CNBr-activated Sepharose 4 Fast Flow - Rapid, efficient coupling and maintained biological activity of the ligand - Multi-point attachment of many protein ligands, resulting in a chemically stable product. - · Fast Flow matrix gives high productivity and is easy to scale up - Comprehensive technical and regulatory support for pharmaceutical production simplifies validation - Over twenty years successful use of CNBr-activated Sepharose[™] media documented with many references ### Introduction The preparation and use of affinity chromatography media by coupling biospecific ligands to CNBr-activated matrices is a widely used, successful and well-documented technique. CNBr-activated Sepharose 4 Fast Flow is a new pre-activated affinity matrix that combines the advantages of CNBr coupling with the high flow and stability characteristics of Sepharose 4 Fast Flow. In our experience, the CNBr coupling technique has a well-proven track record for the purification of therapeutic proteins. This, plus the performance of the matrix at large scale, makes the use of CNBr-activated Sepharose 4 Fast Flow particularly attractive for manufacturing applications in the pharmaceutical industry. Furthermore, the medium is a member of the BioProcessTM media family and carries comprehensive technical and regulatory support for production applications. ### **Characteristics** ### Product description and use CNBr-activated Sepharose 4 Fast Flow is a bead-formed, highly cross-linked pre-activated matrix produced by reacting Sepharose 4 Fast Flow with cyanogen bromide (CNBr). Proteins and other molecules containing primary amino groups can be coupled directly to the pre-activated gel. Multi-point attachment of proteins provides the Ligands are coupled to CNBr-activated Sepharose 4 Fast Flow using a rapid and efficient process. The coupled ligand maintains a high level of biological activity. immobilized product with good chemical stability. The resulting affinity medium can isolate a specific substance from a complex mixture, often achieving very high yield and purity in a single step. Many references demonstrate that binding affinity is frequently well maintained after CNBr coupling. A typical application of pre-activated affinity media like CNBr-activated Sepharose 4 Fast Flow is based on antigenantibody reactions with immobilized monoclonal antibodies as ligands. In such cases, purification factors of 2,000–20,000 can be obtained. Table 1 summarizes the main characteristics of CNBractivated Sepharose 4 Fast Flow. #### Sepharose 4 Fast Flow Matrix Mean particle size 90 µm Particle size range 45-165 µm Bead structure Highly cross-linked 4% agarose, spherical Linear flow* 150 cm/h at 100 kPa #### CNBr-activated Sepharose 4 Fast Flow Swelling factor 4-5 ml drained gel/g Coupling capacity 13-26 mg α-chymotrypsinogen/ml drained gel pH stability** long term 2 - 112 - 11 short term (CIP) Table 1. Characteristics of CNBr-activated Sepharose 4 Fast Flow. ### Companion product A companion product to CNBr-activated Sepharose 4 Fast Flow is NHS-activated Sepharose 4 Fast Flow, which has been activated to form active N-hydroxysuccinimide (NHS) esters. NHS coupling forms a chemically stable amide bond with ligands containing primary amino groups. Compared with CNBractivated Sepharose 4 Fast Flow, NHS-activated Sepharose 4 Fast Flow is in many cases more suited to coupling smaller proteins and peptides. We recommend users of affinity chromatography, especially those developing purifications for scale up to production, to evaluate both products. NHS-activated Sepharose 4 Fast Flow is described separately in Data File 18-1113-53. ### Sepharose 4 Fast Flow matrix Sepharose 4 Fast Flow is a highly cross-linked agarose matrix. In its pre-activated CNBr form, it offers much improved performance when compared with the well established CNBr-activated Sepharose 4B. The Fast Flow matrix has a higher rigidity and can thus be run at high flow rates (see Table 1). As the available capacities for proteins are similar in both cases, the Fast Flow matrix offers greater productivity. The higher mechanical strength of the cross-linked matrix makes it well-suited for use in large columns. Scaling up a purification developed on CNBr-activated Sepharose 4 Fast Flow is therefore simple and more predictable. The coupled product is stable at low pH, which is often required for elution from some immunoadsorbents. (For applications that require operation at high pH, note that the amide bond formed when using the companion product NHS-activated Sepharose 4 Fast Flow is stable up to pH 13 for normal use). ### Storage CNBr-activated Sepharose 4 Fast Flow is supplied freeze dried. Additives are included to preserve the bead form of the gel. When stored below 8 °C, the shelf life is at least 18 months. Long term stability studies (up to 91 weeks) show that freeze dried CNBr-activated Sepharose 4 Fast Flow is very stable when stored under recommended conditions. The degree of reswelling showed only a slight decrease and the coupling yield (when tested with soybean trypsin inhibitor) was maintained at a high level. Note, however, that the stability of the coupled gel is dependent on the attached ligand. ### The coupling reaction The coupling reaction, which is rapid and spontaneous, is easy to carry out and requires no special chemicals or equipment. CNBr-activated Sepharose 4 Fast Flow is supplied as a freeze-dried powder stabilized with additives. Coupling a ligand to the activated matrix involves first swelling and washing* the gel followed by coupling. Instructions included with the product describe methods for coupling ligands and the effect of different conditions on the coupling efficiency. Users should develop a specific procedure for each individual application. # Cleaning-in-place and sanitization Cleaning-in-place (CIP) is a cleaning procedure that removes contaminants that may remain in the packed column after regeneration. Regular CIP also prevents the build-up of these contaminants in the CNBr coupled product and helps maintain the capacity, flow properties and general performance of the medium. * Washing removes additives included in the freeze dried product to maintain its activity Current literature may recommend using 200 ml (50 gel vols.) cold 1 mM HCl per gram freeze dried gel. This amount may be difficult to handle for process scale users of CNBr activated Sepharose 4 Fast Flow. Recent studies have shown, however, that by increasing the contact time between gel and HCI (B-method above), the amount of cold 1 mM HCI required to wash out these additives can be reduced to one third of this recommendation. i.e. 10-15 gel vols. cold 1 mM HCl per gram freeze dried gel (Fig. 1), without affecting the coupling reaction. Further details are available from Amersham Pharmacia Biotech AB At 25 °C in water in an XK 50/60 column, 25 cm bed height. The flow properties are normally slightly better after the CNBr activation. The flow rate after coupling may differ depending on the ligand ^{**} Depends largely on the ligand stability. Test results are with Protein A as ligand. Fig. 1. The content of sugar in the filtrate after washing with different gel volumes of cold 1 mM HCI. Sanitization inactivates microbial contaminants in the packed column and related equipment. A specific CIP and sanitization protocol should be designed for each process according to the type of contaminants present and the stability of the coupled ligand. Experience has shown that NaCl, sterile filtered buffer or non-ionic detergent are all effective cleaning agents. One generally recommended procedure is to wash alternately with high and low pH buffers (0.1 M Tris HCl containing 0.5 M NaCl, pH 8.5, and 0.1 M sodium acetate containing 0.5 M NaCl, pH 4.5). A slightly harsher treatment that may help remove strongly bound proteins is to wash the column with a non-ionic detergent included in the pH 8.5 buffer named above or applied separately. Washing with several column volumes of 20–70% ethanol may also be effective on strongly bound proteins. In all cases, we recommend you test washing procedures at small scale first, especially for higher concentrations of ethanol. The frequency of CIP depends on the nature and condition of the starting material, but one CIP cycle is generally recommended every 5 separation cycles. # **Applications** The laboratory scale use of CNBr activated coupling media based on Sepharose is very well-documented in the literature. However, for reasons of commercial secrecy, detailed information about process scale use and manufacturing applications of CNBr-activated Sepharose 4 Fast Flow is generally not available. Nevertheless, the use of this medium in the development of a process to purify native gp120 from HIV-1 infected T-cells has recently been described (1). Here the authors coupled *Galanthus nivalis* agglutinin (GNA), a lectin from the bulb of the snowdrop, to CNBr-activated Sepharose 4 Fast Flow and then used the coupled gel to help purify the outer envelope glycoprotein gp120 of HIV-1, which is a major target for immunotherapy. ### Coupling procedure The procedure used for coupling GNA to CNBr-activated Sepharose 4 Fast Flow is summarized below. - **1** Suspend the pre-activated gel in 1 mM HCl for 30 minutes and allow to swell. - 2 Wash with 15 gel volumes of cold 1 mM HCI. - 3 Wash with coupling buffer at pH 8.3 - 4 Dissolve the GNA in coupling buffer and adjust to pH 8.3. - **5** Add the washed gel to the GNA solution and incubate overnight at +4 °C. (The coupling can also be performed at room temperature for 3–4 hours). - **6** Wash and resuspend the coupled gel in 1 M ethanolamine for 2–4 hours at room temperature to block unused activated sites. - **7** Wash the gel 8 times with alternating 50 mM Tris, 1 M NaCl pH 8.0 and 50 mM glycine, 1 M NaCl pH 3.5 buffers. - 8 Wash the gel with 10 gel volumes of PBS ### Chromatographic purification Following cell growth and detergent treatment to solubilize the gp120 from the viral particles and infected cells, the glycoprotein was partially purified in a cation exchange expanded bed adsorption step on STREAMLINETM SP in a STREAMLINE 50 column. The partially purified sample was loaded at flow rates of up to 300 cm/hr onto a 1.6 cm diameter column containing 10 ml GNA-coupled Sepharose 4 Fast Flow (1 mg GNA/ml gel). Gp120 was then eluted by reverse flow with 1 M methyl- α -D-mannopyranoside at flow rates up to 60 cm/hr. Samples were collected and analysed by gp120 ELISA, silver stained SDS-PAGE and Western blot. Figure 2 shows the chromatogram of the affinity separation. Figure 3 a and b shows a silver stained SDS-PAGE gel and a Western blot. **Fig. 2.** Affinity separation of native gp120 protein on GNA-coupled Sepharose 4 Fast Flow. 94% of the gp120 bound to the GNA coupled Sepharose 4 Fast Flow and about 53% eluted under the conditions used. The total concentration of gp120 was 28.8 μ g/ml, but this increased to between 100–150 μ g/ml in the peaks. Gp120 was recovered at high purity and specificity, as shown by Lane 6 in Figure 3 A and 3 B. ### Reference Purification of native gp120 from HIV-1 infected T-cells. Gilljam, G., Jägersten, C., Lagerlund, I. and Sparrman, M. Poster presented at Recovery of Biological Products VII, Sept. 25–30, 1994, San Diego, CA, USA. # Ordering information | Product | Size | Code No. | |-----------------------|-------|------------| | CNBr-activated | 10 g | 17-0981-01 | | Sepharose 4 Fast Flow | 250 g | 17-0981-03 | | | 2 kg | 17-0981-05 | Fig. 3. Silver stained SDS-PAGE gel (A) and a Western blot (B). Lane 1, Sample buffer. Lane 2, Sample buffer. Lane 3, Standards (LMW Calibration Kit, Pharmacia Biotech). Lane 4, Flow through from GNA-coupled Sepharose 4 Fast Flow. Lane 5, gp120. Lane 6, Eluate from GNA-coupled Sepharose 4 Fast Flow. Lane 7, Eluate from the STREAMLINE cation exchange step. Lane 8, Flow through from the STREAMLINE cation exchange step. Lane 9, Starting material. Lane 10, Standards. ### to order: Asia Pacific Tel: +852 2811 8693 Fax: +852 2811 5251 Australasia Tel: +61 2 9894 5152 Fax: +61 2 9899 7511 Austria Tel: 01 576 0616 20 Fax: 01 576 0616 27 Belgium Tel: 0800 73 888 Fax: 03 272 1637 Canada Tel: 1800 463 5800 Fax: 1800 567 1008 Central, East, South East Europe Tel: +43 1 982 3826 Fax: +43 1 985 8327 Denmark Tel: 45 16 2400 Fax: 45 16 2424 Finland Tel: 09 512 3940 Fax: 09 512 1710 France Tel: 0169 35 67 00 Fax: 0169 41 9677 Germany Tel: 0761 4903 401 Fax: 0761 4903 405 Italy Tel: 02 27322 1 Fax: 02 27302 212 Japan Tel: 81 3 5331 9336 Fax: 81 3 5331 9370 Latin America Tel: +35 11 3667 5700 Fax: +55 11 3667 5700 Fax: +55 11 3667 5700 Fax: +55 11 3667 5700 Fax: -10 100 Fax: 0169 386 Fax: -10 100 Sepharose, BioProcess and STREAMLINE are trademarks of Amersham Pharmacia Biotech Limited or its subsidiaries. Amersham is a trademark of Nycomed Amersham plac. Pharmacia and Drop Design are trademarks of Pharmacia & Upjohn. Amersham Pharmacia Biotech AB Björkgatan 30, 5£-751 84 Uppsala, Sweden. Amersham Pharmacia Biotech UK Limited. Amersham Place, Little Chalfont, Buckinghamshire. HP7 9NA. England. Amersham Pharmacia Biotech Inc. 800 Centennial Avenue, P0 Box 1327, Piscataway, NJ 08855 USA. Amersham Pharmacia Biotech Europe GmbH. Munzinger Strasse 9, D-79111 Freiburg. Germany. All goods and services are sold subject to the terms and conditions of sale of the company within the Amersham Pharmacia Biotech group that supplies them. A copy of these terms and conditions is available on request. © Amersham Pharmacia Biotech AB 1999 – All rights reserved.