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ABSTRACT: The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological
advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of “developmental” or “biomimetic”
tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely
diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective
article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk
opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs
that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of
cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that
replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for
recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal
developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue
engineering approaches to inform our understanding of fundamental biology. � 2017 Orthopaedic Research Society. Published by Wiley
Periodicals, Inc. J Orthop Res 35:2356–2368, 2017.
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REVERSE ENGINEERING DEVELOPMENT
Reverse engineering is the practice of disassembling a
product to understand how it was made and how it
works, to enable replication and manufacture of a
similar object. Here, we propose that tissue engineer-
ing and developmental biology provide complementary
and mutually beneficial perspectives for reverse engi-
neering of living tissues with the dual aim to expand
our understanding of the mechanisms that underlie
tissue development and to advance functional tissue
engineering.

Viktor Hamburger (1900–2001), one of the most
influential developmental biologists of the 20th cen-
tury, once stated: “Our real teacher always has been
and still is the embryo—who is, incidentally, the only
teacher who is always right”.1 In similar spirit, the
polymath and mathematical biologist, D’Arcy
Thompson (1860–1948), stated as introduction to his
seminal work, On Growth and Form2: “But of the
construction and growth and working of the body, as
of all else that is of the earth earthy, physical science
is, in my humble opinion, our only teacher and guide.”
With the aim of uniting these consummate teachers—
the physical sciences and the embryo—we here high-
light mutual opportunities for advancement of both
tissue engineering and developmental biology through
enhanced crosstalk. We propose that the benefits of

this crosstalk are bi-directional, with unique potential
to transform our approach to tissue regeneration by
understanding and recapitulating natural morphogen-
esis, as well as providing powerful quantitative tools
to developmental biologists to monitor, study, and
modulate development.

This article represents an extension of a workshop
organized and presented at the 2017 meeting of the
Orthopaedic Research Society, and will use the musculo-
skeletal system, and specifically the process of endochon-
dral bone formation as a model system to discuss the
emerging paradigm of developmental, or biomimetic,
tissue engineering, and to further discuss the opportuni-
ties for crosstalk between the fields of developmental
biology and tissue engineering. We intend that the
principles discussed here will have application and
utility independent of the cells and tissues of interest.

In both developmental biology and tissue engineer-
ing, new technological developments and achievements
have opened the doors for new questions, new goals
and unprecedented control in the hands of scientists
and engineers. However, with the increasing complex-
ity of the tools, concepts, and theoretical frameworks,
crossing these boundaries has become increasingly
difficult despite increased “interdisciplinarity”. We
believe that much will be gained by the emerging
crosstalk between developmental biology and tissue
engineering in the years to come.

DEVELOPMENTAL ENGINEERING
Though most of our tissues emerge from development
with remarkable regenerative potential (including
accelerated wound healing and even regenerative
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capacity of cardiac muscle),3 this potential diminishes
rapidly with age, resulting in disease and impaired
healing. Some vertebrate systems are capable of post-
natal regeneration, including urodeles such as newts
and salamanders, which exhibit near-perfect limb
regeneration,4 and some lizards, which feature “imper-
fect” repair.5,6 Recently, the first observed mammal to
exhibit this regenerative autonomy (in skin regenera-
tion), the African spiny mouse (Acomys), has been
described.7 Notably, in all of these autonomous regen-
eration cases, the regenerating tissue features
reactivation of developmental programs, including de-
differentiation of what were once thought terminally
differentiated cells to an embryonic-like phenotype.8,9

Even “imperfect” regeneration of the lizard tail, which
forms a cartilaginous tube rather than a vertebral tail,
recapitulates molecular programs of developmental
endochondral ossification.6

With the absence of autonomous regeneration in
humans, the field of tissue engineering and regenera-
tive medicine has emerged to employ biological engi-
neering approaches to repair and regenerate damaged
and diseased tissues.10 To date, however, successful
translation of tissue engineering strategies from the
laboratory to the clinic has not met the high expecta-
tions of the field’s early years. Historical approaches in
tissue engineering have primarily sought to replicate
the properties of the mature tissue to be replaced11,12;
however, the recent emergence of the “developmental”
or “biomimetic” engineering paradigm has the poten-
tial to change the way we think about tissue regenera-
tion. This concept argues that those processes selected
for the formation of tissues in development may be
highly efficient and potent for regeneration of those
tissues later in life.

To accomplish this, tissue engineers will require
detailed understanding of the critical mechanisms that
must be replicated, including the effector cells, the
environmental conditions, and the signaling pathways.
Next, they will require the ability to accurately control
morphogen presentation, matrix organization, and
mechanical cues; and finally, they will need the tools
to verify that the developmental programs were accu-
rately recapitulated. Below, we discuss these princi-
ples using bone development and tissue engineering as
a prototype to highlight this feedback loop, illustrated
in Figure 1.

We therefore propose that revealing fundamental
insights into the mechanisms that underlie normal
development will enable development of truly biomi-
metic tissue engineering strategies that recapitulate
the developmental programs for postnatal regenera-
tion.

BIOLOGY OF BONE DEVELOPMENT
Starting from 270 bones at birth, the adult human
skeleton is composed of 206 bones, excluding sesamoid
bones. Among them, 80 bones are in the axial
skeleton and 126 in the appendicular skeleton. During

development, environmental biomechanical forces play
important roles in creating different shapes (long,
short, flat, and irregular) of bone. In embryogenesis,
while most tissues come from one single germ layer,
bone is uniquely derived from two types of germ
layers, ectoderm, and mesoderm. Most facial and skull
bones are originated from neural crest cells that arise
from the crest of the developing neural tube and
migrate out of the ectodermal layer to the other parts
of embryo. Other axial bones (vertebral column and
ribs) and almost all appendicular bones (limbs and
girdles) are originated from mesoderm, to be precise,
paraxial mesoderm (somites), and lateral plate meso-
derm, respectively.13

Regardless of their origins, all bones are formed
through two initially similar but later distinct mecha-
nisms: Intramembranous and endochondral ossifica-
tion. The former is responsible for the formation of
most craniofacial bones as well as parts of clavicle and
scapula, while the latter produces the majority of the
axial and appendicular skeleton. Both mechanisms
start with cell migration to the site of future bones
followed by mesenchymal cell condensation. During
condensation, rather than changing their proliferation
ability, cells alter their adhesiveness to the extracellu-
lar matrix and to one another, migrate toward the
center, and exclude vessels from the condensation.
Eventually, the condensation reaches a critical size
and a boundary is established to define the future
skeletal element. Many genes, particularly those asso-
ciated with cell adhesion, migration, and extracellular
matrix, are critical for forming skeletogenic condensa-
tion.14,15

From this point forward, mesenchymal cells within
the condensation adapt different fates depending on
their expression of transcription factors. For intra-
membranous ossification, Runx2 and Osterix are the
determinant factors that drive cells directly toward
osteoblast differentiation for synthesizing type I colla-
gen and other bone matrix proteins.16 In contrast,
for endochondral ossification, Sox9 is first highly

Figure 1. Proposed steps in mutual feedback between develop-
mental biology and tissue engineering. Developmental biology
insights inform regenerative approaches, enabled by engineered
microenvironments, which in turn will enable novel approaches
for hypothesis testing to understand developmental mechanisms.
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up-regulated in cells within the condensation core to
initiate their chondrogenic differentiation.17 When the
cartilage anlage reaches a certain size, chondrocytes
at the center stop proliferating and become hypertro-
phic. Meanwhile, mesenchymal cells at the condensa-
tion boundary begin to flatten, elongated, and form the
perichondrium. Interestingly, the pre- and early hy-
pertrophic chondrocytes in the cartilage anlage secret
a cell signaling molecule, Indian hedgehog (Ihh), that
directly stimulates their surrounding perichondrial
cells to differentiate into osteoblast lineage cells,
including osteoprogenitors and osteoblasts, and form
the bone collar, a nascent form of cortical bone.18

Later, osteoprogenitors in the perichondrium follow
invading blood vessels into hypertrophic and calcified
cartilage matrix in the center of anlage, and ultimately
give rise to osteoblasts and osteocytes within the
primary ossification center (POC).19,20 Shortly after
birth, while the POC continuously expands, canals
originating from the perichondrium surrounding the
epiphyseal cartilage begin to form and excavate into
the cartilage center. These cartilage canals bring in
blood vessels and mesenchymal progenitors to estab-
lish the secondary ossification center (SOC).21,22 While
the detailed signaling mechanisms are still largely
unknown, it is clear that unlike bone formation at
POC, cells within the perichondrium at SOC site do
not undergo osteoblast differentiation, and the chon-
drocytes that the canals first penetrate are neither
hypertrophic nor mineralized. The sequential develop-
ment of the POC and SOC defines the location of the
growth plate and articular cartilage in the long bone.
Once the ossification centers are formed, both trabecu-
lar and cortical bones then undergo continuous remod-
eling, a process that starts by removing old/damaged
bone matrix via osteoclasts and followed by depositing
newly mineralized bone matrix via osteoblasts,
throughout the entire lifetime. Past biology studies
have demonstrated that each step of the skeletal
development process is tightly controlled by multiple
growth factors and transcription factors (summarized
in Table 1). Interestingly, none of these growth factor-
initiated signaling pathways is skeletal specific, indi-
cating their essential and vital roles during the
development of entire body.

These observations of developmental bone forma-
tion have several indications for designing new tissue
engineering approaches for making bone in vitro or for
in vivo regeneration. First, mesenchymal cell aggrega-
tion at a high cell density is critical for further
skeletogenesis. Second, endothelial cells, the building
blocks of blood vessels, should be first excluded from
undifferentiated cell aggregates and then recruited
back to the differentiated template. Third, to mimic
endochondral ossification, a perichondrial layer of cells
containing mesenchymal progenitors and endothelial
cells should be considered to coat the cartilage rudi-
ment for initiating bone formation. Last, various
growth factors and transcription factors need to be

embedded or expressed in the engineering constructs
to spatiotemporally regulate the ossification process.
Conversely, if tissue engineering approaches are so-
phisticated enough to reconstruct the skeletal tissues
at various developmental stages using distinct popula-
tions of cells, scaffolds and growth factors, it would
greatly advance our basic knowledge of molecular and
cellular mechanisms in bone development.

A P P ROACHE S FOR S TUDY ING BONE
DEVELOPMENT
Genetically-modified mouse models have revolution-
ized our research on skeletal development by identify-
ing proteins essential in this process and deciphering
their mechanisms of action. A common way to manipu-
late gene expression is the Cre/loxP system in which a
mouse carries both a transgene expressing Cre recom-
binase under a tissue specific promoter and a floxed
target gene, namely, a gene with a region flanked by
two loxP sites.86 Cre can be further modified by fusing
to a mutant estrogen receptor (ER) to ensure an
inducible expression after Tamoxifen injections.87 The
commonly used promoters to drive Cre expression in
bone development include limb bud mesenchyme-spe-
cific Prx1, cartilage-specific collagen type II (Col2a1)
and aggrecan, hypertrophic cartilage-specific collagen
type X (Col10a1),88 osteoprogenitor-specific Osterix
and aSMA,20,89 mature osteoblast-specific Osteocal-
cin,90 and osteocyte-specific Dmp1.91 This Cre/loxP
system can be designed not only for inactivation but
also for overexpression of a particular gene. Fluores-
cent proteins with various colors represent a powerful
tool to identify a particular cell type within a heteroge-
neous population of cells.92 By inserting their genes at
the endogenous Rosa26 locus downstream of a CAG
promoter and a floxed STOP cassette, the expression
of those fluorescent proteins serves as a faithful
reporter for the Cre activity. Since Cre-induced recom-
bination is irrevocable, all cells expressing the Cre
activity and their descendants are labeled with the
same fluorescent signal.

In the past several years, this lineage tracing
approach has been used successfully to determine cell
fate during bone development. For example, it has
been debated over a century about where hypertrophic
chondrocytes in the growth plate go during endochon-
dral ossification. While the traditional view is prone to
support a cell death fate when cartilage is transitioned
to bone, recently studies based on lineage tracing
using both non-inducible and inducible chondrocyte/
hypertrophic chondrocyte-specific Cres as well as
fluorescent reporters clearly reveal that at least some
of those terminally differentiated chondrocytes could
escape death and transdifferentiate into osteoblasts
and osteocytes, thus directly contributing to bone
formation.93–96 Thus, lineage-tracing experiments pro-
vide important information about the cellular hierar-
chy that governs bone development and homeostasis.
However, this approach is limited by the tissue or cell
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specificity of the promoter that drives the CRE expres-
sion and the mosaic expression of the reporter gene
within the targeted cell population.

Immunohistochemistry (IHC) is another important
approach that greatly advances our knowledge of
skeletal development. Since it uses antibodies to semi-
quantify the amount of proteins in a cell specific
manner, IHC provides much more biological informa-
tion in a heterogenetic tissue compared to real-time
RT-PCR and Western blot that measures RNA and
protein levels, respectively. This is particularly impor-
tant when studying bone development as
aforementioned, this developmental process requires
multi-cellular interaction at any given step. Tradi-
tional IHC uses thin sections that only capture 2D
information at one time point. Newly developed whole
mount immunofluorescence combined with advanced
confocal microscopy is advantageous for examining
spatial information at an ultra-high resolution. It is
particular useful for analyzing vascular network in
bone because traditional thin sections lose the archi-
tectural information.97 Moreover, real-time intravital
fluorescence imaging,98 which has already been used

successfully in studying calvarial bone development90

and regeneration,99 should be a powerful tool to trace
cell migration and differentiation during endochondral
ossification when combined with the lineage tracing
approach.

In addition to the above established approaches,
other emerging techniques in the skeletal development
field could also be adopted for tissue engineering
studies. Those include, but not limited to, deep tissue
clearing for whole mount examination,100 laser capture
microdissection for RNA and protein analysis,101 and
even more challenging, genome-wide profiling in single
cells.102

THE NEED FOR REGENERATIVE APPROACHES
An estimated 126 million Americans are affected by
musculoskeletal disorders and many of these patients
could benefit from tissue-engineered cartilage, bone,
and connective tissue constructs. Currently, develop-
ing cartilage constructs for integration and resurfacing
joints, tendons for repair, and bone for treating large
bone defects and for facilitating spinal fusion could be
used to fulfill unmet clinical needs. However, while

Table 1. Major Growth and Transcription Factors that Govern Bone Development

Gene/Gene
Product Function References

Growth factors
BMPs Establish the condensation size; promote both chondrogenesis and osteogenesis. 23–27

PTHrP Secreted by perichondrial cells, PTHrP maintains proliferating chondrocytes and suppresses
the onset of chondrocyte hypertrophy during endochondral ossification.

28–33

Ihh Expressed by prehypertrophic chondrocytes, Ihh stimulates chondrocyte proliferation and is
required for the synthesis of PTHrP. It also signals to the nearby perichondrial cells and
directs them toward osteoblast differentiation.

32,34–38

FGFs FGFs and their receptors are important for initiating mesenchymal condensation and its
differentiation down the chondrogenic lineage. FGF-9 and -18 derived from perichondrium
decrease chondrocyte proliferation and hypertrophy during endochondral ossification.
FGFs also control all steps of osteoblastogenesis in a cell stage-dependent manner.

39–43

TGFbs Initiate condensation formation; promote proliferation, chemotaxis, and early differentiation
of osteoprogenitors but inhibit osteoblast maturation into osteocytes.

44–48

Wnts Generally inhibit chondrocyte differentiation; potently stimulate osteoblast differentiation
and bone formation.

49–56

Notch
ligands

Attenuate mesenchymal condensation and subsequent chondrogenic differentiation;
suppress osteoblast differentiation in mesenchymal progenitors.

57–61

VEGF Released by hypertrophic chondrocytes, VEGF recruits blood vessel invasion into the
cartilage matrix to initiate bone formation during endochondral ossification.

62–66

Transcription factors
Sox9 Sox9 is essential for initiating chondrogenesis during endochondral ossification. 67–70

Runx2/
Cbfa-1

Runx2 is a master transcription factor for osteoblast differentiation in intramembranous and
endochondral ossification. It also promotes the hypertrophic differentiation of
chondrocytes.

71–77

Osterix/Sp7 As a Runx2 target gene, osterix is another essential transcription factor for osteoblast
differentiation in intramembranous and endochondral ossification.

78–81

b-catenin Primary effector of canonical wnt signaling; promotes osteogenesis;
inhibits chondrogenesis.

82–85

BMP, bone morphogenetic protein; PTHrP, parathyroid hormone-related protein; Ihh, Indian hedgehog protein; FGF, fibroblast growth
factor; TFGb, transforming growth factor beta; VEGF, vascular endothelial growth factor; Sox9, SRY-Box 9; Runx2, runt-related
transcription factor 2.
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inducing bone or cartilage lineage-specific differentia-
tion in the laboratory is now common, production of
mechanically and biologically functional tissues, or
complex composite tissues that can be translated for
use in patients remains challenging. By applying
knowledge gleaned from studies on development of
skeletal tissues, new approaches may be developed to
generate translatable tissue constructs.

Of these skeletal tissues, bone exhibits a remark-
able ability to regenerate after injury. The process of
bone formation and regeneration is well-studied, and
there are many potential avenues for translational
research to have a sustained effect on the field of bone
tissue engineering.

DEVELOPMENTAL BASIS OF REGENERATION
During embryonic development, bone forms by two
distinct processes. Bones of the skull and the clavicle
from by intramembranous ossification, a process in
which precursor cells differentiate into osteoblasts and
form bone directly. In contrast, during formation of
the retroarticular process of the jaw, and the axial and
appendicular skeleton, precursor cells differentiate
into chondrocytes, which form a cartilage template
that is replaced by bone through the process of
endochondral ossification.

Both of these processes are recapitulated during
bone healing. In mechanically stable environments
stem cells located in the periosteum and endosteum
differentiate directly into osteoblasts and the bone
heals through intramembranous ossification.89,103 In
contrast, in mechanically unstable environments, stem
cells in the periosteum differentiate into chondrocytes
and the bone heals primarily through endochondral
ossification,89,103 with some direct bone formation
within the endosteum and the periosteum at a dis-
tance from the fracture site (Fig. 2). Interestingly, the
embryonic origin and history of the bone does not
influence the mode of healing, but this is determined
rather by the mechanical environment as even bones
of intramembranous origin heal through the
endochondral mode under conditions of interfragmen-
tary motion.104

While the process of regeneration does indeed
recapitulate bone development, there are significant
differences between development and healing. After
traumatic injury, there is an influx of all inflammatory
cell types to the site of injury. These cells debride the
wound, and stimulate healing. While there is no
inflammatory response during bone development, tis-
sue resident macrophages, osteomacs appear to be
important during bone formation.105 Additionally, en-
dogenous mesenchymal stem cells are present at sites
of injury, but their endogenous, in vivo functions
remain unclear. For example, circulating progenitors
have not been observed to give rise to regenerating
cartilage and bone in a parabiosis model,106 and native
pericytes may not behave as stem cells in vivo,107

despite clear multilineage capacity when cultured in

vitro or implanted exogenously.107–109 However, these
cells may participate in and orchestrate the healing
process, by providing signaling factors that help regu-
late repair.110 Further research will be needed to
elucidate the functions and capabilities of these cells,
in development, homeostasis, and regeneration.

Developing novel constructs to treat fracture
patients has been a long-standing goal in Orthopaedic
research. Many investigators have developed bone
grafts based on intramembranous ossification. Osteo-
blast differentiation is induced and a mineralized
tissue constructs is allowed to form in vitro, then this
construct would be implanted into a bone de-
fect.108,111,112 However, bone is highly vascularized
and the tissue engineered constructs need to take this
into account. Development of composite tissues can
overcome this problem.112–114

We,96,109,115,116 and others,117–119 have proposed
and demonstrated that cartilage grafts have the ability
to heal large bone defects. The idea that cartilage
could be used to heal bone is based directly on the fact
that bone can form and heal fractures via endochon-
dral ossification. Cartilage is avascular, but has
angiogenic activity120,121 so cartilage survives trans-
plantation and induces the host vasculature to invade
and convert the cartilage to bone.96 Thus, by using
developmental mechanisms as inspiration, novel ther-
apies to treat bone defects can be designed.

FAILURE OF REGENERATION
An estimated 5–15% of bone fractures fail to heal in a
timely manner.122 Delayed healing or non-union cre-
ates significant health burdens and severely impacts
the quality of life of affected individuals.123 Too much
motion at the fracture site leads to a hypertrophic non-
union, in which, a large cartilage callus forms, but does
not undergo endochondral ossification. This outcome
requires a revision surgery to stabilize the fracture site,
and healing usually proceeds normally. However, a
number of other conditions, including diabetes, smok-
ing, rheumatoid arthritis, and aging, are associated
with poor healing outcomes possibly due to dysregu-
lated inflammatory processes.124 Further, concomitant
vascular or nerve injuries are associated with delayed
healing or non-union.112,114,125,126 Therefore, developing
therapies to target each of these patient populations
could significantly improve fracture healing outcomes
for a large number of individuals.

BIOMATERIALS FOR ENGINEERING
DEVELOPMENT-MIMETIC MICROENVIRONMENTS
Expanding beyond the standard 2D culture on tissue culture
plastic utilized in the cell and molecular biology communities
for decades, new 3D systems have emerged which better
replicate the cellular environment present during develop-
ment, repair and homeostasis in the body.127 These systems
offer a powerful opportunity to regulate and study musculo-
skeletal cell behavior, and ultimately enhance our under-
standing of the critical signals needed to drive new tissue
formation.
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A primary approach to engineer musculoskeletal tissues
involves using biomaterials as an architectural scaffolding
that serve as a surrounding extracellular matrix for cell
adhesion, proliferation, differentiation, migration, and/or com-
munication with each other, a framework to provide mechani-
cal support for tissue formation, and a mechanism for
providing instructive signals to guide the function of seeded
cells. These scaffolds can be comprised of biomaterials from
natural sources (e.g., collagen, hyaluronic acid, alginate,
chitosan, decellularized tissue), synthetic polymers or combi-
nations of the two.128–130 Their properties, such as biochemical
composition, structure, mechanics, porosity, and degradation
rate and mechanism, provide cues to cells and regulate their

gene expression and behavior. Functionalizing synthetic poly-
mers with natural materials provides advantages such as
better control over the final product and enhanced mechanical
properties inherent with synthetics, while permitting endow-
ment with specific biological activity in a modular manner.

Soluble bioactive factors can be delivered from these
scaffolds to guide cell fate as well. The factors can include
growth factors, cytokines, transcription factors, hormones,
and RNA inherent to developmental processes, in addition to
other genetic material such as plasmid DNA that can
program cells to produce proteins of interest. The biomate-
rials can be engineered to control the temporal presentation
of one or more of these factors, with potentially different

Figure 2. Transformation of Chondrocytes to Osteoblasts During Bone Fracture Healing. (A–D) Transplantation of cartilage
stimulates repair of a segmental bone defect in mice. Cartilage was derived from ROSA26 mice that express the beta-galactosidase
transgene ubiquitously, and donor cells can be distinguished from host cells by X-gal staining to label donor cells blue. (A) The cartilage
graft at 1 week, and (B and C) 4 weeks after engraftment show that the newly formed bone is derived from the transplanted cells.
(Reproduced with permission from JBMR. J Bone Miner Res. 2014; 29(5): 1269–1282). (E and F) Fracture healing in Wild type mice
and after conditional inactivation of Sox2 using a Sox2CreERt deleter mice shows decreased callus formation and reduced Sox2 and
Oct4 expression, and no effect on Nanog expression (reproduced From Development, 2017 144: 221–234). Scale bars A and B¼200mm,
C¼ 500mm, E and F¼100mm.
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profiles, by regulating, for example, their diffusion through
the scaffold, their affinity to or interactions with the scaffold,
and the scaffold degradation rate and/or mechanism.131

A more recent alternative strategy to the use of scaffolds
in musculoskeletal tissue engineering involves partially
recreating the high-cell density conformation of cells in
immature mesenchymal condensations present during devel-
opment.132 Isolated stem cells in suspension can coalesce via
cell–cell adhesion proteins into self-contained masses. When
these cells are exposed to cytokines in culture media, they
can be guided to differentiate into defined connective tissue
phenotypes. Biomaterials microparticles can be introduced
within these cell aggregate masses, and the microparticles
themselves or delivered biologics can drive tissue-specific
lineage progression.133 Using this approach, tissues can be
formed in a wide range of sizes and geometries, from
spheres134 to sheets135 to rings and tubes.136

TOOLS FOR REPLICATING DEVELOPMENT
There is an extensive array of technologies and tools
currently available that can facilitate the recapitula-
tion of developmental microenvironments, and help
identify conditions which could recreate them. It is
well known that mechanical forces play a critical role
during development. Bioreactors make it possible to
control the mechanical environment of a growing
cultured tissue construct, allowing the static or dy-
namic application of stresses, such as tension, com-
pression, shear and/or hydrostatic,137 which may be
designed to mimic those present during development
in terms of magnitude, frequency and duration. More
recently, methods have been reported with the poten-
tial to modulate the mechanical environment in an
actual tissue defect in vivo, permitting the role of this
important signal on healing musculoskeletal tissues to
be elucidated.114 While there is currently incomplete
understanding of the exact mechanical environment
present during development, which in turns limits
biomimetic approaches in this area, recent reports
have begun to quantify these stimuli during develop-
ment in both animals138–140 and in humans.141

To understand the role of individual and combined
signals that can influence cell behavior, such as those
from biomaterials, soluble bioactive factors, mechani-
cal signals and other cell populations, in an efficient,
fast and cost effective manner, numerous high
throughput screening systems have been developed.142

These systems often utilize technologies such as micro-
fluidics, microspotting, and/or microcontact printing.
They have the capacity to screen hundreds to thou-
sands of microenvironments simultaneously in a com-
binatorial manner, facilitating the understanding of
how multiple signaling cues are interpreted by cells to
elicit particular responses.

Tissues develop with precise spatial distributions of
multiple cell phenotypes, extracellular matrix mole-
cules and soluble bioactive factors. Recreation of some
of these architectural relationships may be critical to
harness the potential of biomimetic regenerative strat-
egies, and 3D printing technologies facilitate the

placement of these different tissue building blocks in
defined locations with high resolution on the micro-
scale.143,144 Tools like 3D printing and microfluidics
also support the formation of soluble signal gra-
dients,145 which are present throughout the
development of musculoskeletal tissues. Using such
tools, in conjunction with controlling the timing of, for
example, biomaterial degradation or bioactive factor
release, gives biologists and engineers the ability to
truly recapitulate microenvironmental signals with
temporospatial specificity.

APPLYING BIOMATERIALS AND ENGINEERING
TOOLS TO RECREATE BONE DEVELOPMENT
Intramembranous ossification (IO) approaches to engineer
bone typically involve seeding osteoblasts or osteoprogenitors
onto or into a biomaterial scaffold, and then driving the
direct formation of bone tissue through the controlled deliv-
ery of potent osteogenic soluble signals, such as bone
morphogenetic proteins or genes encoding for these mole-
cules. As mentioned earlier, recapitulating endochondral
ossification by first forming a cartilaginous anlage that can
then be remodeled and replaced by bone tissue may be a
more advantageous route. This strategy has been pursued in
several different ways, including incorporating both of the
cells types critical for endochondral ossification (i.e., chondro-
cytes and osteoblasts) into a peptide modified hydrogel,109

and delivery of chondrogenic and osteogenic signals to cells
with controlled temporal profiles from biomaterials.146 Inter-
estingly, endochondral strategies may even be applied suc-
cessfully to regenerate tissue where bone forms by
intramembranous ossification during development.146

Enhancing angiogenesis is critical for the survival of cells
in intramembranous approaches, especially where there has
been substantial vascular injury, and for endochondral
technology to bring in new vasculature along with progeni-
tors cells capable of differentiating into osteoblasts and
replacing engineered cartilage. Efforts in this area have
focused predominantly on delivery cells capable of participat-
ing in or inducing angiogenesis (e.g., endothelial cells,
endothelial progenitors, etc.), and controlled delivery of
soluble factors that are angiogenic, that recruit vascular and
supporting cells, and/or that help stabilize forming vascula-
ture (e.g., VEGF, PDGF, SDF-1, etc).115,147,148

It is important that new development-mimetic tissue
engineering approaches be assessed by standardized func-
tional outcomes and appropriate benchmarks of success. New
approaches must be validated first for their capacity to effect
functional regeneration, including verification of restored
mechanical function in comparison with intact, native con-
trols and demonstration of mature tissue biological function,
for example, endocrine activity and restoration of the
hematopoietic niche. We envision that the development-
mimetic tissue engineering paradigm will have particular
promise in the area of pediatric tissue regeneration; there-
fore, it will be critical to achieve and quantitatively evaluate
long term tissue growth and remodeling concomitant with
patient ageing. Further, benchmarks of success for develop-
mental engineering approaches should include comparison
with the current state of the art and verification of develop-
mental biomimicry. Thus, benchmarking will require head-
to-head comparison with classical approaches and current
clinical standards including scaffold and growth factor-based
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techniques that may provide advantages in ease of clinical
implementation. It will also require cell- and molecular-level
assessment of the extent to which the engineering approach
recapitulates the desired developmental process.

FEEDBACK FROM DEVELOPMENTAL TISSUE
ENGINEERING TO DEVELOPMENTAL BIOLOGY
The recent re-emergence in the literature of “organoid”
culture151 has produced dramatic advancements in our
understanding of stem cell and developmental biology
for a variety of tissues from gut epithelium to the

structures of the brain.151,152 Notably absent in this
modern revisiting of the organoid paradigm, which
reached its former height in the 1960’s–80’s,151 are the
tissues of the musculoskeletal system. However, the
principles of developmental engineering discussed
here continue to gain traction in the musculoskeletal
community,96,118,119,146,153–158 and, with the recent and
rapid expansion in biomaterial techniques available
for controlling microenvironments, as discussed above,
these principles are likely to contribute significantly to
our understanding not only of how to engineer

Figure 3. Biomaterial approaches for replicating developmental conditions in tissue engineering. Among emerging approaches
include 2D cell culture on the surface of extracellular matrices engineered to mimic the biochemical or biophysical environment, such
as functionalize polyacrylamide (top-left panel; Image credit: J. Boerckel) or electrospun nanofiber meshes (top-center; Image credit: Y.
Kolambkar). Building in complexity, 3D matrices can be built up from woven fibers (top-right; Image modified from Moutos et al. PNAS
2016). Other 3D approaches include printed structural scaffolds (middle-left; Image credit: J. Boerckel), or hydrogel matrices enabling
3D cell distribution (center; Image credit: A. McDermott). Cellular assembly approaches that mimic the cell–cell interactions present in
early limb development include micromass culture (middle-right; image source:149), pellet culture (bottom-left; image source:150), 3D
cellular self-assembly (bottom-center; image source:136), and defect-filling engineered condensations (bottom-right; image credit: E.
Alsberg, J. Boerckel).
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functional musculoskeletal tissue replacements, but
also to reveal the fundamental mechanisms underlying
the natural development of these tissues.

Translational studies in rodents have and will
continue to add to our understanding of musculoskele-
tal development. For example, transplantation of carti-
lage grafts into critical sized defects of murine tibiae
uncovered that chondrocytes transform into osteo-
blasts during bone fracture healing.96 Subsequent
publications have confirmed this observation and
shown that chondrocytes also transform into osteo-
blasts during endochondral ossification in the growth
plate.93–95,159,160 Similarly, engineering approaches161

that explore the roles of mechanical forces in tissue
formation and regeneration114,162 are also capable of
revealing important insights about the influence of
mechanical cues in tissue morphogenesis and embry-
onic development.163,164 Thus, tissue engineering
advances health care by providing avenues to therapy
and also by illuminating previously unknown develop-
mental mechanisms.

UNANSWERED QUESTIONS AND FUTURE
DIRECTION
Future work will continue to improve our understand-
ing of the biology of development, including the spatial
distribution and temporal appearance of the cellular
actors, morphogens, and extracellular matrix mole-
cules. Other areas for continued research and distinct
need are improved techniques for both temporal and
spatial control over the presentation of multiple solu-
ble factors with different release profiles matched with
optimal delivery vehicle biodegradation. Additive
manufacturing techniques show promise for generat-
ing complex architectures with developmental inspira-
tion,165 and further research will be necessary to
improve speed, bioactivity, structural integrity, spatial
complexity, and compositional heterogeneity. Limits in
vascularization for regeneration of large tissues re-
main a significant hurdle, and are likely to benefit
substantially from observation of the mechanisms by
which developing tissues accomplish this end.112,114,158

CONCLUSIONS AND RECOMMENDATIONS
We have presented a framework for synergistic ad-
vancement of our understanding of tissue development
and approaches for mimicking this process for tissue
engineering. With these considerations in mind, we
make several recommendations for continued research
in this area: First, the ultimate test of any regenera-
tive approach must be functional regeneration, includ-
ing restoration of both mechanical and biological
function. Functional outcomes with comparison with
native adult tissue beyond histological demonstration
of tissue identity must become standard and requi-
site.166 Second, as the field evaluates the efficacy of
this emerging developmental approach, direct compar-
ison with traditional tissue engineering approaches
will be important to establish benchmarks for relative

success in addition to ultimate tissue functionality.
Third, regenerating tissues through developmental
engineering approaches must be compared not only
with the final mature tissue, but also to the developing
tissues that they are intended to recapitulate to verify
the accomplishment of the development-mimetic goal
and to establish the full benefit of the feedback loop
described in Figure 3. In addition to morphological
and cellular composition, this will include quantitative
comparison of the cellular and molecular mechanisms
underlying both tissue regeneration and development.
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