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Abstract The regeneration of bone in segmental defects

has historically been a challenge in the orthopedic field. In

particular, a lack of vascular supply often leads to non-

union and avascular necrosis. While the gold standard of

clinical care remains the autograft, this approach is limited

for large bone defects. Therefore, allograft bone is often

required for defects of critical size though a high compli-

cation rate is directly attributable to their limited ability to

revitalize, revascularize, and remodel resulting in necrosis

and re-fracture. However, emerging insights into the

mechanisms of bone healing continue to expand treatment

options for bony defects to include synthetic materials,

growth factors, and cells. The success of such strategies

hinges on fabricating an environment that can mimic the

body’s natural healing process, allowing for vasculariza-

tion, bridging, and remodeling of bone. Biological, chem-

ical, and engineering techniques have been explored to

determine the appropriate materials and factors for poten-

tial use. This review will serve to highlight some of the

historical and present uses of allografts and autografts and

current strategies in bone tissue engineering for the treat-

ment for bony defects, with particular emphasis on

vascularization.
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Introduction

Reconstructing and regenerating significant skeletal defects

have perplexed mankind for thousands of years. Grafting

techniques were utilized as early as 2000 BC when Khurits

utilized a piece of animal bone to repair a small skull

defect, which proved successful millennia later when

anthropologists discovered the remains exhibiting regrowth

around the graft [1]. In the modern age, the first docu-

mented bone graft was performed in 1668 by Job van

Meekeren, a Dutch surgeon. He, too, used a xenograft to

repair a skull defect in an injured soldier [2]. Bone grafts

and the understanding of orthopedic science were further

propelled in the seventeenth century by the work of Antoni

van Leeuwenhoek who is famously known for his work on

microscopy. He also primitively described the microar-

chitecture of bone, identifying what we now refer to as

Haversian canals [1, 2]. Diligent examination of bone

grafting criteria and outcomes surfaced in the early 1900s

with the work of Vittorio Putti who outlined the principles

of grafting [1]. Putti’s work established a foundation for

grafting science in the field of orthopedic surgery. Since

then, surgeons and researchers alike have continued to

hone the science of bone grafting to allow for the most

appropriate surgical intervention with the best outcomes.
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Grafted bone can come from the same individual (au-

tograft) or from other individuals of the same species (al-

lograft). Every year, approximately 1 million bone

allografts are used [3]. Between 1992 and 2007, an esti-

mated 1.7 million bone autografts were performed [4].

Both grafts possess unique advantages and disadvantages,

but autografts began to come into favor over allograft in the

early 1900s with recognition of the benefit that vascular-

ization provides to the integrity of the graft and sur-

rounding bone [5, 6]. Evidence continues to suggest

autografts provide improved outcomes over allografts [7–

14]. However, autologous and allogeneic bone grafts are

now often used in combination with bioengineered scaf-

folds (frames upon which tissue regeneration can occur) or

bone substitutes/adjuncts, which may allow for enhanced

applications of allografts [15–23], so much so that allo-

grafts may be superior to autografts if combined with bone

morphogenetic proteins (BMPs) and a bisphosphonate,

suggested by larger and denser calluses with increased

peak force in BMP ? bisphosphonate graft [24].

The advancement of biomaterials’ research in the past

few decades has enabled the development of scaffold

materials to enhance the regeneration and vascularization

of bone in large segmental defects. Scaffolds have been

made from many materials and have included growth

factors and/or cells to specifically promote vascularization

in healing bone grafts. Combinations have included vas-

cular endothelial growth factor (VEGF), platelet-derived

growth factor (PDGF), endothelial cells (ECs), and mes-

enchymal stem cells (MSCs). Addition of these compounds

and/or cells to scaffolds has provided potential in

improving outcomes in patients undergoing grafting

procedures.

As life expectancy continues to increase, orthopedic

cases continue to rise as well. In 2008, health care costs for

regenerative biomaterials were estimated to exceed $240

million [25], and it is not unreasonable to assume this value

will continue to rise, highlighting the importance of

regenerative bone materials in orthopedic care in the near

future. The most common uses for bone grafts in the USA

are spinal fusion and fracture nonunion [4]. This review

will address the use and characteristics of enhanced grafts,

scaffolds, and bone substitutes as adjuncts in orthopedic

reconstruction and bone regeneration.

Bone Grafts

Bone grafts and scaffolds are often evaluated for three

characteristics: (1) osteoinduction—ability to recruit and

induce MSCs to differentiate into mature bone-forming

cells; (2) osteoconduction—allowing for cellular invasion

of the graft; and (3) osteointegration—functional

integration of the graft with the host tissue through new

bone formation [26, 27]. An ideal graft harnesses adequate

osteoconductive, osteoinductive, and osteointegrative

characteristics; however, the necessary properties for

optimal bone scaffold design remain unknown. Below, we

discuss the advantages and disadvantages of allografts and

autografts and touch upon adjunctive therapies that are in

development to improve outcomes with use of either graft.

Allografts

Bone allografts are harvested tissue from human cadaveric

donors. Cancellous allografts provide minimal to no

structural strength, mild-to-moderate osteoconductive

properties, and mild osteoinductive properties. Cortical

allografts, on the other hand, can provide structural

strength but little osteoinduction [28]. Studies have

demonstrated the advantages of allografts in the setting of

very significant bone defects as seen in musculoskeletal

malignancies [29, 30]. When autograft use is precluded by

the size of the donor site and donor site morbidity sec-

ondary to large defect, surgeons turn to allografts for

reconstruction. Early research published in the New Eng-

land Journal of Medicine demonstrated large allografts can

prove successful in the reconstruction of bone defects

following tumor removal [30]. Furthermore, functional

status of patients who undergo massive allograft trans-

plantation has been reported as satisfactory in as many as

70 % of patients [29]. Allografts may also include articular

surfaces and even ligaments.

Allografts obviate many complications that arise with

xenografts that were used thousands of years ago, but they

also pose their own set of complexities and dangers [31–

33]. Though these grafts are harvested from human

cadaveric tissues, they retain the capacity to induce an

immune response in recipients [34–38]. In the early use of

allografts for segmental bone defects, various protocols

surfaced to minimize graft–host interactions, including

cryopreservation, irradiation, decalcification, and pharma-

cologic immunosuppression [39–43]. Cryopreservation,

specifically, was demonstrated to produce shorter and more

infrequent graft–host immune responses as compared to

fresh, vascularized bone grafts [44]. More recently, how-

ever, protocols using nonionic detergents, hydrogen per-

oxide, and denatured alcohol have demonstrated an

improved safety profile of allogeneic grafts [45] with union

rates comparable to autologous grafts [46].

Aside from immune reactions, allografts pose a problem

when concerned with union rates, structural integrity, and

infections. In a large retrospective study, Hornicek et al.

[47] demonstrated that of 945 patients who underwent

allograft transplantation, 17.3 % of the patients experi-

enced nonunion. Furthermore, nonunion was often
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associated with infection and graft fracture [47]. Sorger

et al. [48] conducted a retrospective review of graft fracture

in patients who underwent allograft transplantation. In a

1046 patient sample, 17.7 % experienced structural allo-

graft fracture at a mean time of 3.2 years after transplan-

tation. Patients with graft fractures underwent further

reconstruction, but 45.9 % of the allografts completely

failed (time to complete failure not specified) [48]. Finally,

infection is a large concern for allograft transplant proce-

dures. Infection rates have been suggested to reach

12.9–13.3 % in patients who undergo allogeneic trans-

plantation [49, 50]. Furthermore, 50 % of allograft infec-

tions were polymicrobial with poor soft tissue coverage

responsible for the majority of the infections [50].

Autografts

Autografts are harvested from and implanted into the same

individual. The most frequently used donor site for bone

autografting is the iliac crest with other options including

the proximal tibial, distal radius, and greater trochanter

[51]. Autografts obviate graft–host reactions mediated by

histocompatibility mismatches because the tissue is

removed and transplanted in the same individual. However,

autografts present their own set of complications with

donor site morbidity and limited tissue availability.

Autografts are considered the standard of bone grafting,

especially in craniofacial surgery, due to their significant

osteoinductive and osteoconductive properties [52, 53].

Cortical autografts also provide significant structural

strength to the graft [28]. Cellular viability and neovascu-

larization are critical properties of autografts that partly

account for their use over allografts and aid in the

osteoinductive, osteoconductive, and osteogenic potential.

Vascularization is vital to the structural integrity of bone

during the healing process [54–57], and graft integration is

no exception [58, 59]. As one can expect, neovascular-

ization between any graft and recipient site during the

healing phase is a complex, dynamic interplay between

various cell types and growth factors, which is supported

by the use of autografts [58]. Cancellous bone autografts

have been demonstrated to initiate vascularization within

2 days of grafting [60]. Harnessing the neovascularization

in autografts is vital to the success of grafts in recipients.

Disadvantages to the use of autologous bone include

donor site pain [61–63], which can be severe and pro-

longed, as well as more significant complications such as

fracture, pelvic instability, hematoma formation, infection,

and nerve palsies [64–68]. In addition, the quantity of bone

graft needed further limits the use of autografts and con-

tributes to the likelihood of adverse events after harvest.

The limitations of both autogenous and allogeneic bone

graft materials have spurred research resulting in a

proliferation of natural and new synthetic biomaterials used

to treat bone defects. Nanotechnology and more refined

biomechanical techniques have allowed for the analysis

and development of osteogenic, osteoinductive, and

osteoconductive biomaterials. As the field of bioengineer-

ing continues to evolve, allografts and autografts will likely

fall out of favor and be replaced by more advanced bone

graft substitutes that optimize vascular and cellular

potential.

Scaffold Materials

Bioengineered scaffolds have evolved dramatically over

the past 40 years and provide great potential in orthopedic

and maxillofacial applications without immunologic or

donor site complications that arise with allografts and

autografts. Potential for these materials is virtually infinite

with the advancement of nanotechnology and derivation of

new scaffold materials, materials that will be developed to

harbor significant strength and adequate osteoconductive

and osteoinductive properties. Variations in scaffold type

and architecture are limitless, including material, porosity,

cellular seeding capacity, and growth factor seeding

capacity [69–71].

Natural—Collagen, Alginate, Hyaluronic Acid

Collagen is the most abundant protein found in bone. Thus,

it has been utilized in orthopedic tissue engineering

applications because of its availability and biocompatible

properties [72]. It obviates many of the complications

associated with the use of bone allografts and autografts,

but the mechanical properties of collagen remain in ques-

tion [73]. More recent developments in collagen scaffolds

have provided an improved strength profile of collagen

scaffolds by modifying collagen cross-linking [74–76].

Tierney et al. [77] refined the properties of collagen scaf-

folds, including porosity, matrix, and permeability to

increase osteoblast activity. These studies point to the

potential of collagen scaffolds in tissue engineering,

especially in orthopedic and maxillofacial applications. In

virtually, all applications of bone grafts and scaffold

materials, including collagen, vascularization, remains

paramount for graft success.

Alginate is an additional natural material derived from

brown algae that offers potential in biomaterial engineering

cell [78, 79] through its ability to form a gel in combination

with water. It is a polysaccharide that is easily modified

chemically and structurally to allow for enhanced appli-

cation in regenerative medicine. Its viscosity and porosity

allow for cellular immobilization, integration, and exten-

ded release of factors and cells from the scaffold [80].
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However, it lacks intrinsic mechanical strength [81] and is

often combined with other compounds (i.e., chitosan,

gelatin, and hydroxyapatite) to improve osteoconductive

and osteointegrative properties while providing a strong

biodegradable structure [82–85]. Furthermore, alginate can

be functionalized with growth factors to enhance neovas-

cularization in and around the scaffold to improve bone

growth [86, 87]. One issue within biomaterial engineering

is the ability to control the release of such factors and cells

to enhance their effects. Alginate has been used as a spa-

tiotemporal delivery vehicle for BMP-2 to enhance bone

regeneration in comparison with collagen sponge as a

result of sustained release in vivo [88, 89] and to deliver

angiogenic factors sequentially to improve scaffold vas-

cularization and bone regeneration due to differences in

binding affinity between alginate and the factors [90, 91].

Finally, hyaluronic acid (HA) is another natural com-

pound that has been studied for use in bone tissue engi-

neering. HA is essential to the extracellular matrix in

wound healing and is well known in musculoskeletal

physiology as a compound that provides lubrication to

synovial membranes in joint capsules by aggregating gly-

cosaminoglycans [92, 93]. In tissue engineering applica-

tions, HA is similar to alginate in the fact that it is often

combined with other compounds [94–96] and functional-

ized with growth factors [97] to enhance its regenerative

potential and provide functional and structural roles in

constructs [98, 99]. Like alginate, as a pure compound, it

lacks mechanical strength often required for weight-bear-

ing and thus requires either sufficient fixation stability or

combination with structural scaffolds.

Synthetic Materials—Polyethylene Glycol,

Polycaprolactone

Polyethylene glycol (PEG) is a synthetic compound used in

tissue engineering due to low toxicity and absence of an

immune response. It is hydrophilic and soluble, yielding

poor mechanical strength [100], but it can, like the natural

compounds, be combined with other materials to improve

strength and biocompatibility. PEG can be functionalized

with adhesive peptides [101], growth factors, and

polysaccharides, such as glycosaminoglycans [102, 103],

which have improved bone growth in and around the

scaffold. In addition, PEG can be used to functionalize

other scaffold materials and link macromolecules to

improve bone formation [104].

Polycaprolactone is a synthetic biodegradable com-

pound used in bone tissue engineering for its mechanical

profile and manufacturability. It is a porous compound

manufactured via numerous processes from photopoly-

merization to three-dimensional printing [105, 106]. Mul-

tiple studies have demonstrated the ability to seed

mesenchymal cells and growth factors to improve graft

integration at the recipient site [107–110]. The opportunity

to functionalize polycaprolactone scaffolds largely stems

from its porous structure. For these reasons, polycapro-

lactone has been identified as a viable scaffold option in

bone tissue engineering.

Ceramics—Bioactive Glass, Hydroxyapatite

Bioactive glass is an appealing candidate in treating bone

defects due to its biocompatibility, strength, and ability to

regenerate bone through release of ionic biological stimuli

[111]. Pores within the glass also allow for tissue ingrowth

and viability [111]. A significant drawback of bioactive

glass, however, is its inherent brittleness, making it difficult

to handle in implantation [112, 113]. Strategies have been

developed to overcome this challenge. For example, coat-

ing or combining bioceramic materials such as bioactive

glass and hydroxyapatite with a supporting matrix such as

poly-L-lactide acid (PLLA) [114], polyethersulfone (PES)

[115], poly D,L-lactide-co-glycolide (PLGA) [116], or p(N-

isopropylacrylamide-co-butyl methylacrylate (PIB) [117]

improves not only the mechanical properties but the

osteogenic potential of such scaffolds as well [115, 118].

Furthermore, the composition of bioactive glass can be

altered to a more malleable material, making it easier to

manipulate [119].

Another ceramic of interest in tissue engineering is

hydroxyapatite (HAp). It is biocompatible, has good

osteoconductivity [120], and has been used in bone repair.

Similar to bioactive glass, though, it is relatively brittle and

is not ideal for bearing weight [121]. However, there are

several methods in which the HAp scaffold can be pro-

duced to improve the mechanics of these constructs to

improve tensile and compressive strength [122, 123].

Interestingly, 3D printing has been utilized to produce HAp

scaffolds capable of sustaining cell proliferation deep

inside the construct and provides an exciting prospect for

the future use of HAp [124].

Growth Factors and Cells

While graft or scaffold material is important to consider,

the largest hurdle to bone regeneration is arguably in the

challenge of creating a vascularized structure capable of

nourishing the surrounding environment and removing

wastes. To enhance angiogenesis and bone regeneration,

various cell and growth factor combinations have been

tested in scaffolds and grafts. Such combinations have

largely included VEGF, PDGF, ECs, MSCs, and BMPs. In

brief, VEGF functions to regulate angiogenesis and capil-

lary permeability, as well as EC and MSC migration and
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proliferation [125, 126]. PDGF recruits fibroblasts and

inflammatory cells to sites of injury, induces collagen

deposition, and possesses angiogenic potential [127]. ECs

are crucial because they form the lumens of blood vessels.

MSCs are multipotent cells capable of differentiating into

various cells such as osteoblasts, chondrocytes, adipocytes,

and muscle cells, but also serve to support neovascular-

ization by acting as mural cells [128]. BMPs function to

induce bone formation through the stimulation and differ-

entiation of osteoblasts [129].

VEGF

VEGF has been a popular candidate in tissue engineering

for its angiogenic properties. It is a particularly attractive

candidate in bone bioengineering for its additional effects

on chondrocytes, osteoblasts, and osteoclasts [56]. VEGF

has been shown to mediate chondrocyte and osteoblast

survival and differentiation as well as recruit osteoclasts

[130]. It has been utilized individually, paired with other

growth factors, and has been infected into cells through

viral vectors to promote vascularization and bone forma-

tion [131]. VEGF appears to function best when used in

conjunction with other factors [132–136]. For example,

VEGF combined with BMP-7 has been shown to result in

earlier osteogenesis, more lamellar and trabecular bone

formation, and a higher bone density than the usage of

BMP-7 alone [132]. In addition, differences in vascular

growth between collagen-coated PLGA scaffolds seeded

with either bone marrow MSCs (bmMSCs) or VEGF were

minimal, but VEGF and bmMSCs seeded together resulted

in continued vascularization 14 days after implantation

[133]. Combining multiple cells and growth factors in a

scaffold better reflects the composition of the extracellular

matrix seen in repairing bone, as the regeneration process

naturally requires a multitude of factors and cell

interactions.

A hurdle in the application of growth factors for bio-

engineering techniques is the short half-life or dissipation

of growth factors after being implanted into the defect,

leading to avascular necrosis or prolonged time of healing

[137]. In regard to VEGF, techniques have recently been

developed that allow for extended, controlled release.

Scaffolds constructed of silk/calcium phosphate/PLGA

have been shown capable of releasing PDGF and VEGF at

a rate so that bioactivity after 28 days is maintained at 82

and 89 %, respectively [138]. Poldervaart et al. [139]

demonstrated that when released from gelatin microparti-

cles in a controlled and prolonged manner in 3D bioprinted

scaffolds, VEGF promoted significantly more vascular

formation than when released quickly both in vitro and

in vivo. Furthermore, the gelatin microparticles allowed for

the creation of heterogeneous constructs, as it was noted

that the microparticles could be administered regionally. A

spatiotemporal scaffold construction such as this could be

of particular use when considering the potential injurious

effects of prolonged action of VEGF. In a nude rat model

using genetically modified bmMSCs to express VEGF,

Helmrich et al. [140] examined vascular density and bone

quantity on osteoconductive material. While VEGF-

bmMSCs demonstrated significantly higher vascular den-

sity after 8 weeks compared to control bmMSC cells,

VEGF expression induced recruitment of osteoclasts and

resulted in a reduction in the amount of mature bone.

Although VEGF has been supported as a critical player in

induction of vascularization and bone formation, overex-

pression or prolonged expression can lead to deleterious

consequences through activation of osteoclasts or increased

vascular permeability.

PDGF

PDGF is a critical element of wound healing and has been

shown to promote angiogenesis [141–144] as well as

increase wound neovascularization and granulation tissue

formation [145–147], early elements of the wound-healing

process. PDGF and VEGF are closely related, and VEGF

can signal through PDGF receptors to regulate MSC

migration and proliferation [148]. In the aspect of bone

bioengineering, delivering PDGF on collagen-based dem-

ineralized bone matrix scaffolds through the cross-linking

of heparin enhances and prolongs its local activity, and it

increases both the cellularization and vascularization of the

scaffold [149]. It also has been shown to increase the

amount of collagen present in bony defects [150]. PDGF’s

roles in angiogenesis and cellular migration and prolifera-

tion, as well as its role in conjunction with VEGF, makes it

an enticing candidate in tissue engineering.

BMPs

Recombinant human BMPs (rhBMPs) 2 and 7 have been

approved by the FDA for the treatment for open tibial

fractures with intramedullary fixation and tibia long bone

nonunion [151]. Acknowledged for their ability to induce

osteoblast proliferation and differentiation, BMPs are

popular choices in graft and scaffold use to increase rates to

union [151]. However, usage of BMPs has been known to

carry significant side effects likely due to the high dosage

required, including swelling, inflammation, heterotopic

bone formation, and most significantly, an increased cancer

risk [152, 153].

In addition to their osteogenic potential, BMPs have

been shown to increase vascularization in scaffolds as well.

Zhang et al. [154] demonstrated BMP-producing bone

marrow stromal cells have the potential to increase graft
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incorporation and vascularization. In a cuttlefish bone

scaffold soaked in BMP-2, Liu et al. [155] demonstrated

that cuttlefish bone–BMP composite displays more

microvasculature and bone trabeculae in rat skull defects

than a scaffold of cuttlefish bone alone. The sustained

release of BMP-2 seeded on 2-N,6-O-sulfated chitosan

nanoparticles on a gelatin sponge induces bridging of

segmental defects and a dose-dependent increase in

angiogenesis in rabbit radius [156].

MSCs and ECs

Timing of administration of factors is important to consider

when evaluating the angiogenic and osteogenic potential of

a scaffold or graft, as bone regeneration is tightly regulated

both temporally and spatially. MSCs can be used as a sole

cell source to enhance osteogenicity in critical size bone

defects [157]; however, they can also be co-transplanted

with ECs. Co-transplantation of endothelial progenitor

cells and MSCs increases blood vessel formation early in

the healing process after 1 month and bone formation in

later stages after 3 months [135]. Alternative to co-trans-

planting ECs and MSCs together, McFadden et al. [158]

found that vascularization of a collagen-glycosaminogly-

can scaffold occurs best when MSCs are added to pre-

formed endothelial networks, as the MSCs can act as

pericytes to the newly formed blood vessels. Pirraco et al.

[159] also cultured ECs and subsequently added them to

osteogenic cell sheets and found that this technique

improves in vivo bone and vessel formation. Although

MSCs and ECs cultured together provide the appropriate

stimulus for vascularization and bone regeneration, MSCs

are often derived from bone marrow. A challenge of uti-

lizing bmMSCs lies in the requirement of invasive proce-

dures to harvest the cells, as well as the limited quality of

cells that are able to be obtained. It is therefore important to

consider other sources. Human umbilical cord MSCs,

human embryonic stem cells, and induced pluripotent stem

cells have been evaluated as potential alternatives to human

bmMSCs, and these alternatives have been shown capable

of blood vessel and bone generation comparable to human

bmMSCs [160]. These different sources of MSCs provide a

potential effective and more cost-effective approach to

tissue engineering.

Scaffold Vascularization Techniques

In addressing the issue of vascularization in a bony defect,

one of two broad approaches can be taken. Attempts at

vascularization can be done prior to placing the scaffold or

graft, or the scaffold or graft can be seeded with proan-

giogenic factors and implanted as previously discussed.

Prevascularization includes harvesting vascular bundles for

the defect [161–165] or vascularizing sheets of cells prior

to insertion [158, 166]. Saphenous vascular bundle con-

structs have shown promise in both large and small animal

models, resulting in higher vascularization and osteogen-

esis [161, 162]. Contrary to transplanting preformed ves-

sels, prevascularization on a smaller level with sheets of

vascularized cells can be done. In an effort to construct a

biomimetic periosteum prior to insertion, Kang et al. [166]

created a vascularized cell-sheet-engineered periosteum by

culturing human MSCs (hMSCs) and subsequently adding

human umbilical vascular endothelial cells (HUVECs) to

mimic the fibrous layer of the periosteum. A sheet of

mineralized hMSCs designed to mimic the cambium layer

was wrapped around a b-TCP scaffold followed by the

vascularized HUVEC/hMSC sheet. The biomimetic scaf-

fold resulted in enhanced angiogenesis that anastomosed

with host vessels and increased bone matrix production

[166]. While the use of both preformed vessels and

proangiogenic factors shows promise, more research is

needed to determine the efficacy among the different

strategies.

Another emerging approach is stimulation of vasculo-

genesis through endothelial progenitor cell delivery. While

typically considered important primarily during develop-

ment, vasculogenesis, the process of de novo neovessel

formation from progenitor cells, may also show promise as

a therapeutic strategy for postnatal vascular growth. The

identification of circulating endothelial progenitor cells

[167], now termed endothelial colony-forming cells

(ECFCs) or late-outgrowth endothelial cells (OECs) [168,

169], suggests that vasculogenesis may also be active

during postnatal neovascularization. Importantly, this

developmental process can be replicated postnatally by

transplanted ECFCs, which participate in functional neo-

vascular plexus formation and therefore may carry poten-

tial for therapeutic vasculogenesis. Both rat and human

ECFCs have been shown to undergo vasculogenesis in

bone tissue engineering constructs and enhance bone for-

mation in vivo [170, 171].

Mechanical Regulation of Vascularized Bone
Regeneration

In addition to biochemical cues, stem cell lineage specifi-

cation and neovascularization are also regulated by

mechanical stimuli. These mechanical cues can be char-

acterized as either intrinsic (i.e., mechanical properties of

the extracellular matrix or scaffold) or extrinsic (i.e.,

mechanical stimuli applied through either static or dynamic

boundary conditions). Intrinsic cues such as matrix rigidity

have been shown to control stem cell fate decisions
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independent of biochemical signals, with soft substrates

promoting adipogenic and chondrogenic differentiation of

MSCs and stiff substrates driving osteogenesis [172].

Recently, Mooney and colleagues demonstrated that in

addition to the elastic properties, the viscoelastic (time-

dependent) properties of the extracellular matrix can also

regulate stem cell fate, with stress-relaxing substrates

enabling osteogenesis in spite of initially soft elastic

moduli [173]. While these observations have been pri-

marily investigated in 2D culture systems, extension of

these principles to 3D hydrogels and scaffolds will provide

important design constraints in the development of next-

generation tissue engineering constructs.

In addition to stem cell differentiation, intrinsic matrix

cues have also been shown to influence neovascularization.

Early studies controlled matrix rigidity by increasing the

ECM concentration [174, 175] or by mixing in additional

molecules like collagen to soft matrices such as matrigel

[176, 177]. However, driven by the observations that

increased or different ligand presentation has the potential

to influence cell behavior independent of stiffness, recent

studies have developed matrices of variable rigidity that

maintain constant ligand identity and density. Several dif-

ferent approaches have been described, including tunable

cross-linking polyethylene glycol (PEG) hydrogels [178,

179] and alginate hydrogels [180], which can be modified

to control ligand presentation. Other recent studies have

explored matrix rigidity control through differential cross-

linking of natural ECM materials such as collagen. One

such approach is methacrylated gelatin, which features

controllable photocross-linking by ultraviolet (UV) light

[181]. Another is nonenzymatic glycation [182–184], in

which reducing sugars are used to create advanced glyca-

tion end products (AGE) on collagen fibers, resulting in

cross-link formation [184]. Others have exploited the nat-

ural collagen fiber cross-linking that occurs in vivo to form

matrices of variable rigidity at constant collagen concen-

tration by missing collagen monomers and oligomers,

formed through native in vivo cross-links [74]. Each of

these approaches has demonstrated profound effects of

matrix physical properties on neovascular growth and

remodeling, and may have important implications for

biomaterial scaffold design.

Bone has long been known to respond to extrinsic

mechanical stimuli caused by physiological mechanical

loading [185], but more recent studies have demonstrated

that these mechanical cues also dramatically regulate

fracture healing [186] and direct tissue differentiation [187,

188]. These observations have significantly influenced

clinical practices for fracture fixation and postoperative

management, and emerging understanding of the

mechanobiological principles that underlie these responses

will further enable tissue engineers to develop viable bone

graft substitutes in vitro through bioreactor culture [189,

190] or enhance large bone defect regeneration in vivo

[191–194]. For example, control of in vivo mechanical

loading through modulation of fixation plate stiffness can

either enhance or prevent bone regeneration depending on

load timing and magnitude [192–194].

Extrinsic mechanical stimuli have also been shown to

regulate neovascularization [195, 196] and vascularized bone

regeneration [192]. Extrinsic cues that have been shown to

influence neovascular growth and remodeling include blood

flow-induced luminal shear stress [196–198], luminal pres-

sure-induced circumferential stretch [199], tensile matrix

stretch [195, 200], and tissue compression [192].

Collectively, these observations may have important

implications for the development of novel vascularized

tissue engineering strategies. Ongoing research on the role

of both intrinsic and extrinsic mechanical cues for large

bone defect regeneration will continue to inform bioma-

terial scaffold and fixation plate design and physical

rehabilitation strategies. Important questions regarding

underlying molecular mechanisms and interactions with

the biochemical cues described above will continue to be

explored.

Conclusion

Bone grafting has served a crucial role in the repair of

segmental bone defects for centuries. Pioneers in the field

of bone grafting recognized the importance of allografts

and autografts, including the benefits and limitations of

each. Allografts were very commonly used; however, over

time, there was a transition to more commonly using

autografts as techniques for harvesting the graft improved.

Autografts have proved quite successful but not without

their own limitations, including donor site morbidity. Due

to the limitations of allografts and autografts and the

advancement of biomechanical research, emphasis has

been placed on developing artificial scaffolds with opti-

mum osteoinductive, osteointegrative, osteoconductive,

and angiogenic properties.

Many growth factors and cells have been studied for

their various properties in combination with scaffolds.

These compounds and cells include: VEGF, PDGF, BMPS,

ECs, and MSCs. Novel research has suggested these

compounds and cells provide promising opportunities for

the development of optimal materials for bone grafting that

allows for vascular and regenerative potential. With the

materials, growth factors, and cells available for biome-

chanical research, the potential for bone graft and scaffold

development is endless. Taken together, these studies

demonstrate opportunities that lie ahead to improve patient

outcomes after a bone graft procedure.
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