

NADH Enzyme-Linked Assay

ADP + Phosph(enol)pyruvate \rightarrow ATP + Pyruvate \rightarrow Lactate Dehydrogenase Lactate Dehydrogenase

Stock Solutions

4000 U/ml
Lactic Dehydrogenase (Sigma L-1254), store in freezer in 50% glycerol
10,000 U/ml
Pyruvate Kinase (Sigma P-9136), store in freezer in 50% glycerol
Phospho(enol)pyruvate (Sigma, P-7127), store in freezer in water
NADH, reduced form (Sigma, N0786), store at room temperature in the dark

NADH

NAD

5x Cocktail Solution

Add 1.2 ml assay buffer (usually KMg50 or KMg10) to 1 mg NADH, and add:

- 32 µl Lactic Dehydrogenase
- 64 µl Pyruvate Kinase
- 32 µl Phospho(enol)pyruvate

This will result in the following concentrations:

1000 μM	NADH
100 U/ml	Lactic Dehydrogenase
500 U/ml	Pyruvate Kinase
2.5 mM	Phospho(enol)pyruvate

<u>Assay</u>

1. When using the stopped flow, one syringe should contain a 2x mixture of the Cocktail Solution and the appropriate 2x MgATP concentration (usually 4 mM).

Example of 2x Cocktail (2.88 ml):

1200 μl	5x Cocktail from above
115 μl	0.1 M ATP
11.5 μl	1 M MgCl ₂
1550 μl	Assay Buffer

2. Detect absorbance change at 340 nm, or detect fluorescence emission (Ex. 340 nm) with 400 nm long-pass filter.

3. Use extinction coefficient for NADH ($\varepsilon_{340} = 6220 \text{ M}^{-1} \text{ cm}^{-1}$) to determine rate of ADP production (NADH loss). Remember that the path length of the stopped-flow cuvette is 0.2 cm.

4. When using fluorescence detection, a standard curve with known ADP concentrations must be obtained.