

Penn Center for Musculoskeletal Disorders

PCMD MicroCT Imaging Core Learning Lunch Series

Deep Learning for MicroCT Image Segmentation via Dragonfly

April 28th, 2022
PCMD MicroCT Imaging Core
(Management team: X. Sherry Liu, Yilu Zhou)

Invited speakers:

Dr. Ryan Locke from Dr. Robert Mauck's group (Penn McKay Lab) Ranhui Xi from Dr. Marco Tizzano's group (Penn Dental)

Outlines

- Brief introduction of our core facility
- Recent progress of our video tutorials, automated services
- The Dragonfly software & our new workstation
- Dragonfly application highlights from Dr. Ryan Locke (Dr. Robert Mauck's group, Penn McKay Lab)
- Dragonfly application highlights from Ranhui Xi
 (Dr. Marco Tizzano's group, Penn Dental)
- Q & A

μCT Imaging Core Resources

	Model	Location	Scan Size	Voxel Size	Applications
			(ØxL;mm)	(µm)	
1	μCT 35	Stemmler Hall	37.9 x 120	3.5-72	High resolution <i>ex vivo</i> scans
2	μCT 45	Stemmler Hall	50 x 120	3.0-100	High resolution ex vivo scans
3	vivaCT 40	Stemmler Hall	38.9 x 145	10.5-76	High resolution in vivo
					scans for small animals
4	vivaCT 80	Stemmler Hall	80 x 145	10.4-76	High resolution in vivo
					scans for small animals
5	μCT 50	PVAMC/TMRC	50 x 120	0.5-100	Ultra high resolution (sub-
					micron) ex vivo scans
6	vivaCT 75	PVAMC/TMRC	79.9 x 145	21-150	In vivo scans for small animals;
					ex vivo scans for large
					specimens
7	XtremeCT II	CTRC	140 x 200	60-82	Clinical scans for peripheral
					skeleton

Ex vivo (Specimen) Scanners

- µCT 35 (Purchased in 2012)
 - Voxel sizes: 3.5 μm, 6 μm, 10 μm, 15 μm, 18.5 μm

Ex vivo (Specimen) Scanners

- µCT 45 (Purchased in 2019 new!)
 - Voxel sizes: 3 μm, 4.5 μm, 7.4 μm, 10.4 μm, 14.6 μm
 - Carousel system supporting 20 sample holders
 - "Air" filter for scanning <u>low density materials</u>
 - "Copper" filter for scanning metal implant

In vivo Scanners

- vivaCT 40 (Purchased in 2010)
 - Voxel sizes: 10.5 μm, 12.5 μm, 15 μm, 17.5 μm, 19 μm

In vivo Scanners

- vivaCT 80 (Purchased in 2018 new!)
 - Voxel sizes: 10.4 μm, 11.6 μm, 13 μm, 16.1 μm, 20.8 μm, 26 μm
 - Internal heating device to keep animal warm
 - Camera to monitor animal's breathing
 - Ex vivo scan for specimen from <u>large animals</u> or human cadaver

MicroCT Analysis PC

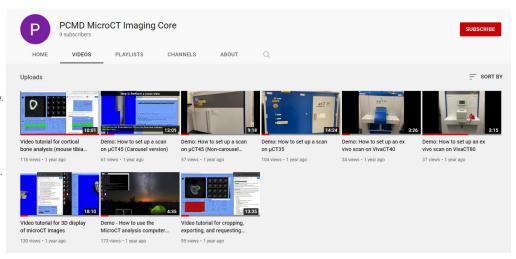
- 2 PCs for MicroCT Analysis (315 Stemmler)
 - Windows 10 platform
 - Either remote or onsite access
 - Scanco software

Video Tutorials & Instruction Documents

https://www.med.upenn.edu/pcmd/mctimagingcore/user-tutorials.html https://www.youtube.com/channel/UCzznR9Fdv-3kjEX7miwsi0A

Video Tutorials:

Our YouTube channel: https://www.youtube.com/channel/UCzznRgFdv-3kjEX7miwsioA/


µCT scan setup:

- How to set up a scan on µCT35 (PDF download A) (Video download) https://www.youtube.com/watch?v-QUtoQqIYJ8o
- 2. Demo: How to set up a scan on µCT45 (Recommended: Carousel version)

 (PDF download ☼) (Video download)
- Note: To use this <u>Carousel version</u>, please remove the sample holder on the rotation stage. https://www.youtube.com/watch?v=fzlfffR5XyE
- 3. Demo: How to set up a scan on µCT45 (Non-carousel version) (PDF download 🏝 (Video download)
- Note: To use this <u>Non-carousel version</u>, please remove all sample holders on the carousel. https://www.youtube.com/watch?v=JEoLn1igEjE
- 4. How to set up an ex vivo scan on VivaCT40 (PDF download (PDF download)) (Video download) https://www.youtube.com/watch?v=sxvTV4bvosw
- 5. How to set up an ex vivo scan on VivaCT8o (PDF download (2)) (Video download) https://www.youtube.com/watch?v=HdQYWwjuIXM

µCT viewing & analysis:

- How to use "microCT Analysis" computers (PDF download)
 \(\begin{align*} \text{(Video download)} \\ \text{https://www.youtube.com/watch?v=qHHcB6KJJe4} \)
- Tutorial for cropping, exporting, and requesting microCT images (<u>PDF download</u>) (<u>Video download</u>)
- https://www.youtube.com/watch?v=umRF6ODcQqQ
- 3. Tutorial for 3D display of microCT images (PDF download) (Video download) https://www.youtube.com/watch?v=YdQSo41rgR8
- 4. Tutorial for cortical bone analysis (mouse tibia midshaft) (PDF download (2) (Video download) https://www.youtube.com/watch?v=B4OE9X8Bkwg

Publications from our users

- Our users have published over 230 journal articles on their μCT projects.
- Selected publications with detailed µCT protocols for other users to cross reference:

https://www.med.upenn.edu/pcmd/mctimagingcore/publications.html

1. Calcified Tissue Imaging

1.1. Skeletal Phenotyping 1.1.1.Rodents

OA study (gene therapy): Proximal tibia of Sprague-[Mason, J.B., et al., Wnt10b and Dkk-1 gene therapy diffe and osteophytosis in a skeletally mature rat model of o

OA study (DMM Model): Medial epiphysis of the mice Sambamurthy, N., et al., Chemokine receptor-7 (CCR7) deficits in a murine model of osteoarthritis. J Orthop Re Sambamurthy, N., et al., Deficiency of the pattern-recog decline in a murine model of osteoarthritis. PLoS One,

2. Non-calcified Tissue Imaging

2.1. Cartilage Imaging

Cartilage repair: Osteochondral specimens from t Friedman, J.M., et al., Comparison of Fixation Techni Weightbearing Porcine Large Animal Model, Cartila

Pfeifer, C.G., et al., Age-Dependent Subchondral Boi Part C Methods, 2017. 23(11): p. 745-753.

Patel, JM., et al., Resorbable pins to enhance scaffol 1947603520962568.

3. In Vivo Small Animal Imaging

Reproducibility and Radiation study: Mice distal fe Zhao, H., et al., Reproducibility and Radiation Effect Mouse Lumbar Vertebra and Long Bone. Ann Biome

Bone remodeling study: Longitudinal in vivo scan de Bakker, C.M.J., et al., Minimizing Interpolation Bia Structure and Dynamics. Ann Biomed Eng. 2016. 44

Reproduction cycles study: Longitudinal in vivo sc de Bakker, C.M., et al., Adaptations in the Microarchi Response to Multiple Reproductive Cycles in Rats. J

4. Clinical Imaging

HR-pQCT scanner (XtremeCT II), human tibia

Zhao, X., et al., Feasibility of assessing bone mat

One, 2017. 12(3): p. e0173995.

5. Other Imaging

Metal implants in rat brain (90 kVp with a copper filter

Burton A, et al., Wireless, battery-free, and fully implantat

Nanoeng, 2021;7:62.

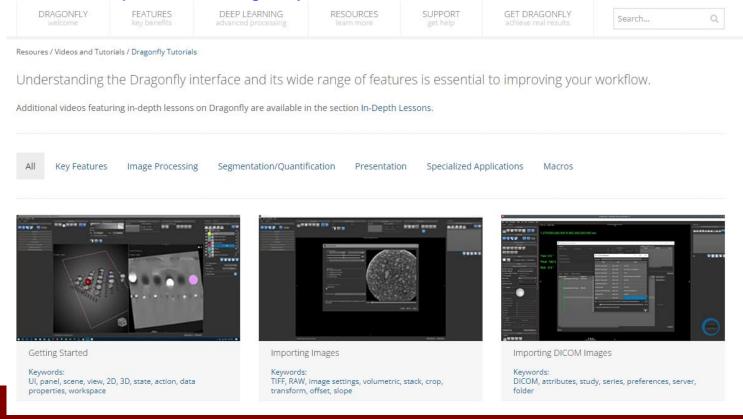
Automated Services

- File request: fully automated service sharing MicroCT files to users (running 7/24)
- Auto compiling microCT results into Excel sheet

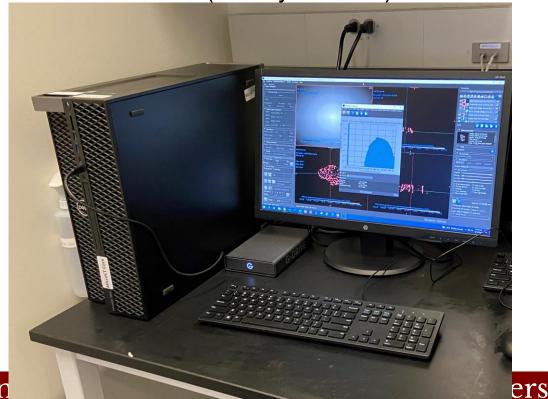
https://www.med.upenn.edu/orl/uct/assets/user-content/secure/User_file_request%20(v2020.01).xlsx

 Sample realignment/reorientation request: fully automated service help users to do sample realignment (running 7/24)

https://www.med.upenn.edu/orl/uct/assets/user-content/secure/Sample_Realignment_request(v2020.01).xlsx



Dragonfly Software


- Free non-Commercial License https://www.theobjects.com/dragonfly/get-non-commercial-licensing-program.html
- Supports many image formats: dcm, tif, Scanco aim, czi, raw, pic, img, etc...
- Training video tutorials available

https://www.theobjects.com/dragonfly/tutorials.html

Dragonfly Workstation

- New workstation for Dragonfly software (324 Stemmler)
 - Windows 10 platform
 - PMACS account required (either remote or onsite access)
 - Hard drive: 18 TB
 - Memory: 128 GB
 - GPU: NVIDIA RTX 3090 (Ready in June)

