Informatics Tools for Optimized Imaging Biomarkers for Cancer Research & Discovery

Athinoula A.

Martinos

Center

For Biomedical Imaging

Ken Chang, Jayashree Kalpathy-Cramer, PhD Athinoula A. Martinos Center for Biomedical Imaging MGH/Harvard Medical School MICCAI 2018

Why "challenges"?

Reproducibility is an issue in all aspects of medicine

Algorithm performance often not replicated by other sites

Access to clinical data of sufficient variety can be a challenge for (computational) scientists developing algorithms

Can evaluate the performance of techniques on real, noisy clinical data

Test data (sequestered) can provide indication of algorithm generalizability to unseen data

Allows for cross-pollination of methods from other domains

Best algorithms can be translated into commercial products

C-BIBOP challenge infrastructure

Developed (in part) with funding from contracts and NIH grants

Infrastructure to host challenges in the community

Built on open-source CodaLab platform

Integrates with ePAD and Cornerstone web viewers (radiology)

For ground truth generation

Results viewing

Integrates with caMicrosope (digital pathology)

System for assigning annotation tasks to experts for ground truth generation

Been used for \sim two dozen challenges , over 2000 participants have signed up in the system

Recent extensions to support code uploads through Docker

Past challenges

MICCAI 2015, 2016, 2017

Brain tumor segmentation Digital pathology (segmentation and classification) Joint radiology/pathology challenge Digital mammography Liver metastases survival prediction

QIN

BMMR (breast MR response prediction) CT feature challenge

QIBA lung nodule challenge

SPIE ProstateX

SPIE/AAPM/NCI ProstateX-2

Recent Challenges

Athinoula A. Martinos Center For Biomedical Imaging

Challenge Name	Dates
1) ISBI 2018 - Lung Nodule Malignancy Prediction, Based on Sequential CT Scans	January 18 - March 18
2) Pancreatic Cancer Survival Prediction	May 18 - August 18
3) 18F-FDG PET Radiomics Risk Stratifiers in Head and Neck Cancer	June 18 - August 18
4) Combined Radiology and Pathology Classification	June 18 - August 18
5) Digital Pathology: Segmentation of Nuclei in Images	June 18 - August 18
6) Pediatric Bone Age Challenge	Aug 2017 - Oct. 2018
7) AAPM Thoracic Auto-segmentation Challenge	May 2017 - on going

Recent Challenges

ISBI 2018 - Lung Nodule Malignancy Prediction, Based on Seguential CT Scans Organized by artem - Current server time: Sept. 8, 2018, 11:58 p.m. UTC

March 22, 2018, 6:59 au

End

Fire	t phase	
	ning	
Jan.	8. 2018. 5 p.m. UT	с

n. UTC		

Combined Radiology and Pathology Classification

Organized by cpm.organizing.committee - Current server time: Sept. 9, 2018, 12:18 a.m. UTC

First phase

End

June 29, 2018, 11:59 p.m. UTC

Aug. 17, 2018, 11:59 p.m. UTC

AAPM Thoracic Auto-segmentation Challenge

Organized by MarkGooding - Current server time: Sept. 13, 2018, 6:28 p.m. UTC

June 19, 2017, midnight UTC

▶ Current

On-going Challenge

Next

Aug. 4, 2017, midnight UTC

Challenge at RSNA 2017

Popular Competitions

Over 400 participants, still open

Official results presented at RNSA

Best results improved on recently published results from the authors who released dataset

(Stanford)

All but one of top 10 used deep learning

Publication in review

Dataset still being used in research/publications

ø

build passing

DeepNeuro

A deep learning python package for neuroimaging data. Focused on validated command-line tools you can use today. Created by the Quantitative Tumor Imaging Lab at the Martinos Center (Harvard-MIT Program in Health, Sciences, and Technology / Massachussets General Hospital).

Table of Contents

- About
- Installation
- Modules
- Contact
- Acknowledgements

Deep Learning Software

What are the challenges of developing software for deep learning and neuroimaging?

- Complex hardware requirements (GPUs, Linux, libraries, etc.)
- Fast-moving field. Popular packages (Tensorflow, Theano, Keras, etc.) change monthly.
- Low interoperability with standard neuroimaging tools.
- Difficulty sharing and validating trained models.

DeepNeuro

Deep Learning Software

- How to we get around these challenges?
 - *Docker Containers*. Reduce the hassle of extensive and complex system requirements.
 - Open Source Code. Deep learning algorithms can be sensitive to over-fitting, and validation and retraining on new datasets will be essential.

Easy Configuration!

```
training_data_directory = ['/Training_directory']
validation_data_directory = ['/Validation_directory']
testing_data_directory = ['/Testing_directory']
train_Segment_GBM(training_data_directory, validation_data_directory, testing_data_directory)
```

Just specify:

- Parameters of your neural network architecture
- Parameters for training
- Directory of your data

Installation

- 1. Install the Docker Engine Utility for NVIDIA GPUs, AKA nvidia-docker. You can find installation instructions at their Github page, here: https://github.com/NVIDIA/nvidia-docker
- Pull the DeepNeuro Docker container from https://hub.docker.com/r/qtimlab/deepneuro_segment_gbm/. Use the command "docker pull qtimlab/deepneuro-segment_gbm"
- 3. If you want to inspect the code, or run your Docker container with an DeepNeuro's python wrappers and command line tools, clone this repository ("git clone https://github.com/QTIM-Lab/DeepNeuro"), and install with the command "python setup.py install" in the directory you just cloned in to.

Modules

Glioblastoma Edema and Enhancing Tumor Segmentation

This module takes in four input MRI sequences (pre-contrast T1, post-contrast T1, FLAIR, and T2 imaging), and produces binary segmentation maps for enhancing tumor tissue and tumor edema. Includes preprocessing steps to register, resample, and skull-strip.

MRI Skull-Stripping

This module takes in two input sequences (post-contrast T1 and FLAIR), and produces a binary segmentation map for brain tissue. Trained on glioblastoma data, and includes pre-processing utilities. More modalities coming soon!

For this dome, we will walk you through how to generate brain segmentations using DeepNeuro. DeepNeuro is a deep learning package designed to distribute pre-trained and validated neural networks for use on clinical data. It uses Docker containers, templatable code, and a simple command line interface. It can take raw DICOM images as input, and output a set of DICOM segmentation objects (DBOs) as output.

In the demo below, we'll first exhibit the command-line functionality of DeepNeuro, and then go over step-by-step how preprocessing commands and neural networks are combined to make a shareable, DeepNeuro pipeline.

If you'd like to try DeepNeuro yourself, you can download our Github repository at https://doi.hub.com/OTIM-Lab/DeepNeuro, or pull a docker container from Docker Hub. You can use the command below, for example, to download our glioblastoma segmentation module.

docker pull qtimlab/deepneuro_segment_gbm

We will be using a dataset from the lwyGAP dataset, publicly available at The Cancer Imaging Archive (TCIA) here: https://wiki.cancerimagingarchive.neticlisplay/Publicity_LGAP.

This particular neural network generates edema segmentation and enhancing segmentations from pre- and post-contrast T1/MPRACE images and FLAIR images. Using 3DSI/cer, we can view sides from a sample patient, ID W20;

Tumor segmentation

- Manual segmentation of tumor used to take hours of clinician and technician time as they segmented MRI volumes slice-byslice.
- Inter-operator variability can be high between oncologists, especially in low-resolution scans.

Beers et al., arXiv, 2018

IDH prediction

	Accuracy
Training	93%
Validation	94%
Testing	88%

Chang et al., Clinical Cancer Research 2018

Stroke

Major cause of long-term disability + death
Cerebral ischemia causes 80% of cases
Diffusion-weighted MR Imaging (DWI) allows for early-stage diagnosis
Automatic detection and quantification may aid clinical-decision making

Disability & Survival Prediction

Vessel Segmentation

Magnetic Resonance Angiography

CLARITY

Most deep learning methods need lots of data Patient images are hard to share Annotations are difficult to acquire Annotations are noisy/biased Deep learning models (typically) don't provide uncertainty Models are considered to be "black boxes" Models can be "fooled"

Martinos

Opportunities

Patient data is hard to share

Distributed learning where data remains within institutions but models are shared

Distributed Deep Learning Techniques for Collaborative Multi-Institutional Studies

Currently, researchers host all patient data to a central location...

but this is often times not possible due to:

- Limited data storage
- Patient privacy concerns
- Institutions prefer not to share patient data because it is valuable

Distributed learning

Model Sharing Heuristics

Chang et al., JAMIA 2018

Cyclical weight transfer is effective on a large scale

Chang et al., JAMIA 2018

Opportunities

Annotations are difficult to acquire and can be very time-consuming Crowdsource

Crowds Cure Cancer

BACKGROUND

Many cancers routinely identified by imaging haven't yet benefited from recent advances in computer science. Approaches such as machine learning and deep learning can generate quantitative tumor 3D volumes, complex features and therapy-tracking temporal dynamics. However, cross-disciplinary researchers striving to develop new approaches often lack disease understanding or sufficient contacts within the medical community. Their research can greatly benefit from labeling and annotating basic information in the images such as tumor location, which are obvious to radiologists.

~

O

"Crowdsourcing" the creation of publicly-accessible reference data sets could address this challenge. In 2011 the National Cancer Institute funded development of The Cancer Imaging Archive (TCA), a free and open-access database of de-identified medical images. Many of its data-sets are cross-linked to extensive genetic/proteomic and clinical data gathered during the NIH's The Cancer Genome Atlas (TCGA) as well as other sources. However, most of these collections lack the labeling and annotations needed by computer image researchers for progress in deep learning and radiomics.

With this booth the NCI and RSNA seek to harness the vast knowledge of meeting attendees to generate these tumor markups. Data resulting from this experiment will be openly shared with the radiology and the computer science community.

HTTP://BIT.LY/CROWDCURE

HELP US LOCATE TUMORS IN CANCER IMAGING DATA

Crowds Caree Cancer"

 \odot

PARTICIPATE

IN THIS CROWD-SOURCING EXPERIMENT

Unlabeled data from The Cancer Imaging Archive has been loaded into a web-based annotation environment. It contains numerous subjects with proven cancer diagnoses spanning a vareity of cancer types (brain, renal, lung, etc). The tumor is usually fairly obvious to an experienced imager.

Find the slice that shows the maximum dimension of the tumor. With the linear pencil tool draw a line across the tumor's maximum diameter and save your work. Any individual case will probably take you less than a minute or two. It's just like a "RECIST" measurement commonly used in clinical trials.

Don't agonize about getting it perfect. Do as many or as few cases as you like – but of course more would always be welcome! The booth docent would enjoy hearing your comments.

Let us know if you want to stay in the loop! Markups from this booth are saved and will be made public to the broad image science community. Leave us your email address if you'd like to be notified when they're released. Or sign up for one of TCIA's social media options (LinkedIn, Twitter, Facebook) to get push notifications any time new data sets are added to the site.

HTTP://BIT.LY/CROWDCURE

HELP US LOCATE TUMORS IN CANCER IMAGING DATA

 $\mathbf{\mathbf{V}}$

 \odot

 \sim

PARTICIPATE IN THIS CROWD-SOURCING EXPERIMENT

Unlabeled data from The Cancer Imaging Archive has been loaded into a web-based annotation environment. It contains numerous subjects with proven cancer diagnoses spanning a vareity of cancer types (brain, renal, lung, etc). The tumor is usually fairly obvious to an experienced imager.

Find the slice that shows the maximum dimension of the tumor. With the linear pencil tool draw a line across the tumor's maximum diameter and save your work. Any individual case will probably take you less than a minute or two. It's just like a "RECIST" measurement commonly used in clinical trials.

Don't agonize about getting it perfect. Do as many or as few cases as you like – but of course more would always be welcome! The booth docent would enjoy hearing your comments.

Let us know if you want to stay in the loop! Markups from this booth are saved and will be made public to the broad image science community. Leave us your email address if you'd like to be notified when they're released. Or sign up for one of TCIA's social media options (LinkedIn, Twitter, Facebook) to get push notifications any time new data sets are added to the site.

HTTP://BIT.LY/CROWDCURE

HELP US LOCATE TUMORS IN CANCER IMAGING DATA

Annotators

- Over 250 signed up
 - 211 had at least 1 annotation
 - 112 were radiologists
- Selected
 - Liver: 189
 - Lung: 211
 - Renal: 165
 - Ovarian: 133
- Selected
 - 4:120
 - 3:27
 - 2:29
 - 1:78

Leader Boa	rd
------------	----

Annotators with at leas	t one Meas	urement	
Total Number of Cases	Annotated	(including	Skips)
Total Number of Cases	Skipped		

misty_mandrill	338 (13)
nocturnal_sparrow	209 (102)
rubbery_hamster	106 (20)
flippant_beaver	88 (4)
clueless_mongoose	80 (3)
untimely_goldfinch	69 (2)
impish_cat	63 (6)
unfit_weasel	61 (8)
competent_hawk	57 (4)
firm_bat	57 (34)
ethical_chicken	56 (2)
informal_panther	56 (3)
mean_mongoose	50 (5)
courteous_kingfisher	47 (2)
knowledgeable_panda	42 (5)
altruistic_seal	41 (0)
immaculate_oyster	41 (4)
shadowy_bee	35 (0)
actual_giraffe	34 (0)
poised_vulture	33 (6)

211 3059 705 athinoula A.

Martinos Center For Biomedical Imaging

Results Disseminated

Lung results

Opportunities

Deep Learning models are black boxes

Model explainability

Tumor Segmentation Network

Dimensionality Reduction of Intermediate Layer

JAMA Ophthalmology | Original Investigation

Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks

James M. Brown, PhD; J. Peter Campbell, MD, MPH; Andrew Beers, BA; Ken Chang, MSE; Susan Ostmo, MS; R. V. Paul Chan, MD; Jennifer Dy, PhD; Deniz Erdogmus, PhD; Stratis Ioannidis, PhD; Jayashree Kalpathy-Cramer, PhD; Michael F. Chiang, MD; for the Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium

The Quantitative Tumor Imaging Lab at the Martinos Center (QTIM)

MGH & BWH CENTER FOR CLINICAL DATA SCIENCE

Harvard–MIT Health Sciences & Technology

Thank you!

QTIM	Martinos Center
Andrew Beers	Bo Zhu
James Brown	Matt Rosen
Katharina Hoebel	Bruce Rosen
Ken Chang	Hakan Ay
Samarth Nandekar	<u>CCDS</u>
Ina Ly	Kathy Andriole
Yi-Fen Yen	Mark Michalski
Elizabeth Gerstner	

<u>OHSU</u>

Michael Chiang J. Peter Campbell Susan Ostmo NEU Deniz Erdogmus Stratis Ioannidis BWH **Steve Pieper** Andrey Fedorov

<u>Stanford</u>

Daniel Rubin Niranjan Balachandar

Athinoula A.

Martinos Center

I2R/A*STAR

Pavitra Krishnaswamy Vijay Chandrasheka

Acknowledgements

- U01 CA154601 Quantitative MRI Of Glioblastoma Response
- U24 CA180927 Informatics Tools For Optimized Imaging Biomarkers For Cancer Research & Discovery
- NSF 1622542 SCH: INT: Collaborative Research: Assistive Integrative Support Tool for Retinopathy of Prematurity
- R01 EY019474 Clinical And Genetic Analysis Of Retinopathy Of Prematurity
- U24 CA180918 Quantitative Image Informatics For Cancer Research (QIICR)
- CCDS for computing resources