Vol Act: 1 unit / pl; 1.000 ml D Nase (1) + (2) > 50 units Exo: > 50 units Nick:> 50 u; R Nase:> 50 units S.A.: 3308 units / mg Boehringer Mannheim GmbH 3/3/92

from calf intestine

Phosphatase, alkaline

Orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1

Special quality for molecular biology

1000 units, Cat. No. 713 023

1000 units, Cat. No. 1097 075, high concentration

Product description

Volume activities:

Cat. No. 713 023: ca. 1×10^3 units/ml. Cat. No. 1097 075: ca. 20×10^3 units/ml.

Alkaline phosphatase is assayed according to (1). One unit of alkaline phosphatase is the enzyme activity which hydrolyzes 1 µmol of 4-nitrophenyl phosphate in 1 min at 37 °C under assay conditions. Note: According to (1) 5 units alkaline phosphatase (37 °C; diethanolamine buffer) correspond to 1 unit alkaline phosphatase (25 °C; glycine/NaOH buffer). See data label for lot-specific values.

Storage buffer: Triethanolamine, 30 mmol/l; NaCl, 3 mol/l; MgCl₂, 1 mmol/l; ZnCl₂, 0.1 mmol/l; pH ca. 7.6.

Activity determination: The activity determination is performed according to (1) at 37 °C in diethanolamine buffer, 1 mol/l; 4-nitrophenyl phosphate, 10 mmol/l; MgCl₂, 0.5 mmol/l; pH 9.8.

Specific activity: ca. 2000 units/mg according to (1) and (2). See data label for lot-specific values.

Stability: stable at +4°C.

Supplied buffer:

Dephosphorylation buffer, 10-times concentrated: Tris-HCl, 0.5 mol/l; EDTA, 1 mmol/l; pH 8.5 (20 °C).

Incubation procedure (3, 4): The reaction assay is adjusted with $\frac{1}{10}$ volume 10 × dephosphorylation buffer.

- a) 50 pmol 5'terminal phosphorylated DNA fragments (3'-recessed, 5'-recessed or blunt-ended) are incubated with
 1 unit alkaline phosphatase at 37°C for 60 min or
- b) 50 pmol 5'terminal phosphorylated RNA fragments are incubated with 1 unit alkaline phosphatase at 50 °C for 60 min.

Inactivation of alkaline phosphatase (4,5): Add 1/10 volume of EGTA, 200 mmol/l, to the reaction assay and heat to 65 °C for 10 min. To achieve complete inactivation of alkaline phosphatase, an extraction with phenol/chloroform/isoamylalcohol (50:48:2) should be performed.

Quality control

See data label for lot-specific values.

Absence of deoxyribonucleases:

1) 1 μ g λ DNA is incubated with alkaline phosphatase for 1 h at 37 °C in 25 μ l dephosphorylation buffer. The number of enzyme units which shows no degradation of λ DNA after agarose gel electrophoresis is stated under "DNase(1)". 2) 1 μ g Eco RI/Hind III fragments of λ DNA is incubated with alkaline phosphatase for 1 h at 37 °C in 25 μ l dephosphorylation buffer. The number of enzyme units which shows no change in the banding pattern after agarose gel electrophoresis is stated under "DNase(2)".

Absence of nicking activities: 1 μ g supercoiled pBR322 DNA is incubated with alkaline phosphatase for 1 h at 37 °C in 25 μ l dephosphorylation buffer. The number of enzyme units which shows no relaxing of the supercoiled structure of pBR322 DNA after agarose gel electrophoresis is stated under "Nick".

Absence of exonucleases: A 40-mer oligonucleotide is incubated with increasing amounts of alkaline phosphatase for 4 h at 37 °C and checked for exonuclease contamination by ³²P-labeling with polynucleotide kinase* and subsequent separation on a 8% polyacrylamide sequencing get. The number of enzyme units which shows no degradation of the oligonucleotide is stated under "Exo".

Absence of ribonucleases: $5~\mu g$ MS2 RNA are incubated with alkaline phosphatase for 1 h at $50~^{\circ}C$ in $50~\mu l$ dependence of the phorylation buffer. The number of enzyme units which shows no change of MS2 RNA after agarose gel electrophoresis is stated under "RNase".

References

- 1 Moessner, E. et al. (1980) Z. Physiol. Chem. 361, 543.
- 2 Bradford, M. (1976) Anal. Biochem. 72, 248.
- 3 Maxam, A.M. & Gilbert, W. (1980) Methods Enzymol. 65, 499.
- 4 Chaconas, G. & v. d. Sande, J. H. (1980) Methods Enzymol. 65, 75.
- 5 Simsek, M. et al. (1973) Proc. Natl. Acad. Sci. USA 70, 1041.

^{*} available from Boehringer Mannheim GmbH