- 18. Spin down to pellet cellular debris (30sec at 13,000 rpm).
- 19. Transfer S/N to new tube.
- 20. Remove $50\mu I$ of each sonicated sample and add to 400ml lysis solution. This sample is the **input**. This is used for obtaining DNA concentration for subsequent IP's (see below) and as control in final PCRs.
- 22. Store remainder of chromatin on ice at 4°C (stable for a week).

3. Determination of input DNA concentration.

- 1. Add $5\mu l$ Proteinase K (20mg/ml) to each sample in *lysis* solution.
- 2. Heat with shaking at 65°C for 4-5 hours (or overnight) to reverse crosslinking (can freeze samples here if need to).
- 3. Phenol:chloroform extract with equal volume, EtOH (2vols)/NaAcetate ($1/10^{th}$ vol) precipitate with 10μ I glycogen (5mg/ml) on dry ice.
- 4. Spin 10min at 13,000 rpm, wash pellet with 1ml 70% EtOH.
- 5. Redisolve in 50µl TE.
- 6. Read the OD_{260} (5µl sample plus 995µl TE, to give a 200-fold dilution). The concentration of DNA in µg/ml is OD_{260} x 10, 000.

4. Chromatin IP

- 1. For each ChIP experiment, use $25\mu g$ of DNA per IP (this is variable, and you may need to optimize a good amount for your own experiment here).
- 2. You will need one sample for the specific antibody, one sample for an unrelated antibody, and one sample for the beads-only control (no antibody).
- 3. Adjust samples to the same volume with *ChIP lysis buffer*.
- 4. Dilute each sample 1:10 with *dilution buffer* (some people use RIPA to dilute to reduce background).
- 5. IP overnight with rotation at 4°C. Amount of antibody is variable (e.g. $4\mu l$ of ab7312, Rabbit polyclonal to Histone H3 (methylated K9)).
- 6. Add $20\mu l$ of protein A/G beads (pre-absorbed with sonicated s/s salmon sperm DNA at $1.5mg/20\mu l$ beads). Incubate for 2 hours with rotation at $4^{\circ}C$.
- 7. Spin down for 1min at 8,000 rpm, remove supernatant.
- 8. Wash beads 3X with 1ml wash buffer (spin as above).
- 9. Wash beads 1X with 1ml final wash buffer (for some IP's a 1:1 mix of wash buffer and final wash buffer is best e.g. MeCP2/HP1) (spin as above).
- 10. Elute DNA by adding 450μl of *elution buffer* (make fresh each time) and rotate for 15mins at RT.
- 11. Spin down and remove supernatant into fresh tube and add 5μl Proteinase K (20mg/ml).
- 12. Heat with shaking at 65°C for 4-5 hours (or overnight) to reverse crosslinking (can freeze samples here if need to).
- 13. Phenol:chloroform extract with equal volume, EtOH (2vols)/NaAcetate (1/10 th vol) precipitate with 10μ l