

PCMD MicroCT Imaging Core Learning Lunch Series

MicroCT Imaging to Uncover the Internal Structural Responses of Specimens Under Mechanical Loading

March 4th, 2021 PCMD MicroCT Imaging Core (Management team: X. Sherry Liu, Yilu Zhou, Rebecca Chung)

Invited speakers: Dr. Sarah E. Gullbrand (Dept. Orthopaedic Surgery, UPenn) Dr. Jing Du (Dept. Mechanical Engineering, Penn State University)

Outlines

- Brief introduction of our core facility
- Recent progress of our video tutorials, automated services
- MicroCT imaging setup for specimens under mechanical loading
- MicroCT project highlights from Dr. Sarah E. Gullbrand (Dept. Orthopaedic Surgery, UPenn)
- MicroCT project highlights from Dr. Jing Du (Dept. Mechanical Engineering, Penn State University)

Available Scanners in our Core

- Specimen µCT
 - µCT 35
 - µCT 50
 - μCT 45 *new!*
- *In Vivo* μCT
 - vivaCT 40
 - vivaCT 75
 - vivaCT 80 new!
- Clinical µCT
 XtremeCT II

.....

µCT Imaging Core Resources

	Model Location		Scan Size	Voxel Size	Applications	
			(ØxL;mm)	(µm)		
1	µCT 35	Stemmler Hall	37.9 x 120	3.5-72	High resolution <i>ex vivo</i> scans	
2	µCT 45	Stemmler Hall	50 x 120	3.0-100	High resolution <i>ex vivo</i> scans	
3	vivaCT 40	Stemmler Hall	38.9 x 145	10.5-76	High resolution in vivo	
					scans for small animals	
4	vivaCT 80	Stemmler Hall	80 x 145	10.4-76	High resolution in vivo	
					scans for small animals	
5	μCT 50	PVAMC/TMRC	50 x 120	0.5-100	Ultra high resolution (sub-	
					micron) ex vivo scans	
6	vivaCT 75	PVAMC/TMRC	79.9 x 145	21-150	<i>In vivo</i> scans for small animals;	
					ex vivo scans for large	
					specimens	
7	XtremeCT II	CTRC	140 x 200	60-82	Clinical scans for peripheral	
					skeleton	

Video Tutorials & Instruction Documents

https://www.med.upenn.edu/pcmd/mctimagingcore/user-tutorials.html

Video Tutorials:

Our YouTube channel: https://www.youtube.com/channel/UCzznR9Fdv-3kjEX7miwsioA/

µCT scan setup:

- How to set up a scan on µCT35 (PDF download) (Video download) https://www.youtube.com/watch?v=QUtoQqIYJ80
- 2. Demo: How to set up a scan on μCT_{45} (Recommended: Carousel version)

(PDF download 🖄 (Video download)

Note: To use this <u>Carousel version</u>, please remove the sample holder on the rotation stage. https://www.youtube.com/watch?v=fzIfffR5XyE

3. Demo: How to set up a scan on µCT45 (Non-carousel version) (PDF download) (Video download)

Note: To use this <u>Non-carousel version</u>, please remove all sample holders on the carousel. https://www.youtube.com/watch?v=JEoLn1igEjE

- 4. How to set up an ex vivo scan on VivaCT40 (PDF download 🖄) (Video download) https://www.youtube.com/watch?v=sxvTV4bvosw
- 5. How to set up an ex vivo scan on VivaCT80 (PDF download 🖄) (Video download) https://www.youtube.com/watch?v=HdQYWwjulXM

µCT viewing & analysis:

- How to use "microCT Analysis" computers (PDF download) (2) (Video download) https://www.youtube.com/watch?v=qHHcB6KJJe4
- 2. Tutorial for cropping, exporting, and requesting microCT images (PDF download) (2) (Video download)

https://www.youtube.com/watch?v=umRF6ODcQqQ

- 3. Tutorial for 3D display of microCT images (PDF download) (2) (Video download) https://www.youtube.com/watch?v=YdQSo41rgR8
- 4. Tutorial for cortical bone analysis (mouse tibia midshaft) (PDF download 🖄 (Video download)
- https://www.youtube.com/watch?v=B4OE9X8Bkwg

ders:

Automated Service: File Request

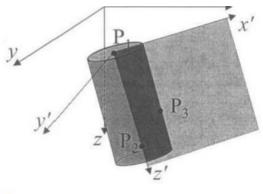
https://www.med.upenn.edu/orl/uct/assets/user-content/secure/User_file_request%20(v2020.01).xlsx

• File request: 7/24 automated service sharing MicroCT data files to users

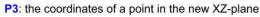
Completed 320 requests from 35 users last year

• <u>Auto compiling microCT results into Excel sheet</u> (NEW!)

Q								nail.com	meniscus@gr	ur Gmail:
	Vivact80		Vivact40			MicroCT35				
	File_Types	Measure#	Sample#	File_Types	Measure#	Sample#		File_Types	Measure#	Sample#
								DICOM	17817	7234
								DICOM	17816	7234
				111				DICOM	17815	7234
Do you need analysis results					10			DICOM	17814	7234
in combined Excel?				(2)		_		DICOM	17813	7234
destruction and the second and						121	-	DICOM	17812	7234
(Click the cell below						N	F	DICOM	17811	7233
to select the option)								DICOM	17810	7233
								DICOM	17809	7233
NO (default)								DICOM	17726	7204
(default)								DICOM	17725	7204
(3DRESULTS_BONE_MORPHO)								DICOM	17724	7204


Automated Service: Sample Realignment

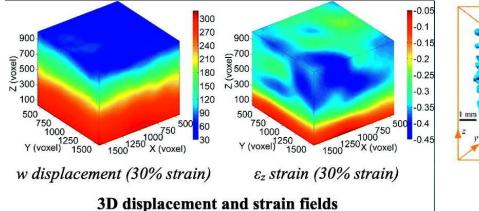
https://www.med.upenn.edu/orl/uct/assets/user-content/secure/Sample_Realignment_request(v2020.01).xlsx

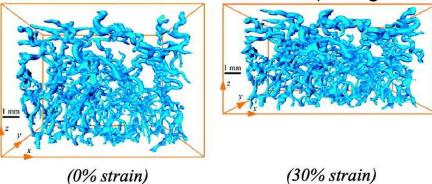

 Sample realignment/reorientation request: 7/24 automated service help users to do sample realignment

 Completed 40 requests from 10 users in 2020

yiluzhou1987@gmail.com	(1)			
3. Select alignment options:	4. Select import options			
3 Point Alignment (AlignZ)	Import with old sample name	Use COMMA btw each number, e.g.: 100,100,100		
Measure#	New Sample#	P1	P2	P3
1057	299	193,181,0	185,58,0	289,99,0
3	3. Select alignment options: 3 Point Alignment (AlignZ) Measure#	3. Select alignment options: 4. Select import options 3 Point Alignment (AlignZ) Import with old sample name Measure# New Sample#	3. Select alignment options: 4. Select import options 4. 3 Point Alignment (AlignZ) Import with old sample name Use COMMA btv Measure# New Sample# P1	3. Select alignment options: 4. Select import options 4. 3 Point Alignment (AlignZ) Import with old sample name Use COMMA btw each number, e Measure# New Sample# P1 P2

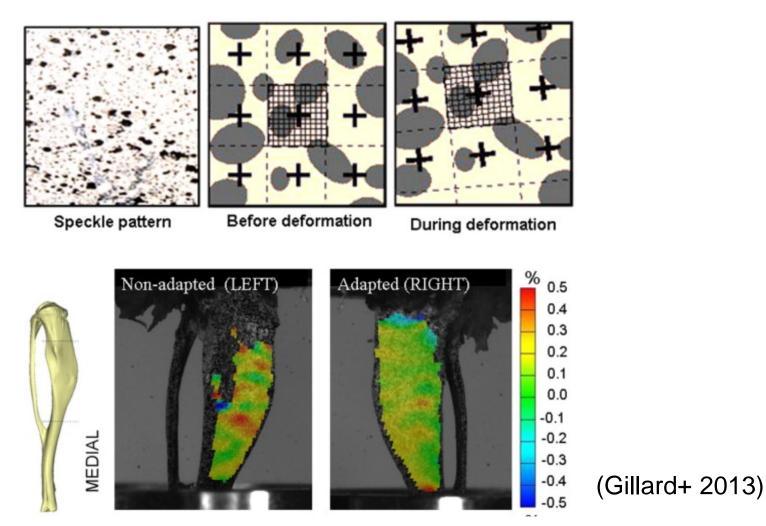
P1: the coordinates of the new origin P2: the coordinates of a point on the new Z-axis





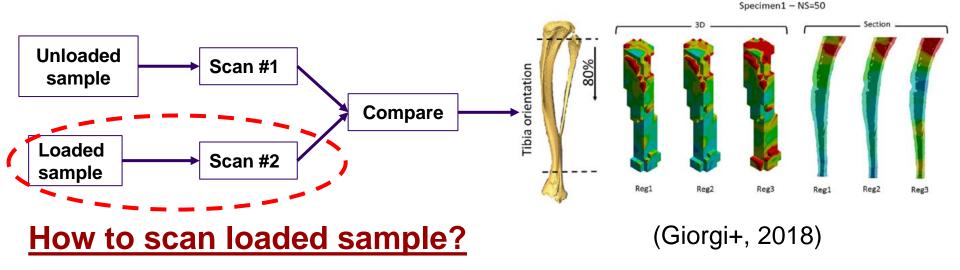
Why need 3D Strain Measurement?

- Essential tool to study the structure-function relationships
- To track the movement of microstructural features throughout the specimen in response to an applied load (Bay+ 2001)
- To understand the mechanical demands to which biological material such as bone is subjected *in situ* (Liu+ 2007)
- To explore the failure mechanism of biological material at a sub-micrometer resolution (Wang+ 2018)

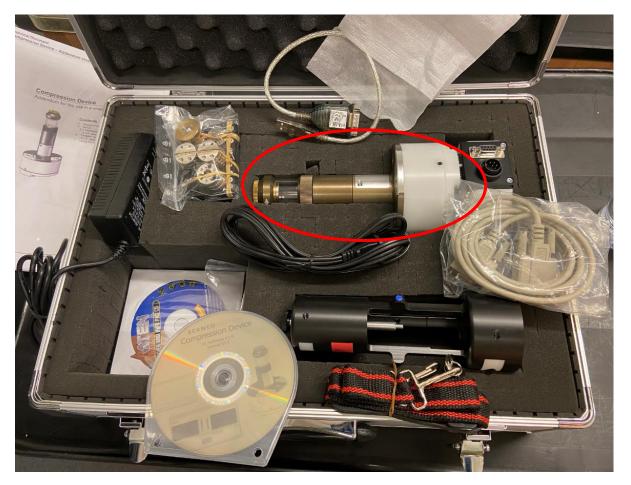

Bundles morphology

How to measure 3D strain?

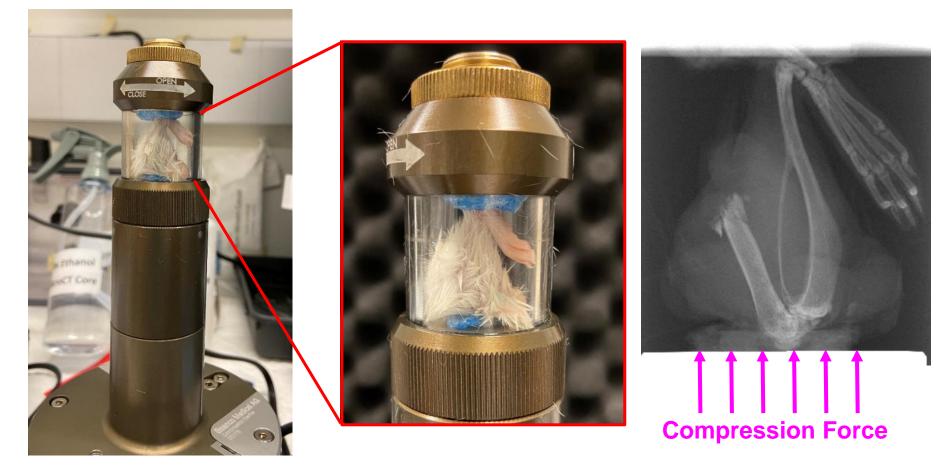
Digital Image Correlation (2D images)


• DIC traces the deformation on the specimens surface.

Digital Volume Correlation (3D images)

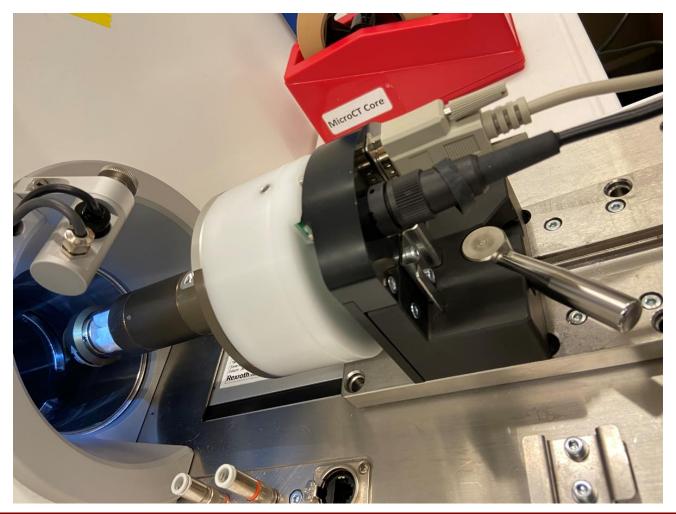

- DVC: Extension of DIC, using 3D images
- <u>Measuring strains throughout the interior</u> of a specimen
- Powerful non-intrusive technique to identify interior material deformation, defects, discontinuities
- The idea is simple, just to compare the volume images of samples in unloaded and <u>loaded states</u>

Mechanical Device for µCT Scanner


The whole set of mechanical device from Scanco

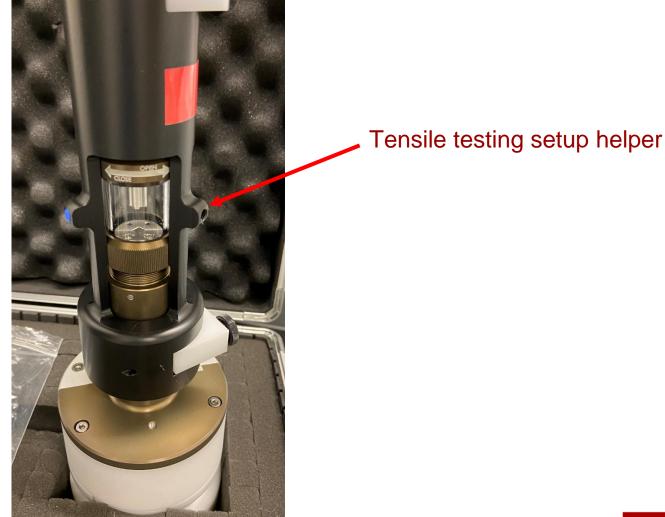
Mouse Tibia under Compression

- Mouse tibia was loaded in the imaging chamber
- µCT scan on mechanical loaded mouse tibia



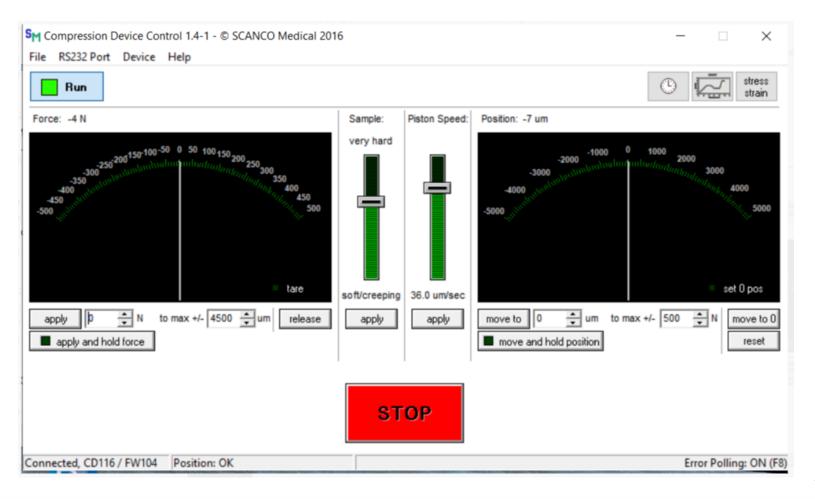
Mouse Tibia under Compression

 Load the mechanical device into µCT Scanner (VivaCT 80 or µCT 45)



Sample under Tension

Tensile testing could also be set up on this mechanical device



Controller Software

- Scanco software:
 - Motor displacement control
 - \circ Force curve record from the load cell.

Controller Software

• Scanco software:

Motor displacement control

 \circ Force curve record from the load cell.

Force vs. Displacement curve

Technical Specifications

- Sample:
 - Max Sample Diameter: 24 mm
 - Max Sample Length: 55 mm (unfit for large animal tissue)
- Force:
 - \circ Max Force at Compression: 500N
 - Max Force at Tension: 500N
 - Force Accuracy: ±5N (insensitive for mouse tibia)

• Displacement:

- Max Displacement: ±4.5mm
- Displacement Accuracy: ±0.02mm

