta) and G3BP1-GFP (green) from BAC transgenes after heat stress (arrows point to stress granules). (F) Recovery half-times of fluorescence intensity after photobleaching of FUS-GFP in the cytoplasmic stress granules (Heat) and DNA damage sites (n = 10 per condition) of mES cells. The line within the boxplot represents the median, and the outer edges of the box are the 25th and 75th percentiles. The whiskers extend to the minimum and maximum values. p value = 0.0003.
Figure S2. FUS Compartments in Cells Are Liquid-like, Related to Figure 2

(A) A montage of fluorescence recovery of FUS-GFP in a nuclear granule of a HeLa cell after half-bleach. Cells were treated with hypertonic solution to slow down FRAP recovery to a detectable timescale.

(B) Raw and rendered montages of FUS-GFP stress granule fusion events in heat-stressed live mES cells.

See also Movie S2.
Figure S3. Recombinant FUS Protein Forms Liquid Droplets In Vitro, Related to Figure 3
(A) An inverted montage of microinjected FUS-GFP protein localization in live HeLa cells. The yellow arrow indicates the site of FUS-GFP microinjection. Green = nucleus, red = cell boundary.
(B) Still image of purified FUS-GFP protein injected into live cells expressing the stress granule component G3BP2-mCherry. Both cells in view were injected and stressed with arsenate treatment for 1 hr before microinjection. For clarity, the cell boundary and nucleus of one cell are outlined in green and red, respectively. The red arrow points to a representative single stress granule showing co-localization with injected FUS-GFP.
(C) 10 \text{mM} of purified FUS-GFP formed droplets in the presence of 10% PEG, studied by fluorescence microscopy.
(D) Probability distribution of the area of in vitro FUS-GFP droplets, assembled from 10 \text{mM} protein in presence of 10% dextran.
(E) Probability distribution of the aspect ratio of in vitro FUS-GFP droplets, assembled from 10 \text{mM} protein in presence of 10% dextran.
(F) 10 \text{mM} of purified FUS-GFP formed droplets in the presence of HeLa extract, studied by fluorescence microscopy.
(G) Concentration series of purified FUS-GFP droplets in the presence of 10% dextran. Note that the size and number of the droplets increase with the FUS concentration. Studied by fluorescence microscopy.
(H) Quantification of the fluorescence intensity recovery after half-bleach and full-bleach of in-vitro-formed FUS-GFP droplets. The bar graph on the right shows the slow and fast timescales obtained from exponential fits of the half-bleach experiments, signifying a fast internal rearrangement of the molecules within the droplets and slow diffusion of molecules from solution into the droplet across the phase boundary. The timescale of a full-bleach experiment is shown for comparison.
(I) A montage of fusing FUS-GFP droplets in HeLa extract.
(J) WT FUS-GFP construct lacking the Low Complexity (LC) domain (FUS\Delta LC-GFP) was designed (schematic shown). 10 \text{mM} of purified wild-type WT FUS-GFP (WT) forms droplets in presence of 10% dextran, whereas purified FUS lacking the low complexity domain (FUS\Delta LC) does not form droplets under the same conditions. A corresponding Coomassie-stained SDS-PAGE gel showing WT FUS-GFP (~82 kDa) and FUS\Delta LC-GFP (\Delta LC, ~53 kDa).
Figure S4. Quantification of PAR-Nucleated FUS Droplets In Vitro, Related to Figure 4

(A) 400 nM of purified FUS-GFP in the absence (-PAR) or presence of 1 μM PAR.

(B) A representative snapshot of the automated quantification of the total number of FUS-GFP droplets shown in (A) after background correction and thresholding. The droplets labeled in green were quantified, whereas the droplets in red were discarded. The results are presented in (C).

(C) Quantification of the total number and volume of droplets formed with 400 nM purified FUS in the absence (No PAR) and presence of 1 μM PAR in vitro. Error bars represent SD over three replicates.
Figure S5. Fibrous Structures Emanate from G156E FUS-GFP Droplets with Time, Related to Figure 5

(A) 10 μM WT FUS-GFP (WT) and G156E FUS-GFP (G156E) are stable and remain diffuse in the in vitro aging assay conditions in absence of dextran over 8 hr. Upon addition of 10% dextran at 8 hr, FUS forms droplets similar to the 0 hr time point.

(B) A DIC image of a fiber-containing G156E FUS-GFP droplet after 4 hr of aging. See also Movie S7.
Figure S6. Mutations in the Prion-like Domain of FUS or Higher Concentrations Promote the Conversion from a Liquid Droplet to a Fibrous Aggregated State, Related to Figure 6

(A) Top: A schematic of the FUS protein with the positions of ALS patient-derived mutations (G156E and R244C) that were tested in the “aging” assay. Bottom: Representative images of the droplets formed from purified WT, G156E, or R244C FUS-GFP over 360 min of “aging” (10 μM FUS protein each). A Coomassie-stained SDS-PAGE gel loaded with 2 μl of each assay reaction is shown on the right.

(B) Fluorescent recovery curves of the bulk phase (photobleached in the green box) and emanating fibers (photobleached in the red box) from an 8-hr in vitro aging experiment. Error bars represent SD over three independent measurements of bulk phase and fibers, each.

(C) Cryo-transmission electron microscopy of liquid-like FUS droplets and FUS fibers after aging. WT FUS-GFP droplets (top panel) and fibers after aging (bottom panel) were applied to Cryo-TEM grid with holey carbon support (2-μm holes) and plunge frozen at RT. The positions of the higher magnification images (middle) are depicted as a red squares in the low magnification images (left). Top left: overview micrograph showing the holey carbon support with repetitive 2-μm holes. A large FUS droplet (~6-μm diameter) is shown in the center of the image. Top middle: higher magnification of the droplet edge showing a continuous homogenous density within the droplet. Top right: zoom into the drop edge showing the density is homogenous and amorphous. Inset: Fourier transform of an area within the droplet (middle image) confirming the lack of ordered structure. Bottom left: Low magnification overview showing elongated aggregates on top of the holey carbon support. Bottom middle: higher magnification of an aggregate density within the carbon hole. The aggregates are composed of entangled thin fibers. Bottom right: zoom into an area with separate fibrils. Intensity line scans across one fibril at two positions (depicted in orange and blue) are presented in the inset; the fibers are ~9 nm in diameter with a clear low-density area in the center of the fibril density, indicating possible composition of two proto-filaments.

(D) HeLa cells expressing FUS-GFP (left) or FUSΔNLS-GFP (middle) from BAC transgenes. Cell and nucleus boundaries are shown in black or red, respectively. Wild-type FUS is primarily nuclear, whereas FUSΔNLS is enriched in the cytoplasm. On the right, a corresponding immunoblot of HeLa cells without a BAC transgene (WT) or with a BAC transgene for expression of FUS-GFP and FUSΔNLS-GFP. The expected molecular weight of endogenous FUS is 75 kDa. The asterisk (*) and triangle (Δ) mark transgenic FUS-GFP and FUSΔNLS-GFP, respectively.

(E) WT FUS-GFP construct lacking the Nuclear Localization Signal (NLS) domain (FUSΔNLS-GFP) was designed (schematic shown). Representative images of the morphological changes of the droplets formed from purified WT FUS-GFP (WT) or FUSΔNLS-GFP (ΔNLS) over 180 min (10 μM FUS protein each). Also shown is a Coomassie-stained SDS-PAGE gel loaded with 2 μl of each assay reaction.

(F) Time course showing the morphological changes of the in vitro droplets in “aging” assays containing 4, 8, 16 μM of purified wild-type FUS-GFP over 480 min. Also shown is a Coomassie-stained SDS-PAGE gel loaded with 2 μl of each assay reaction.
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

BAC constructs and cell lines

Stable HeLa and mouse embryonic stem cell lines expressing C-terminally GFP- or mCherry-tagged human FUS, N-terminally GFP-tagged human PARP1 or C-terminally tagged human G3BP1 and G3BP2 were generated by random integration into the genome via BAC recombineering technology (Poser et al., 2008). The FUS-mCherry/PARP1-GFP and FUS-mCherry/G3BP1-GFP double lines were generated by sequential integration of respective BACs. GFP cell lines were kept under selection using Geneticin (Gibco, 400 µg/ml) and mCherry cell lines using Blasticidin (Life Technologies, 2 µg/ml).

siRNA treatment and immunoblotting

The following siRNA sequence targeting human FUS exon 9 was used to knock down FUS: CTGGGTGAGAATGTTACAA (Qiagen, SI00070497). siRNA was introduced into the cell using Interferin (Polyplus). To detect protein levels by immunoblotting the following antibodies were used: rabbit polyclonal α-FUS (1:10000, Sigma-Aldrich, HP A008784), mouse monoclonal α-GFP (1:5000, Roche, 11814460001), mouse α-tubulin (1:5000, Sigma-Aldrich, HP T9026).
DNA damage laser cutting assay

Two laser micro-irradiation set-ups were used for this assay. The first set-up was previously described (Behrndt et al., 2012; Mayer et al., 2010). In all experiments, 25 ultraviolet (UV) pulses were applied as 12 equidistant dots along a 6 µm line within the nucleus. The second set-up used an Andor Revolution XD spinning disc confocal microscope system with Nikon TiE microscope stand, Yokogawa CSU-X1 spinning disc and iXon 897EMCCD camera. This microscope was coupled with the MicroPoint Laser Illumination System with a pulsed nitrogen pumped tunable dye laser and an 365 nm dye. Image acquisition and laser micro-irradiation were performed with a 60x CFI Plan Apo VC 60XWI/1.35 water immersion objective.

Stress treatment of HeLa cells

Heat shock stress: Cells were exposed to heat stress during live imaging from 37°C to 42°C through a sample heating chamber (Warner) and an objective heater (Bioptechs).

Arsenate stress: 1 mM sodium arsenate in culture media (diluted from a 100 mM stock solution, Sigma-Aldrich) was added to cells one hour before or during imaging.

Osmotic stress: Cells were treated with 720 OsM DMEM media (high glucose DMEM with 390mM sucrose) for 30 minutes before and during imaging.
Treatment of HeLa cells with inhibitors

The following inhibitors were used at indicated final concentrations: PARP1 and PARP2 inhibitor Abt-888 (Santa Cruz Biotechnology, 20 μg/ml), PARG inhibitor Gallotannin (Santa Cruz Biotechnology, 300 μM), and the transcription inhibitor actinomycin D (Sigma-Aldrich, 2.5 μg/ml).

Fluorescence recovery after photobleaching (FRAP)

In vivo experiments: “Half-bleach” experiments were performed as previously described (Brangwynne et al., 2009; Hyman et al., 2014). In a half-bleach experiment roughly half a structure is bleached, and then the distribution of the fluorescence within the photo-manipulated structure is determined over time. Using a 60x oil immersion objective a region of approximately 1.07 x 1.07 μm² was bleached for 20 ns using a laser intensity of 50% at 405 nm (6 mW for GFP), or at 560 nm (14 mW for mCherry). Recovery was recorded for 200-300 time points after bleaching (30-45 s). Analysis of the recovery curves and the half-time recovery were carried out with the FIJI/ImageJ macro (http://fiji.sc/Analyze_FRAP_movies_with_a_Jython_script) (Reits and Neefjes, 2001; Sprague and McNally, 2005).

In vitro experiments: Recombinant FUS-GFP droplets were applied to a glass flow chamber (10 mm x 10 mm x 0.1mm). Half-bleach was performed at pixel resolution of x = 80 nm and y = 80 nm. Droplets of an approximate diameter of 1.5-2 μm were selected and approximately half of the area was bleached for 20
ns with 50-60% of maximum laser power of a 488 nm laser (3.5 mW). The recovery was recorded at the rate of 50 ms/frame for 50 seconds.

The flow of the protein within the droplet was measured by quantifying the recovery of the bleached area at the cost of the unbleached region by a custom written Matlab routine. The bleached region was corrected for general bleaching during image acquisition. The recovery was assumed to occur due to a very fast internal rearrangement of the protein molecules (flow inside the droplet) and approximately 10-fold slower exchange of the protein molecules with the surrounding environment. Thus the molecules move from the unbleached region (leading to the loss of fluorescence in unbleached region) to the bleached region (leading to the recovery of the bleached region), which was then quantified and plotted.

Spinning disc microscopy

Live HeLa and mouse embryonic stem cells were imaged using an IX71/IX81 inverted Spinning Disc Microscopes with an Andor Neo sCMOS/Andor Clara CCD camera and an UPlanSApo 60 x 1.20 oil-immersion objective or 100x oil-immersion objective (Olympus).

Rapid 3D imaging with a digital scanned light-sheet microscope (DSLM)

Live HeLa and mouse embryonic stem cells were imaged using a fast DSLM microscope with structured illumination (Planchon et al., 2011). Images were taken through a Nikon 40x 0.8
NA objective, using an ORCA4 sCMOS camera. CO$_2$-independent media was used during imaging and the sample chamber was under active temperature control. The microscope creates a virtual light sheet by fast scanning of a focused laser beam. Rapid 3D acquisition was achieved by custom software that synchronizes the movement of the detection objective focal plane with the light sheet allowing for fast imaging at up to several stacks per second. To improve sectioning and reduce out-of-focus light structured illumination was used. For each plane we collected 9 images with phase-shifted illumination patterns and computationally reconstructed in real-time. In addition the custom software integrates the ClearVolume open source live 3D visualization framework (Royer L. A. et al., 2015) (http://clearvolume.github.io) that allowed instant visualization of HeLa or mouse embryonic stem cells in 3D during acquisition. Advantages of this custom-built microscope are: (i) high acquisition speed, (ii) low photo-bleaching and photo-toxicity of the light sheet illumination, (iii) improved optical sectioning with structured illumination, and (iv) state-of-the art ergonomics.

Viscosity and surface tension estimates of *in vivo* droplets

Viscosity and surface tension estimates were made following the methods described previously (Brangwynne et al., 2009).

3D rendering and sphericity measurements

3D rendering of DSLM images was performed using the Imaris software (Bitplane), after manual thresholding for background subtraction and Gaussian
surface smoothing. Sphericity measurements were also calculated using Imaris.

Sphericity calculation used here is as defined by Wadell in 1932, where the sphericity (Ψ) of a particle is the ratio of the surface area of a sphere to the surface area of the particle (V_p = volume of the particle, A_p = surface area of the particle) (Imaris V6.0 Reference Manual), as given by:

$$\Psi = \frac{\pi^{1/3}(6V_p)^{2/3}}{A_p}$$

Mass spectrometry to measure the intracellular concentration of FUS and its interactors.

HeLa cells were lysed in guanidinium chloride lysis buffer and digested sequentially with LysC and trypsin (Kulak et al., 2014). Peptides were desalted on stacked C18 reverse phase (Waters Sep-pak) and strong cation exchange cartridges and eluted using 70% acetonitrile. Pooled eluates were separated into six fractions on strong anion exchange (SAX) StageTips (Wisniewski et al., 2010). MS measurements were performed in three replicates on a quadrupole Orbitrap mass spectrometer as described (Kulak et al., 2014). Raw files were processed with MaxQuant (Cox and Mann, 2008) (version 1.3.9.10), searching against the UniProt complete human proteome sequence database. Cellular copy numbers and concentrations were calculated by absolute scaling of protein MS intensities to a total protein amount of 200 pg in a cell volume of 1 pl for a HeLa cell (Wisniewski et al., 2014).
FUS protein purification from insect cells

To mimic the physiological state as closely as possible, we used the following steps: First, we used insect cells to recombinantly express human FUS. Second, we removed the histidine tag after purification, to prevent HIS-dependent aggregation (Hamley et al., 2014). Third, we included a long linker between FUS and the GFP moiety to prevent possible interference of this tag with protein structure or function. Fourth, we used a variant of GFP that lacks the ability to self-associate (Zacharias et al., 2002). And finally, we avoided any use of denaturants (Kwon et al., 2013; Schwartz et al., 2013).

Recombinant FUS(WT)-GFP-6xHis, MBP-FUS(WT)-GFP-6xHis, MBP- FUS(G156E)-GFP-6xHis, MBP-FUS(R224C)-GFP-6xHis, MBP-FUSΔNLS-GFP- 6xHis, MBP-FUSΔLC-GFP-6xHis were purified from insect cells using the baculovirus expression system (Hoell et al., 2011; Jarvis, 2014; Schwartz et al., 2012). Cells were lysed in resuspension buffer (50 mM Tris/HCl, 1 M KCl, 5% Glycerol, 0.1% CHAPS, 1 mM DTT, pH 7.4) using a dounce homogenizer. Ni-NTA resin (Qiagen) was used to capture FUS from the supernatant of the cell lysate in presence of 20 mM Imidazole. After 4 washes with wash buffer (resuspension buffer + 30 mM Imidazole), FUS was eluted with Elution buffer (resuspension buffer + 250 mM Imidazole). His and MBP tags were cleaved off using a histidine-tagged Prescission protease (in-house) during dialysis against FUS dialysis buffer (50 mM Tris/HCl, 1 M KCl, 5% Glycerol 1 mM DTT, pH 7.4). Ni-NTA resin was used again to remove any uncleaved protein, cleaved tags and Prescission protease. Finally, size exclusion chromatography was performed with
a Superdex 200 Increase 10/300 GL column (GE life sciences) using an Akta Ettan FPLC system (GE life sciences). The protein was flash frozen and aliquots were stored at -80°C.

Using this purification scheme, we obtained a concentrated FUS-GFP solution in high salt buffer. In these conditions, FUS-GFP was highly stable and could conveniently be diluted into a low salt buffer to perform downstream experiments. We tested its normal behavior by microinjecting the purified protein into the cytoplasm of live HeLa cells, where it rapidly entered the nucleus and localized to nuclear compartments (Figure S3A). Furthermore, in stressed HeLa cells, injected FUS localized to cytoplasmic stress granules (Figure S3B).

Hydrogel formation

MBP-FUS(WT)-GFP was concentrated to 500 µM (~ 50 mg/ml) in FUS dialysis buffer and dialyzed against FUS gelation buffer (20 mM Tris/HCl, 200 mM KCl, 0.5 mM EDTA, 1 mM DTT, pH 7.5) (Kato et al., 2012) in a mini dialysis cassette (slide-a-lyzer, Thermoscientific) at 4°C for 48 hours. After gelation the gel was placed on a glass slide covered with parafilm and imaged with a stereo-microscope (Leica MZ 125) fitted with a 1x Plano objective and a Leica IC80 HD integrated camera.
In vitro FUS assays

Because the cytoplasm is highly crowded, we added dextran or PEG to purified FUS to induce droplet formation. Dextran and PEG are chemically inert macromolecular crowding agents that promote phase separation *in vitro* (Keating, 2012; Walter and Brooks, 1995; Zimmerman and Minton, 1993). Indeed, these crowding agents induced assembly of FUS into round micrometer-sized structures (Figure 3C, S3C-E). FUS-GFP was incubated with 10% dextran (T500, Pharmacosmos) or PEG (PEG-8000, Sigma) in 50 mM Tris/HCl, 500 mM KCl, 2.5% Glycerol and 1 mM DTT, pH 7.4 for 10 minutes. Figure S3G shows a concentration series of FUS droplets formed in the presence of dextran between 1.0 and 10 µM. Similar structures were observed, when we added 10 µM FUS protein to HeLa extracts in the absence of crowding agents (Figure S3F) suggesting that we can mimic the intracellular conditions with dextran or PEG.

FUS “aging” experiment in vitro

The aggregation of FUS proteins in ALS patients only manifests with increasing age. We therefore wondered whether the protein undergoes a transformation *in vitro* over time. To test this, we set up an *in vitro* “aging” experiment, where we investigated changes in the biophysical properties of FUS droplets with time.

Aliquots of the assay reaction of FUS-GFP with 10% dextran in 50 mM Tris/HCl, 500 mM KCl, 2.5% Glycerol and 1 mM DTT, pH 7.4 were applied to a glass flow chamber (10 mm x 10 mm x 0.1 mm) at indicated times points. To induce “aging” the assay was subjected to 12 RPM on a benchtop rotator at RT.
Please note that the aging kinetics vary between different preparations of the protein. Thus, we always compared the aging kinetics of proteins purified in parallel. Images were acquired using a 100x oil objective using an Andor Spinning Disc confocal microscope with z stacks over 10 \(\mu \)m and an area spanning 250 x 250 \(\mu \)m\(^2\). Representative figures were made using the maximum projection plugin of Fiji for an area spanning 40 x 40 \(\mu \)m\(^2\).

PAR nucleation of FUS *in vitro*

PAR is a multivalent molecule with many potential binding sites for PAR-binding protein. This and the coordinated recruitment of PARP1 and FUS (Figure 4A-D) suggested that PAR could nucleate the formation of FUS assemblies at DNA lesions. To test this, we set up an *in vitro* assay where 400 nM FUS-GFP was incubated with 1 \(\mu \)M of poly(ADP) ribose polymer (Trevigen, 4336-100-01) in the presence of 9% Dextran, 50 mM Tris/HCl, 150 mM KCl, 2.5% Glycerol, 1 mM DTT pH 7.4, for 1 hour. The assay reaction was applied in a glass flow chamber (10 mm x 10 mm x 0.1 mm). Images were acquired using a 100x oil objective in a Deltavision microscope in z stacks over 10 \(\mu \)m and an area spanning 504 x 1080 \(\mu \)m\(^2\). The images were background subtracted using the Rolling Ball Fiji plugin. Number and volume of the droplets was calculated using the Fiji Analyze Particles plugin. The threshold width was set between 20 pixels and 75 pixels.

http://fiji.sc/Rolling_Ball_Background_Subtraction

http://fiji.sc/Particle_Analysis
Using Optical tweezers for fusing FUS droplets

Controlled fusion experiments of \textit{in vitro} FUS droplets were performed using a custom-built dual-trap optical tweezer microscope (Jahnel et al., 2011) featuring two movable traps. FUS droplets formed at different time points were applied to sealed glass flow chambers (24 mm x 60 mm x 0.1 mm). FUS droplets were trapped because of a mismatch of the refraction index between FUS droplets and buffer. Laser wavelengths in the near infrared (1064 nm) and low light intensities were used to minimize heating. Trap 1 approached Trap 2 with a velocity of 40 nm/s until droplet surfaces touched. One droplet was held in place by one beam, and the other beam was used to capture other droplets and bring them towards the stationary droplet (Movie S6 shows an example). Droplet pairs were scored as non-fusing if no transition occurred > 2 minutes after the surfaces touched. Fusion events were observed simultaneously with high (laser signal, 1 kHz) and low temporal resolution (video signal, 30 Hz). Fusion times measured via image analysis from the video signal correspond well with fusion times measured via laser signal (data not shown), but the latter method was used for further analysis.

Data analysis of tweezer output

We modified the methods described in (Brangwynne et al., 2009) to apply them to our optical trap data. The laser signal (s) from one of the optical traps was sampled over time (t) at a rate of 1kHz. We fit this signal to the following functional form:

$$s = A + Be^{-\frac{t}{\tau}} + Ct$$
where τ is the typical relaxation time scale of a fusion event and A, B, C are constants. The exponential part of this equation is the form that has been previously reported for two coalescing droplets (Brangwynne et al., 2009). In our experiments, the traps continuously approach one another very slowly, and do not stop once the droplets coalesce. This requires a small correction of the functional form, linear in t, to fit the laser signal properly. Since not all droplets coalesced or showed typical coalesce events, we only considered droplets that fit this functional form well. For each set of droplets, we measured the relaxation time for each fusion event and scaled this value by a characteristic length. This ratio corresponds to the ratio of viscosity and surface tension (Brangwynne et al., 2009). As a characteristic length we used the mean radius between the two droplets.

Cryo-TEM for *in vitro* FUS associated structures

4 µl of FUS(WT)-GFP droplets and fibers after aging in 50 mM Tris/HCl, 500 mM KCl, 2.5% Glycerol and 1 mM DTT, pH 7.4 were deposited on Quantifoil EM grids (R2/2, Cu 200mesh grid, Quantifoil Micro Tools). Samples were allowed to adsorb onto the grid surface for 2 min, then washed 3 times with buffer to wash out the dextran. The grids were vitrified by plunge-freezing in liquid ethane/propane mixture at close-to-liquid nitrogen temperature using a Vitrobot mark 4 (FEI, Eindhoven, The Netherlands), with 3-4 seconds blot time. Grids were stored in liquid nitrogen until usage.
Electron micrographs were recorded under low-dose conditions (15-20 electrons/Å²) on a FEI Polara microscope operated at 300 kV (FEI, Eindhoven, The Netherlands), equipped with a field emission gun, a Gif post-column energy filter (Gatan, Pleasanton, CA) operated in the zero-loss mode, a 3838 x 3710 Gatan K2 Summit (Gatan) direct detection camera, and a computerized cryo-stage designed to maintain the specimen temperature below -150°C.

SUPPLEMENTAL REFERENCES:

