Introducing robots into physical rehabilitation can both decrease costs and improve outcomes[1]. However, regardless of technical ability, if the patient is unwilling to cooperate with the robot, it will ultimately be ineffective. We wish to introduce Lil’Flo, a robot whose central point of expression is an LED-based emotive face. We outline the design decisions made in constructing Lil’Flo’s face, highlighting how each feature fulfills our two core design goals: making sure Lil’Flo can both easily assemble and disassemble, as well as be a comforting presence that patients will be willing to engage with.

Introduction

- Millions of people suffer from motor impairment disorders, such as Cerebral Palsy (CP) in the U.S. [2]
- Rehabilitation for these disorders is costly and requires supervision by clinicians, making constant care difficult
 - These problems are exacerbated for patients in remote areas, who have limited access to clinicians
- To increase effectiveness, as well as decrease overall cost, we are working to introduce robots into the process
 - Initially through telepresence interactions, where the robot, under clinician supervision, can work directly with the patient
- If successfully integrated, the robots will lighten the burden on people working in rehabilitative fields, increasing overall efficiency of the process, while also opening new possibilities for interaction
- For the robot to be effective, the patient must be able to accept and cooperate with the robot
 - Design of the robot is crucial in patient acceptance

System Design

- System is split into two major components, a mobile base and humanoid
 - The base collects data (audio, visual) and physically supports the humanoid
 - The humanoid interacts directly with the patient
- LED-Based digitally emotive face enables variety of expressions
 - Design puts focus on simple, abstract face, which conveys friendliness [3]
- The successor to a previous project, named Flo
 - Key Difference: Lil’Flo is produced in-house, allowing us to tailor its functionality to only what’s required, reducing costs [1]

Methods

- Face is designed to be presentable and modular
 - Human-Like Face to evoke comfort, but simple and abstract to avoid uncanny valley[4]
 - Initial head partition made assembly difficult
 - Switched to current design to allow for easy and consistent assembly
 - Inadvertently created a crude “hairline”, improving aesthetic value of Lil’Flo
- Shell: 3D Printed with dark epoxy cast directly into the print to create the face front
 - Colortant is diluted to obscure internals while letting LED shine
 - Main goal in designing shell internals: Robustness in dis/reassembly

Future Directions

- Plans to conduct an experiment that determines the effectiveness of the emotive face
- Two phase experiment, between static and emotive face
 - Simple exercise games, mainly designed to gauge patient reaction to Lil’Flo
- Data collected includes subjective surveys, pulse rate, and video data
 - Surveys concern subject engagement, cooperation, and trust in Lil’Flo in the context of the games
 - Pulse data and video footage will address irregularities in data

Acknowledgements

We wish to acknowledge the University of Pennsylvania Perelman School of Medicine Department of Physical Medicine and Rehabilitation, as well as the Rachleff Scholars Program.

References