

Penn Center for Musculoskeletal Disorders

PCMD MicroCT Imaging Core Learning Lunch Series

In Vivo µCT Imaging of Live Rodents

Feb 23rd, 2023 PCMD MicroCT Imaging Core

(Management team: X. Sherry Liu, Yilu Zhou)

Outlines

- Brief introduction of our core facility
- Recent progress of our video tutorials, automated services
- In Vivo µCT Imaging of Live Rodents
- Q & A

µCT Imaging Core Resources

	Model	Location	Scan Size	Voxel Size	Applications
			(ØxL;mm)	(µm)	
1	µCT 35	Stemmler Hall	37.9 x 120	3.5-72	High resolution <i>ex vivo</i> scans
2	μCT 45	Stemmler Hall	50 x 120	3.0-100	High resolution <i>ex vivo</i> scans
3	vivaCT 40	Stemmler Hall	38.9 x 145	10.5-76	High resolution <i>in vivo</i> scans for small animals
4	vivaCT 80	Stemmler Hall	80 x 145	10.4-76	High resolution <i>in vivo</i> scans for small animals
5	µCT 50	PVAMC/TMRC	50 x 120	0.5-100	Ultra high resolution (sub- micron) <i>ex vivo</i> scans
6	vivaCT 75	PVAMC/TMRC	79.9 x 145	21-150	<i>In vivo</i> scans for small animals; <i>ex vivo</i> scans for large specimens
7	XtremeCT II	CTRC	140 x 200	60-82	Clinical scans for peripheral skeleton

Ex vivo (Specimen) Scanners

- Scanco µCT 35 (Purchased in 2012)
 - Native voxel sizes: 3.5 $\mu m,$ 6 $\mu m,$ 10 $\mu m,$ 15 $\mu m,$ 18.5 μm

Ex vivo (Specimen) Scanners

- Scanco µCT 45 (Purchased in 2019 *new!*)
 - Native voxel sizes: 3 μm, 4.5 μm, 7.4 μm, 10.4 μm, 14.6 μm
 - Carousel system supporting 20 sample holders
 - "Air" filter for scanning low density materials
 - "Copper" filter for scanning specimen with metal implant

In vivo Scanners

- Scanco vivaCT 40 (Purchased in 2010)
 - Voxel sizes: 10.5 μ m, 12.5 μ m, 15 μ m, 17.5 μ m, 19 μ m

In vivo Scanners

- Scanco vivaCT 80 (Purchased in 2018 *new!*)
 - Voxel sizes: 10.4 μm, 11.6 μm, 13 μm, 16.1 μm, 20.8 μm, 26 μm
 - <u>Internal heating device</u> to keep animal warm
 - Internal camera to monitor animal's breathing
 - Ex vivo scan for specimen from <u>large animals</u> or human cadaver

MicroCT Analysis PC

- 2 PCs for MicroCT Analysis (315 Stemmler)
 - Windows 10 platform
 - Either remote or onsite access
 - <u>Scanco software</u>

Dragonfly Workstation

- Workstation for Dragonfly software (324 Stemmler)
 - Windows 10 platform
 - PMACS account required (either remote or onsite access)
 - Deep learning assisted analysis
 - Training videos https://www.theobjects.com/dragonfly/tutorials.html

Penn Center for Musculoskeletal Disorders

Video Tutorials & Instruction Documents

https://www.med.upenn.edu/pcmd/mctimagingcore/user-tutorials.html https://www.youtube.com/channel/UCzznR9Fdv-3kjEX7miwsi0A

Video Tutorials:

Our YouTube channel: https://www.youtube.com/channel/UCzznRgFdv-3kjEX7miwsioA/

µCT scan setup:

- How to set up a scan on µCT35 (PDF download) (Video download) https://www.youtube.com/watch?v=QUtoQqIYJ80
- 2. Demo: How to set up a scan on µCT45 (Recommended: Carousel version) (PDF download 🖄 (Video download)

Note: To use this <u>Carousel version</u>, please remove the sample holder on the rotation stage. https://www.youtube.com/watch?v=fzIfffR5XyE

3. Demo: How to set up a scan on µCT45 (Non-carousel version) (PDF download) (Video download)

Note: To use this <u>Non-carousel version</u>, please remove all sample holders on the carousel. https://www.youtube.com/watch?v=JEoLn1igEjE

- 4. How to set up an ex vivo scan on VivaCT40 (PDF download) (Video download) https://www.youtube.com/watch?v=sxvTV4bvosw
- 5. How to set up an ex vivo scan on VivaCT80 (PDF download (2)) (Video download) https://www.youtube.com/watch?v=HdQYW/wjuIXM

μCT viewing & analysis:

- 1. How to use "microCT Analysis" computers (PDF download) (2) (Video download) https://www.youtube.com/watch?v=qHHcB6KJJe4
- 2. Tutorial for cropping, exporting, and requesting microCT images (PDF download) 🗅 (Video

<u>download</u>)

- https://www.youtube.com/watch?v=umRF60DcQqQ
- 3. Tutorial for 3D display of microCT images (PDF download) (A (Video download) https://www.youtube.com/watch?v=YdQSo41rgR8
- 4. Tutorial for cortical bone analysis (mouse tibia midshaft) (PDF download 🖄 (Video download) https://www.youtube.com/watch?v=B4OE9X8Bkwg

culoskeletal Disorders

Publications from our users

- Our users have published over 250 journal articles on their μCT projects.
- Selected publications with detailed µCT protocols for other users to cross reference:

https://www.med.upenn.edu/pcmd/mctimagingcore/publications.html

1. Calcified Tissue Imaging 1.1. Skeletal Phenotyping 1.1.1.Rodents

OA study (gene therapy): Proximal tibia of Sprague-[Mason, J.B., et al., Wht10b and Dkk-1 gene therapy diffe and osteophytosis in a skeletally mature rat model of o:

OA study (DMM Model): Medial epiphysis of the mice Sambamurthy, N., et al., Chemokine receptor-7 (CCR7) deficits in a murine model of osteoarthritis. J Orthop Re Sambamurthy, N., et al., Deficiency of the pattern-record decline in a murine model of osteoarthritis. PLoS One, 3

2. Non-calcified Tissue Imaging

2.1. Cartilage Imaging

Cartilage repair: Osteochondral specimens from t Friedman, J.M., et al., Comparison of Fixation Techn Weightbearing Porcine Large Animal Model. Cartila Pfeifer, C.G., et al., Age-Dependent Subchondral Bo Part C Methods, 2017. 23(11): p. 745-753. Patel, JM., et al., Resorbable pins to enhance scaffo 1947603520962568.

3. In Vivo Small Animal Imaging

Reproducibility and Radiation study: Mice distal fe Zhao, H., et al., Reproducibility and Radiation Effect Mouse Lumbar Vertebra and Long Bone. Ann Biome

Bone remodeling study: Longitudinal in vivo scan de Bakker, C.M.J., et al., Minimizing Interpolation Bia Structure and Dynamics. Ann Biomed Eng, 2016. 44

Reproduction cycles study: Longitudinal in vivo sc de Bakker, C.M., et al., Adaptations in the Microarchi Response to Multiple Reproductive Cycles in Rats. J

4. Clinical Imaging

HR-pQCT scanner (XtremeCT II), human tibia

Zhao, X., et al., Feasibility of assessing bone mat One, 2017. 12(3): p. e0173995.

Metal implants in rat brain (90 kVp with a copper filter Burton A, et al., Wireless, battery-free, and fully implantat

Nanoeng. 2021;7:62.

5. Other Imaging

Fully Automated Services

- File request: fully automated service sharing MicroCT files to users (running 7/24)
- Auto compiling microCT results into Excel sheet

https://www.med.upenn.edu/orl/uct/assets/user-content/secure/User_file_request%20(v2020.01).xlsx

• Sample realignment/reorientation request: fully automated service help users to do sample realignment (running 7/24) https://www.med.upenn.edu/orl/uct/assets/user-content/secure/Sample Realignment request(v2020.01).xlsx

µCT Troubleshooting Guide

https://www.med.upenn.edu/orl/uct/assets/user-content/documents/microct-troubleshooting-guide.pdf

1. µCT Scanning	2
1.1. How to refresh the system session	2
1.2. System requires login	3
1.3. The Scan button is missing	3
1.4. The Control Box is missing	3
1.5. The command window is missing	4
1.6. There are no ongoing scan jobs, but the scanner's door is still locked. (for μ CT 35 / μ CT 45)	4
1.7. "File is not a Calendar Datafile."	5
1.8. Why can't I adjust the centrifuge tube holder (for VivaCT40 / VivaCT80)?	5
1.9. "X-ray tube is not ready! Wait for 20 minutes"	5
1.10. Error code 7: "WARNING: No Patient Name"	6
1.11. Error code 22: "FATAL: Failed to connect to server 192.168.XXX.XXX"	6
1.12. Error code 24: "Selected operator is not an operator"	7
1.13. Error code 90: "TCPIP error. Connection is lost!"	7
1.14. Error code 2112: "device already allocated to another user"	8
1.15. Error code 7040: "Z - motor moving error! Door is open. Move not allowed!"	8
1.16. Error code 7053: "Door opening error! Motors are still moving"	8
2. µCT Evaluation/Analysis (Command: uct_evaluation)	9
2.1. I can't load my sample that was scanned a long time ago (>4 months)	9
2.2. Error code 36: "Reading data %FOR-W-ATTACCNON, attempt to access non-existent record!"	9
2.3. I can't draw any contours in the Evaluation software	9
2.4. Do I have to click the "Default VOI" in the Evaluation program?	10
2.5. The Evaluation program crashes when I draw the contours, especially when drawing semi-automa	atic
contours (e.g., for cortical bone midshaft analysis).	10
2.6. The Evaluation program crashes when I click the "Start Evaluation" button	10
2.7. I have multiple GOBJ contour files, but the evaluation program was not using them for analysis.	11
2.8. Why do I see the tilde sign "~" and the exclamation mark "!" in my analysis result TXT?	11
3. μCT 3D Rendering (Command: uct_3d)	11
3.1. "Error Creating TIFF-Image"	11
3.2. Why is it so difficult to rotate the 3D view to my desired orientation?	12
3.3. Why do my 3D images look like stacked layers?	12

Why *in vivo* µCT?

- µCT provides 3D imaging with sufficient spatial resolution for the assessment of rodent bone microarchitecture
- *In vivo* µCT: Longitudinal studies of bone morphology Waarsing+2006 Brouwers+2007, Brouwers+2008, Brouwers+2009, Klinck+2008, Bouxsein+2010, Lan+2013, Boyd+2006, Campbell+2008, Buie+2008, Lambers+2011, Schulte+2011
 - Skeletal responses to various diseases and treatments
 - Bone loss associated with disuse or surgery
 - Increased bone mass due to pharmacologic treatment or mechanical loading
- Input to micro finite element (µFE) models to track the mechanical properties of bone van Rietbergen+1998, Schulte+2011
- Increased statistical power
- Reduction in number of animals Bouxsein+ 2010

vivaCT 40

- vivaCT 40 (Purchased in 2010)

 Best resolution:
 10.5 µm isotropic voxel size
 - X-Ray Source:
 30 70 kVp
 - Max Scan Size:
 38.9 x 145 mm (Ø x L)
 - Capacity to scan:
 All tissues on mice
 Rat tibia

vivaCT 80

- vivaCT 80 (Purchased in 2018)
 - Best resolution:
 10.4 µm isotropic voxel size
 - X-Ray Source:
 30 70 kVp
 - Max Scan Size:
 80 x 145 mm (Ø x L)
 - Capacity to scan:
 All tissues on mice
 All tissues on rat
 (body weight < 700g)

In Vivo µCT Imaging

In Vivo µCT Imaging

How to Choose Image Resolution (vivaCT 40)

 Image resolution is determined by FOV and number of projections

vivaCT40 Field of View (mm)	Proj./180°	Best Resolution (µm)
21.5	1000	10.5
25.6	1000	12.5
30.7	1000	15
35.8	1000	17.5
38.9	1000	19

How to Choose Image Resolution (vivaCT 80)

 Image resolution is determined by FOV and number of projections

vivaCT80 Field of View (mm)	Proj./180°	Best Resolution (µm)
31.9	1500	10.4
35.9	1500	11.6
39.9	1500	13.0
49.8	1500	16.1
63.9	1500	20.8
79.9	1500	26.0

Radiation Dose – VivaCT 40

 Computed Tomography Dose Index (CTDI): Proportional to the integration time (s), current (µA) and number of projections

Energy (KV)	Integration time (ms)	Current (µA)	Field of View (mm)	Proj./180°	CTDI (mGy)	Resolution (µm)
55	300	109	21.5	1000	720	10.5
55	300	109	30.7	1000	350	15
55	300	109	38.9	1000	220	19

- Radiation dose on current scanning protocol
 - -10.5μ m for rat tibia, mouse distal femur, proximal tibia and tibial midshaft: CTDI = 639 mGy
 - -15μ m for mouse vertebrae: CTDI = 310 mGy
 - -19μ m for rat femur midshaft: CTDI = 195 mGy

Radiation Dose – VivaCT 80

 Computed Tomography Dose Index (CTDI): Proportional to the integration time (s), current (µA) and number of projections

Concerns – Radiation Exposure

- In vivo scan on Wistar rats Klinck+ 2008
 - 8 month old, female rats
 - 12.5 μm isotropic voxel size, 55 kV voltage, 109 μA current, 200 ms integration time, 2000 projections
 - Scanned right tibia at wk0, 2, 4, 6, 8, 12
 - Radiation dose: 502.5 mGy
 - \rightarrow <u>No radiation effect</u>
- In vivo scan on Wistar rats Brouwers+ 2007
 - 30 week old, female rats
 - 15 µm isotropic voxel size, 70 kV voltage, 85 µA current, 350 ms integration time, 2000 projections
 - Scanned right tibia at wk0, 1, 2, 3, 4, 5, 6, 8; left tibia at wk0 and 8
 - Radiation dose: 939 mGy
 - Determined cell radiation damage using a cell viability test
 - \rightarrow <u>No radiation effects on bone microarchitecture and marrow cells</u>

Concerns – Radiation Exposure

- In vivo scan on BL6 mice Laperre+2011
 - 10 weeks old, male mice
 - 9 µm isotropic voxel size
 - In vivo scanned left tibia at wk0, 2, 4; ex vivo scanned on both tibia after sacrifice (wk4)
 - Radiation dose: 776 mGy
 - \rightarrow Negative effects on BV/TV and Tb.N and increased Oc.S/BS
- In vivo scan on BL6 mice Laperre+2011
 - 4 and 16 weeks old, male mice
 - 9 μm and 18 μm isotropic voxel size
 - In vivo scanned left tibia at wk0, 2, 4; ex vivo scanned on both tibia after sacrifice (wk4)
 - Radiation dose: 434 mGy (9 μ m) and 166 mGy (18 μ m)

 \rightarrow <u>No radiation effect on both trabecular and cortical bone architecture in</u> <u>all mice</u>

Concerns – Radiation Exposure

- In vivo scan on C3H, BL6, and BAL mice Klinck+ 2008
 - 8-10 weeks old, female mice
 - 10.5 µm isotropic voxel size, 55 kV voltage, 109 µA current, 200 ms integration time, 2000 projections
 - Scanned right tibia at wk0, 1, 2, 3
 - Radiation dose: 712.4 mGy
 - → <u>Negative effects on trabecular microarchitecture</u>
- In vivo scan on BL6 mice Zhao+ 2016
 - 12 weeks old, female mice
 - 10.5 µm isotropic voxel size, 55 kV voltage, 109 µA current, 200 ms integration time, 2000 projections
 - In vivo scanned right femur and L4 at wk0, 3, 6; ex vivo scan on both femurs, L3 and L4 after sacrifice (wk9)
 - Radiation dose: 639 mGy (femur) and 310 mGy (vertebra)

 \rightarrow <u>No effect on BV/TV and cellular activities; Negative effects on</u> trabecular microarchitecture (~10-20%)

Conclusion: Radiation Exposure

- Minimal impact on <u>rat</u> bone mass and bone microarchitecture
- Compared to rats, <u>mice</u> are more sensitive to radiation exposure
 - High resolution scans (10-15 µm) leading to 10-20% deterioration of trabecular bone microarchitecture compared to non-radiated sites
 - *Suggestion* to reduce radiation exposure:
 - Reduction in scan frequency and Increase in interval time between repeated scans
 - Reduction in scan resolution

In Vivo µCT Imaging

Why Need Holder? Movement Artifacts

Movement Artifacts caused by <u>animal breathing</u>

Why Need Holder? Movement Artifacts

L2 Vertebrae

Humerus

Movement Artifacts due to <u>animal breathing</u>

Distal Femur

Customized Holders - 3D Printing

 Minimize the movement of the skeletal site of interest

 Minimize the reposition error induced by repeat scans

Rat tibia holder

Customized Holders - 3D Printing

In Vivo µCT Imaging

Before Scanning - Anesthesia

- Non-painful procedures (Penn IACUC Guideline)
 - Isoflurane
 - Mice: 3-4% for induction and 1-3% for maintenance
 - Rats: 3-5% for induction and 1-3% for maintenance

Anesthesia chamber

http://www.upenn.edu/regulatory affairs/Documents/iacuc/guidelines/IACUCGuideline-MouseAndRatAnesthesiaAndAnalgesia.pdf

Before Scanning - Anesthesia

- Non-painful procedures (Penn IACUC Guideline)
 - Isoflurane
 - Mice: 3-4% for induction and 1-3% for maintenance
 - Rats: 3-5% for induction and 1-3% for maintenance
 - Ketamine/xylazine
 - Mice: 70-100 mg/kg ketamine (IP) + 5-12 mg/kg xylazine. If animals appear to be responding to touch or awakening, redose with up to 50% of the initial dose of ketamine only.
 - Rat: 40-100mg/kg ketamine (IP) + 5-10mg/kg xylazine. If the animal appears to be responding to touch or awakening, re-dose with up to 50% of the initial dose of ketamine

http://www.upenn.edu/regulatoryaffairs/Documents/iacuc/guidelines/IACUCGuideline-MouseAndRatAnesthesiaAndAnalgesia.pdf

Before Scanning - Anesthesia

- Advantages of Isoflurane (vs. Ketamine/xylazine)
 - Safer
 - Faster (induction, adjusting depth and recovery)
 - No need for reversal agents

http://www.upenn.edu/regulatoryaffairs/Documents/iacuc/guidelines/IACUCGuideline-MouseAndRatAnesthesiaAndAnalgesia.pdf

During Scanning

• Monitor animal's breathing

After Scanning

• Waking up the animal: Heating lamp

Precision error & Reposition error

- Precision error: Measurement error between repeated scans of the same sample
- Precision affected by reposition of animals at each follow-up scan
 - Short term precision study (same day, multiple scans)
 - 12.5 µm, Precision: 1-6% in rats Nishiyama+2010
 - 10.5 µm, Precision: 1%-7% in rat tibia Lan+2013
 - 10.5 µm, Precision: 1-8% in BL6 or C3H mice tibia
 - 10.5 µm, Precision: 4-12% in femur and 6.5-17.6% in L4 of BL6 mice Chang+2016 SB3C
- Reduction in the reposition error
 - Customized animal holders for the scan
 - Image registration

Image Registration for Analysis

 To identify the same trabecular volume of interest (VOI) for analysis in the baseline and follow-up scans

After Image Registration

- Significant but moderate improvement in precision error in all morphology and density measurements
 - Short term precision study (same day, multiple scans)
 - 12.5 µm, Precision: 1-6% in rats Nishiyama+2010 \rightarrow 1-4%
 - 10.5 µm, Precision: 1-8% in BL6 or C3H mice tibia Nishiyama+2010

→ 1-5%

- 10.5 $\mu m,$ Precision: 0.85%-7.49% in rat tibia $_{\text{Lan+2013}}$ $\rightarrow 0.75\%$ -7.01%
- 10.5 µm, Precision: 4-12.4% in femur and 6.5-17.6% in L4 of BL6 mice Chang+2016 SB3C

 \rightarrow 2.9-5.01% in femur and 3.11-8.55% in L4

Long-Term Precision After Image Registration

 Continuous bone resorption at the periosteum, bone formation at the endocortical surface.

Lan+ 2013

Baseline scan overlaid with 14 day follow-up scan

Age Selection to Study Long Bone Changes

 Suggestion: rat age > 4 months for studying longitudinal changes in rat long bone

User Application – Rat Proximal Tibia

- In vivo µCT scan
 - 10.5 µm isotropic voxel size
 - 4 mm bone segment of proximal tibia below growth plate
 - Average scan time: 20 mins

Lan+ 2013

User Application – Rat Femur

- In vivo µCT scan
 - $-19 \,\mu m$ isotropic voxel size
 - -2 mm bone segment of femur midshaft and muscle
 - Average scan time: 10 mins

User Application – Rat Mandible

- In vivo µCT scan
 - 19 µm isotropic voxel size
 - 28 mm bone segment of Mandible
 - Average scan time: 18 mins

User Application – Rat Humerus

humeral he

- In vivo µCT scan
 - 20.8 µm isotropic voxel size
 - -6.82 mm bone segment of humerus bone
 - Average scan time: 20 mins

6wk Post-weaning

Resorption Formation

Penn Center for Musculoskeletal Disorders

whole right arm

User Application – Mouse Tibia & Femur

- In vivo µCT scan
 - 10.5 µm isotropic voxel size
 - -2 mm bone segment of proximal tibia, distal femur
 - Average scan time: 10 mins

Zhao+ 2020

User Application – Mouse Vertebrae

- In vivo µCT scan
 - 15 µm isotropic voxel size
 - -4 mm bone segment of L1, L2
 - Average scan time: 15 mins

