Lil’Flo is a mobile tele-rehabilitation platform augmented by a social robot. The remote clinician is presented on a screen as the social robot interacts with patients, playing games, and demonstrating activities. Cameras collect data to perform automated assessment.

Need
- There is a shortage of rehabilitation workers in rural and resource denied areas which is expected to worsen, affecting rehab patients, such as those with cerebral palsy and stroke.
- COVID-19 presents risks for reduced access to rehab care.
- Telerehabilitation could help to alleviate shortages and reduce the burden of travel on patients and their families.
- A social robot with a humanoid form, used to augment telepresence, may enable richer telerehabilitation experiences by playing games with patients and demonstrating activities.
- Automated assessment tools could reduce the load on clinicians and deliver objective patient tracking to rehabilitation care.

Interaction Model
We envision the social humanoid robot along with the cameras acting to bridge the gaps in communication, motivation, and quality of assessment which exist over telepresence:

System
Lil’Flo operates fully under the control of the remote clinician using a web based interface. Scripts are used to run motions, demonstrations, and games. The clinician is always in control:

Interface

Utility Testing
352 therapists in the United States with one or more years of experience and no prior knowledge of Lil’Flo watched a short overview video of Lil’Flo prior to answering: “How do you believe that adding a social robot as a companion for your patients during video+audio telepresence interactions (such as the Lil’Flo system) would change the following when compared with traditional video+audio telepresence based rehab?” on a continuous scale of 0 (decrease utility), 50 (no change), 100 (improve utility). Medians are significantly above 50 for communication, motivation, and compliance ($\alpha = 0.05$, one sided Wilcoxon signed rank test):

Funding Support
This work is supported by the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number F31HD102165 and by the University of Pennsylvania Department of Physical Medicine and Rehabilitation.