Therapeutic Hypothermia
ICU management of the Post-Cardiac Arrest Patient

David F. Gaieski, MD
Assistant Professor, Department of Emergency Medicine
University of Pennsylvania School of Medicine
Director, Clinical Center for Resuscitation
Hospital of the University of Pennsylvania

Munish Goyal, MD
Adjunct Assistant Professor, Department of Emergency Medicine
University of Pennsylvania School of Medicine
Director, Emergency Intensive Care
Washington Hospital Center
Speaker disclosures

Research funding and consulting for Gaymar, Inc

No equity, intellectual property or advisory board conflicts
Case: History

• 37 yo 4th year dental student collapses while taking an exam
• She remains untouched for 5 minutes
• Proctor checks for a pulse
• Starts CPR, calls for AED
• AED → shock advised
• Shocked once into perfusing rhythm
Case: 37 yo VF arrest

- Time to ROSC = 8 minutes
- 911 called, patient remains comatose
- Patient arrives to the ED
 - 25 min after arrest, 15 min after ROSC
 - Sinus tachycardia @ 110 beats per minute
 - BP = 132/80
Case: 37 yo VF arrest

- Quick neurologic assessment
 - Eyes were closed
 - Not making any verbal sounds
 - Decorticate posturing
 - GCS = 5 (E-1; V-1; M-3)

Should this woman be cooled?
Case: 37 yo VF arrest

• Orally intubated
• EKG – NSR with nonspecific ST changes
• 2L of chilled saline infused through peripheral IVs ~1 ¼ hours post-ROSC
• Ice packs placed in groin and axillae
• Arterial line and CVC placed
• Patient is transported to the ICU

What’s next?
Timeline

- ACLS Arrest
- ROCS
- Evaluate For TH
- Induce TH
- Target Temperature Achieved
- Begin Rewarming
- Rewarming Completed
- Maintain Normothermia
- EMS
- ED
- ICU
- Maintenance Phase
- ICU
• Temperature management
• Paralysis and sedation
• Seizures
• Ventilator management
• Fluid and electrolyte shifts
• Infection surveillance/control
• Glucose control
• Resuscitation strategies
Temperature Management

- **Induction**
 - Getting to desired goal (33°C)
- **Maintenance**
 - Keeping the patient at the desired temp for a predefined period of time
- **Rewarming**
 - Returning to normothermia
How are people cooled?

- **Ice packs**: 43% Initiation, 17% Maintenance
- **Cold fluid**: 80% Initiation, 0% Maintenance
- **Air Cooling**: 9% Initiation, 8% Maintenance
- **Water blanket**: 47% Initiation, 63% Maintenance
- **Intravascular**: 10% Initiation, 16% Maintenance

Temperature Deviation

Choose device with a feedback loop

Temperature Monitoring

• PA catheter
• Esophageal
• Bladder
 – If patient has adequate UO
 • 0 – 30 cc/hr – varies per manufacturer
• Rectal/skin/tymppanic less accurate
How long to cool?

- Bernard: 12 hours
- HACA: 24 hours from onset of cooling
- Nielsen: 12 – 48 hours (93% for 24 hours)
- Nagao: Tailored to the patient
 - <15 minutes to ROSC → 24 hours
 - 15-30 minutes to ROSC → 48 hours
 - >30 minutes to ROSC → 72 hours
- Experimental data suggests apoptotic period = 7 days
How fast to rewarm?

- Rapid rewarming associated with increased ICP in stroke/TBI patients
- Bernard: 6 hrs with heated-air blankets
- HACA: Passive rewarming over 8 hrs
- Nielsen: 4 – 12+ hrs (no difference in outcomes)
- Nagao: Rewarmed to 35°C, maintained 24 hrs, then further rewarming

How long to cool?

Suggest cooling for 24 hours.

Active rewarming at max 0.5°C/hr.

Bernard, Hypo

55% Good Outcome

Bernard, Control
Sedation

• Reduces oxygen consumption
• Can prevent shivering
• More rapid cooling
• Used in 2 NEJM trials
• May delay prognostication
• May contribute to hypotension
Sedation

- Short acting
 - Propofol
 - Dexmedetomidine
- Use published sedation scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>Combative</td>
<td>Overtly combative, violent, immediate danger to staff</td>
</tr>
<tr>
<td>+3</td>
<td>Very agitated</td>
<td>Pulls or removes tube(s) or catheter(s); aggressive</td>
</tr>
<tr>
<td>+2</td>
<td>Agitated</td>
<td>Frequent non-purposeful movement, fights ventilator</td>
</tr>
<tr>
<td>+1</td>
<td>Restless</td>
<td>Anxious but movements not aggressive vigorous</td>
</tr>
<tr>
<td>0</td>
<td>Alert and calm</td>
<td>Not fully alert, but has sustained awakening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(eye-opening/eye contact) to voice (≥10 seconds)</td>
</tr>
<tr>
<td>-1</td>
<td>Drowsy</td>
<td>Briefly awakens with eye contact to voice (<10 seconds)</td>
</tr>
<tr>
<td>-2</td>
<td>Light sedation</td>
<td>Movement or eye opening to voice (but no eye contact)</td>
</tr>
<tr>
<td>-3</td>
<td>Moderate sedation</td>
<td>No response to voice, but movement or eye opening to physical stimulation</td>
</tr>
<tr>
<td>-4</td>
<td>Deep sedation</td>
<td>No response to voice or physical stimulation</td>
</tr>
<tr>
<td>-5</td>
<td>Unarousable</td>
<td>No response to voice or physical stimulation</td>
</tr>
</tbody>
</table>
Case: 37 yo VF arrest

- Arrives in the ICU
- T° probe bladder catheter placed
- Surface cooling initiated and target set @ 33°C
- Propofol gtt started
COOLING CURVE

Unable to reach goal

34°C
Paralytics given

32°C
COOLING CURVE

34°C
Icepacks removed

32°C
Paralytics given

Unable to reach goal
COOLING CURVE

Unable to reach goal

Paralytics given

Rewarming Begun

Icepacks removed

34°C

32°C
Paralysis

- Eliminates shivering
 - Decrease MVO$_2$
- No associated hypotension
- Continuous paralysis in 2 NEJM studies
- Must sedate prior to paralyzing
- Seizures may be concealed
- Continuous EEG monitoring recommended
Seizures

• Occur in 5 – 15% who achieve ROSC
 – 10 – 40% of those who remain comatose
• Increase cerebral metabolism 3-fold
• Thiopental and phenytoin are neuroprotective in animal model
• No data on seizure prevention
• Good neuro outcomes reported in patients initially with status epilepticus

Ventilator Management

- Most patients with ROSC don’t have ALI
- Standard ventilator mode/strategy
- Guidelines emphasize 100% FiO₂ during CPR
- Clinicians frequently maintain 100% O₂
- Early hyperoxia harms postischemic neurons
Oximetry-Guided Reoxygenation Improves Neurological Outcome After Experimental Cardiac Arrest

Irina S. Balan, PhD, Gary Fiskum, PhD, Julie Hazelton, MS, Cynthia Cotto-Cumba, MD, and Robert E. Rosenthal, MD

From the Departments of Anesthesiology (I.S.B., G.F., J.H., R.E.R.) and Surgery (C.C.-C., R.E.R.), Program in Trauma, University of Maryland School of Medicine, Baltimore, Md

- 100% FiO₂ v SpO₂ guided oxygenation
- Dog model cardiac arrest with ROSC

Resusc with 100% FiO₂

1 hour of 100% FiO₂

Rapid titration of FiO₂ to SpO₂

Ventilator Management

- Cerebrovascular reactivity to \(\text{PaCO}_2 \) preserved
- No data to support specific \(\text{PaCO}_2 \)
- Hyperventilation may produce cerebral ischemia
- Hypoventilation may increase ICP

Target normocarbia

Fluid and Electrolytes

- Cold diuresis
 - Venoconstriction, ↑ANP, ↓ADH, & tubular dysfunction
- If uncorrected
 - Hypovolemia → hypoperfusion
 - Hemoconcentration → hyperviscosity
- Rewarming, may unmask hypovolemia
- IVF load (w/o K⁺) pre- and during rewarming
Fluid and Electrolytes

- Decreased electrolytes
 - K^+, Mg, Phos
- Diuresis induced renal excretion
- Intracellular electrolyte shifts
 - Shift extracellular with rewarming
 - Prevented with slow controlled rewarming
- Replace to low normal during cooling
 - If increased, treat before rewarming
Infection

- Infections are common
- Trends toward more infection with TH
- Suppressed inflammatory response
- Pneumonia caused by aspiration or vent is most-important complication
 - Up to 70% of patients after OHCA
- No data on prophylactic antibiotics

TABLE 4. Complications during the first seven days after Cardiac Arrest.*

<table>
<thead>
<tr>
<th>COMPLICATION</th>
<th>NORMOTHERMIA</th>
<th>HYPOTHERMIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no./total no. (%)</td>
<td>no./total no. (%)</td>
</tr>
<tr>
<td>Bleeding of any severity†</td>
<td>26/138 (19)</td>
<td>35/135 (26)</td>
</tr>
<tr>
<td>Need for platelet transfusion</td>
<td>0/138</td>
<td>2/135 (1)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>40/137 (29)</td>
<td>50/135 (37)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>9/138 (7)</td>
<td>17/135 (13)</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>2/138 (1)</td>
<td>1/135 (1)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>14/138 (10)</td>
<td>13/135 (10)</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>6/138 (4)</td>
<td>6/135 (4)</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>5/133 (4)</td>
<td>9/136 (7)</td>
</tr>
<tr>
<td>Seizures</td>
<td>11/133 (8)</td>
<td>10/136 (7)</td>
</tr>
<tr>
<td>Lethal or long-lasting arrhythmia</td>
<td>44/138 (32)</td>
<td>49/135 (36)</td>
</tr>
<tr>
<td>Pressure sores</td>
<td>0/133</td>
<td>0/136</td>
</tr>
</tbody>
</table>

*None of the comparisons between the two groups, performed with the use of Pearson’s chi-square test, indicated significant differences.
Infection

• Must be vigilant
 – Signs/symptoms not available
• Inspect lines/tubes, skin, routine CXRs
• Suspect if sudden increase in work of cooling device (↓ water temp)
 – Indicates increase heat production
• Have low threshold to start antibiotics
Glucose Control

• Hyperglycemia
 – Decrease insulin sensitivity
 – Decrease insulin secretion

• Tight glucose control (80-110 mg/dL)
 – Reduced mortality in surgical ICU patients
 – No difference in medical ICU patients
 • If ICU stay \geq 3 days, mortality reduced
 • No difference in subset with neuro disease

• RCT of 90 comatose OH-VF patients
 – Strict (72 – 108 mg/dL)
 – Moderate (108 – 144 mg/dL)
• No difference in 30 day mortality
 – More hypoglycemic episodes in strict

Recommend target value ≤ 144 mg/dL

Oksanen et al. ICM, 2007; 33: 2093-2100.
Resuscitation Strategies

- Post-cardiac arrest syndrome similar to sepsis
- 2005 AHA/ILCOR guidelines recommend hemodynamic optimization of patients post-arrest
 “Providers should try to normalize oxygen content and transport”
• Literature review looking for studies using goal-directed resuscitation post-arrest

• Inclusion criteria
 – Clearly defined intervention consisting of a structured cardiovascular resuscitation protocol
 – Control group in which subjects received standard of care therapy

• NO studies found

Post-Cardiac Arrest Early Goal-Directed Therapy

Who needs this?
- Resuscitated patients with:
 - Pulseless < 60 min
 - Göll Motor score < 6
 - No other reason for coma
 - Not DNR or DNI status
 - If pregnant consult Ob/Gyn

Getting Started
- Stat ECG, echocardiogram, line cardiology consult
- Stat head CT
- Insert arterial pressure monitoring line in radial or femoral artery
- Initiate therapeutic hypothermia if indicated (after arterial line)
- Insert PresPro™ CVC if subclavian or internal jugular vain
- Notify Bed Coordinator for ICU bed and EEG fellow for EEG

MAP
- < 80

CVP
- > 8
- < 80

< 80
- If CVP > 8, give IVF or CHF or significant vasopressor need
- If EF is normal, use NGREPI
- If EF, start DOBUT (2.5-20μg/min)
- If MAP, add DOPA or EPI
- If severe hypotension → IABP

80-100 (Consider lower goal if ACS, CHF, Shock)

ScvO₂ = 65%
- Yes
 - No evidence of shock is present:
 - Optimize CVP if not already done (up to 20)
 - Transfuse PRBC’s if hemoglobin < 10 mg/dl
 - Dobutamine if not already initiated
 - Consider PA Cath if CVP>15 or escalating vasopressors
 - No

ScvO₂ < 65% w/shock?
- No
 - Yes
 - Re-evaluate to achieve goal
 - Consider IABP

MAP, CVP, ScvO₂ goals achieved

Monitor serial lactate to rule out inadequate organ perfusion

ACS=Acute coronary syndrome

Updated 5/16/06
Is it working?

“We can implement early goal-directed hemodynamic optimization while inducing TH w/o negatively impacting time to target T°”

- Analyzed first 18 patients since start of TH
- 18 historic controls from 2001-2005
- Examined differences in
 - Vasoactive drug use
 - Volume resuscitation
 - Mortality
 - Good neurologic outcomes

<table>
<thead>
<tr>
<th>Resuscitation End-Point (hr)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVP ≥ 8 ≤ 20 mmHg</td>
<td>77.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.3</td>
</tr>
<tr>
<td>MAP 80-100 mmHg</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83.3</td>
</tr>
<tr>
<td>ScvO2 > 65</td>
<td>83.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93.8</td>
</tr>
<tr>
<td>Target Temp 32-34°C</td>
<td>5.6</td>
<td>11.1</td>
<td>44.4</td>
<td>55.6</td>
<td>61.1</td>
<td>66.7</td>
<td>77.8</td>
</tr>
</tbody>
</table>

Percentage of Patients Reaching End-Point at Specific Time

- Intravenous Fluid Boluses
- Vasoactive Medications
- Inotropic Agents and Blood
- 4°C Chilled Saline; Cooling Wraps

Vasoactive Agents

<table>
<thead>
<tr>
<th></th>
<th>Hour</th>
<th>EGDHO</th>
<th>Historic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasopressor</td>
<td>1</td>
<td>38.8</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>38.8</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>29.4</td>
<td>28.5</td>
</tr>
<tr>
<td>Inotrope</td>
<td>1</td>
<td>29.4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>38.8</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>33.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Vasodilator</td>
<td>1</td>
<td>27.7</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>33.3</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>17.6</td>
<td>14.2</td>
</tr>
</tbody>
</table>
Fluid Balance

<table>
<thead>
<tr>
<th></th>
<th>EGDHO</th>
<th>Historic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>2543.3</td>
<td>812.5</td>
</tr>
<tr>
<td>Output</td>
<td>117.6</td>
<td>125.0</td>
</tr>
<tr>
<td>Balance</td>
<td>2425.7</td>
<td>687.5</td>
</tr>
<tr>
<td>12 Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>5761.0</td>
<td>1450.5</td>
</tr>
<tr>
<td>Output</td>
<td>2006.6</td>
<td>1726.5</td>
</tr>
<tr>
<td>Balance</td>
<td>3754.4</td>
<td>-276.0</td>
</tr>
<tr>
<td>24 Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>8624.1</td>
<td>4203.0</td>
</tr>
<tr>
<td>Output</td>
<td>3057.7</td>
<td>2851.1</td>
</tr>
<tr>
<td>Balance</td>
<td>5566.4</td>
<td>1351.9</td>
</tr>
</tbody>
</table>
Outcomes Data—76 patients

Survival to discharge

- Normothermia: 22%
- Hypothermia: 51%

87% Neurologically intact
Resuscitation Strategies

• Reasonable goals for PCAR include
 – MAP of 65 to 100 mm Hg
 • Consider patient’s normal BP
 • Cause of arrest
 • Severity of any myocardial dysfunction
 – CVP of 8 to 12 mm Hg
 – \(\text{ScvO}_2 \) 70%
 – Urine Output 1 mL/kg/hr
 – Normal or decreasing serum lactate level
Case: Conclusion

- HD#2 – extubated
- HD #3 – sitting up asking for diet soda
- Normal cath and EP studies
- Cause of arrest
 - Tako tsubo
- AICD placed
- Discharged HD # 11
- Practicing dentist in the Mid-Atlantic
Conclusions

- Hypothermia is a 3 phase process
- Consider routine paralysis for induction
- Treat cold diuresis with IVF
- Check electrolytes frequently and correct aggressively in induction and maintenance
- Monitor for infection, particularly pneumonia
- Consider empiric antibiotics
- Target glucose ≤ 144 mg/dL
Thank you!

Dave Gaieski
Ben Abella
Bob Neumar
Lance Becker
Roger Band
Sanjay Desai
Howard Cooper
Greg Marchand
Allen Wolfe
Kori Hudson
Brendan Furlong

munish.goyal@medstar.net