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Abstract—With the advent of the era of Internet of Things
(IoT), the increasing data volume leads to storage outsourcing
as a new trend for enterprises and individuals. However, data
breaches frequently occur, bringing significant challenges to
the privacy protection of the outsourced data management
system. There is an urgent need for efficient and secure
data sharing schemes for the outsourced data management
infrastructure, such as the cloud. Therefore, this paper designs
a dual-server-based data sharing scheme with data privacy and
high efficiency for the cloud, enabling the internal members
to exchange their data efficiently and securely. Dual servers
guarantee that none of the servers can get complete data
independently by adopting secure two-party computation. In
our proposed scheme, if the data is destroyed when sending
it to the user, the data will not be restored. To prevent the
malicious deletion, the data owner adds a random number to
verify the identity during the uploading procedure. To ensure
data security, the data is transmitted in ciphertext throughout
the process by using searchable encryption. Finally, the black-
box leakage analysis and theoretical performance evaluation
demonstrate that our proposed data sharing scheme provides
solid security and high efficiency in practice.

Index Terms—data sharing, dual server, secure two-party com-
putation, searchable encryption

1. Introduction

As the developement of Internet technologies such as
IoT, there is a large amount of data generated by the related
applications every day. With the advent of the era of IoT,
more and more companies choose to upload massive internal
data to the cloud storage, which brings convenience to
enterprises along with the risk of data leakage.

In recent years, the data leakage occurs frequently in
practice. For example, in 2016, Yahoo announced two major

data breaches, which affected more than 1.5 billion account
data and reduced its acquisition price by 350 million dollars
[1]. In 2018, Cambridge Analytica, in partnership with
Trump’s election team and the Brexit campaign, collected
the profiles of millions of American voters on Facebook,
which is one of the most significant data breaches of Face-
book [2]. In 2020, the federal and state governments in the
United States experienced severe data breaches, affecting
more than 1,000 organizations worldwide and launching
supply chain attacks against VMware, Microsoft, and other
commonly used software [3]. Therefore, it is desirable to
design a data storage and sharing scheme for the internal
members to protect data security in such outsourced system.

1.1. Related Work and Challenges

In recent years, with the improvement of people’s aware-
ness of security and privacy, a large amount of works have
focused on data sharing schemes with privacy protection.
Wu et al. [4] proposed a data sharing scheme in the elec-
tronic medical scenario, using blockchain to ensure data
integrity in the process of sharing, and introducing data
masking technology to solve the problem of privacy disclo-
sure. But their work will reduce the accuracy of some data.
Yang et al. [5] designed a data sharing scheme to ensure data
privacy by combining blockchain with attribute-based en-
cryption (ABE) [6]. Tang et al. [7] implemented efficient and
privacy-protecting data sharing schemes using ABE and fog
nodes. However, ABE is a time-cost cryptographic primitive,
which will cause a heavy burden on user side. Shen et al. [8]
use a smart contract mechanism to control data access rights
and ensure data security sharing. The data sharing scheme
proposed by Lu et al. [9] uses the integrity mechanism
based on an algebraic signature to ensure data integrity
and access control to ensure data privacy. The above two
blockchain-based data sharing schemes require third-party
trusted institutions to issue keys, resulting in key escrow
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problems. To acheive the anonymity of data sharing, Lai et
al. [10] introduced a data sharing scheme use traceable ring
signature and blockchain to secure data sharing. The data
sharing mechanism proposed by Wang et al. [11] provides
secure data sharing by using blockchain to monitor par-
ticipants’ behaviors, non-interactive zero-knowledge proof,
and dynamic pseudo-identity policies to hide the identity of
data providers. Zhang et al. [12] proposed a secure multi-
hop re-encryption scheme, which continuously hides the re-
encryption process to ensure that sensitive information is
not leaked, but the data sharing model is one-to-one. Liang
et al. [13] proposed a searchable symmetric encryption-
based decision tree classification scheme that can effectively
protect user privacy. The works of He et al. [14] and Wang
et al. [15] were plagued by a large amount of calculation,
causeing low search efficiency.

In summary, the existing schemes have some issues, such
as reduced data accuracy, low query efficiency, limited in
one-to-one sharing model, and the third-party key escrow.
Therefore, it is a certain gap on researching data sharing
schemes for building an efficient data sharing scheme with-
out lossing the data accuracy and thrid-party issue in one-
to-many model. In this paper, we introduce a novel one-to-
many data sharing scheme to realize efficient queries, and
use double servers to eliminate third-party issue in typical
data sharing schemes.

1.2. Contributions

In this paper, we design a locally oriented data storage
sharing scheme for internal members to protect data security
based on the above situation. The contribution points are as
follows:

• Our proposed scheme adopts dual servers to prevent
a single server from obtaining complete data. We
suggest the secure two-party computation to conduct
the communication and data exchange bwtween two
server, which prevents the data leakage from the
server sides.

• In our proposed scheme, data is transmitted in the
form of ciphertext among different parties. We in-
troduce the searchable encryption to ensure the data
security during the sharing procedure.

• To prevent malicious deletion of data, our proposed
scheme adopts verification mechanism. We introduce
random numbers into the index vector to ensure that
other users will not maliciously tamper with the data.

• To further strengthen system security, our proposed
scheme is to update the key regularly. The user up-
dates retrial vector as well, corresponding to updated
key.

Organization. The rest of this paper is organized as follows.
In Section 2, we reviews the related cryptographic primi-
tives. Then, we introduce the system model, threat model,
and design goals in Section 3. The concrete construction is
described in Section 4. In Section 5, we analyze the security

of our proposed scheme. Finally, the theoretical analysis of
our scheme is given in Section 6.

2. Preliminary

This section reviews some cryptographic primitives,
such as secure two-party computation, secret sharing, and
searchable encryption.

2.1. Secure Two-party Computation

Secure two-party computation was proposed by Yao in
1982 [16], originally developed to solve the millionaire
problem [16].

In this part, we briefly review the typical secure two-
party computation in [16]. The parties will communicate
with each other as follows. Firstly, the function to be
calculated is converted into a computing circuit. Then the
one party involved in the calculation constructs the garbled
circuit and sends the garbled table to the other party, which
communicates through the daze transmission protocol [17].
Then the two parties convert the private value into the
garbled value and input it into the garbled circuit. The result
is obtained through the garbled circuit and output.

The current example of DDH hypothesis-based construc-
tion in [17] is widely used as an instansiation of Yao’s
scheme.

2.2. Secret Sharing

In this part, we briefly review Shamir’s (t, n) threshold
secret-sharing scheme. The details are as follows:

• SS.Share(S, t, n) → (s1, s2, ..., sn): Split secret S
into n pieces, and at least t pieces are needed to
restore secret S.

• SS.Recover(s1, s2, ..., st) → S: Restore secret S
with t secret shares.

2.3. Searchable Encryption

Searchable encryption was proposed in 2000 [18]. Hid-
den vector encryption (HVE) [19] is a searchable encryption
mechanism that supports coalescence, equality, comparison,
and subset query of encrypted data. In our proposed scheme,
we will adopt a hidden vector encryption scheme based
on symmetric encryption (SHVE) [20] to implement the
searchable encryption. The details of SHVE are as follows:

• SHV E.Setup(1λ) → (msk,M): On input the se-
curity parameter λ, it randomly generates a master

secret key msk
$←− (0, 1)λ. It then defines the pay-

load message space M , then it outputs (msk,M).
• SHV E.KeyGen(msk, v) → s : Input the mas-

ter secret key msk and predicate vector v =
{v1, v2, ..., vd}, and the algorithm returns the de-
cryption key s.
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• SHV E.Enc(msk, μ ∈ M,x) → c : On input the
master secret key msk, a message μ, and index
vector x = {x1, x2, ..., xd}, and it returns ciphertext
c associated with (μ, x).

• SHV E.Query(c, s) → μ/⊥: On input the cipher-
text c corresponding to the index vector x and the de-
cryption key s corresponding to the predicate vector
v. If P SHVE

v = 1, it returns μ; otherwise, it returns
⊥. For each v ∈ Σd

∗, x ∈ Σd,

P SHVE
v (x) =

{
1 ∀1 ≤ i ≤ d, (vi = xi orvi = ∗)
0 otherwise

3. Definition and Threat Model

This section introduces the system model, threat model
and desgin goals of our proposed scheme, respectively.

3.1. System Model

This system involves four steps, inlcuding data upload,
data download, date deletion, and key update. The system
model for our scheme consists of two entities, as the server
and the user, as shown in figure 1.

• Server: The system consists of two servers, S1

and S2. The server is responsible for processing
the data uploaded by users, encrypting, retrieving,
and decrypting the data through secure two-party
computing. In addition, the server is also responsible
for regularly updating the master key of the system,
which is conducive to improving system security and
reducing the risk of data breaches.

• User: In our scheme, user Ui can upload and delete
his/her own data or download the data. As a data
owner, Ui can upload and delete his/her data. When
the system needs to update the key, the user is to
update the retrieval vector of the files. Otherwise,
the corresponding file will be deleted. As a data
requester, Ui generates a query vector to retrieve data
he/she needed.

Figure 1. The system model.

3.2. Threat Model

In our scheme, we assume that user Ui is honest but
curious (HBC). Users will strictly implement data upload,
delete, query, key update and the retrieval vector update, but
always keep curious about other’s data and make inferences
based on their known data.

We assume that the two servers are also honest but
curious. The servers will perform each operation according
to the steps specified in the scheme. They will be curious
about the data they get and deduce it. In addition, server S1

and server S2 are not collusive.
Suppose there is a probabilistic polynomial-time (PPT)

HBC adversary. There are two types of attack to be consid-
ered in our proposed scheme:

1) The first type of attack is corrupting the server. In
our scheme, the adversary can corrupt no more than
one server. It can retrieve all the data received by
the server and try to retrieve the data uploaded by
the user.

2) The second type of attack is corrupting the user.
The adversary can retrieve all the data owned and
received by the user and try to crack the key.

3.3. Design Goal

This section analyzes the privacy requirements that the
system needs to meet. As it is a data-sharing scheme for re-
gional internal systems, the following privacy requirements
should be ensured:

• Prevent leakage of uploaded data files. Data files are
internal information and may involve internal orga-
nization secrets. If data files are disclosed to external
organizations in plaintext or directly obtained by a
third-party server, data leakage may cause severe
losses.

• Prevent the encryption key from being cracked. Any
participant in the system cannot fully grasp the data
encryption key of the system; that is, a single server
cannot obtain the complete encryption key, and users
cannot obtain the key by any means to prevent
corrupt participants from destroying the system.

4. Privacy-preserving Data Sharing for Dual
Clouds

In this section, we first introduce the main ideas of the
scheme and then explain the functions and technical details
of each sub-protocol.

4.1. Workflow

The scheme consists of five steps, namely Init, Upload,
Download, Delete, and Update. Their functions are to
initialize the system, upload data, download data, delete
data, and update keys, respectively.
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1) Both servers run InitGlobal to generate the system’s
master key and an encrypted database. Both servers jointly
maintain the database and have copies of it.

2) The user Ui and both servers run Upload together.
The user divides the data and the corresponding index vector
into two parts and sends them to S1 and S2. Servers restore
and encrypt data to the database through secure two-party
computation.

3) Ui runs Download with both servers. Ui generates the
query vector and sends it in two to S1 and S2, respectively.
S1 and S2 calculate the recovery query vector on the security
side, generate the corresponding decryption key, query the
ciphertext, send the ciphertext and the corresponding de-
cryption key to the user, and the user recovers the data. The
decryption key is valid only for specific ciphertext. Users
cannot use the decryption key to decrypt the encrypted data
that does not belong to the query scope.

4) Ui runs Delete with both servers. Ui uploads the cor-
responding retrieval vector and random string to the servers.
The servers use the retrieval vector to find the corresponding
data and confirm whether Ui is the data holder through the
random string. If so, the data will be deleted.

5) The system periodically runs Update to update keys.

4.2. Details of the Scheme

In this section, we describe the implementation steps of
each sub-protocol in technical detail.
Initialization. The protocol is used to initialize the system
and generate the master key of the system and an empty
encrypted database. The detailed steps are shown in the
figure 2.
Upload. The protocol is used to upload data to the encrypted
database EDB, which is run by the user Ui and S1 and S2.
The detailed steps are shown in the figure 3.
Download. This protocol is used to download the required
data and is run by both the user and the two servers. The
detailed steps are shown in the figure 4.
Delete Data. Ui can delete data from the system by exe-
cuting the Delete protocol with both servers. The detailed
steps are shown in the figure 5.
Update Key. To improve system security and reduce the
possibility of password cracking, the system periodically
runs the Update protocol to replace the encryption key. The
technical details are shown in the figure 6.

5. Security Analysis

In this section, we prove the security of our proposed
scheme by black-box leakage analysis with an ideal/real-
world paradigm [21]. Assume that the scenario is run in
PPT environment Z , with two servers, S1 and S2, n =
poly(λ) users as participants, and adversary A. Suppose A′
is a simulation of A in the ideal environment.
Real-world execution. At the outset, environment Z selects
a string str ∈ {0, 1}∗ as input and selects a participant
set I , who are externally/internally corrupted by A. At the

end of the above process, S1 and S2 execute InitGlobal to
initialize the system.

After initialization, Z adaptively selects a polyno-
mial number of commands (comm1, · · · , commk), where
commj = (Uj , OPj), Uj is the execution object of the
command,OPj is the operation that Uj needs to perform,
that is, upload data (Upload, (Xj , F ilej)), download data
(Download, qj), delete data (Delete,Xj), and update key
(Update,X ). When the command is received, user Uj runs
the corresponding protocol with both servers to get the
result.

After each command is executed, if a result is returned,
the results are sent to the environment Z . After all com-
mands have been executed, A sends any message to Z ,
which outputs 1 bit, RealZ,A(2λ).
Ideal execution. Firstly, we define the leakage profile
to simulate a real-world data leakage, namely Λ =
(Linit,Lup,Ldown,Lde,Lupdate). The dataset EDBs is a
simulation of a real-world encrypted database EDB. Then
we define the function FIdeal as follows.

• InitGlobals: When receiving the initialization com-
mand, FIdeal sends the message ”initGlobal Com-
pleted” to S1 and S2, and Linit(1

2λ)to A′.
• Uploads: When receiving the upload command

(Upload, (Xj , F ilej)) from Uj , store (Xj , F ilej) in
EDBs, send the message “j Upload completed” to
S1 and S2, and send Lup(EDBs, F ilej)to A′.

• Downloads: When receiving the upload command
(Download, qj) from Uj , search for all data match-
ing qj and return the matching data set F to
Uj . Send the message “j Download completed”
to S1 and S2. If the server is corrupted, send
(j,Ldown(EDBs, qj)) to A′, if the user is corrupted,
send (j, qj , F,Ldown(EDBs, qj)) to A′.

• Deletes: When receiving the delete command
(Delete,Xj) from Uj , check whether Xj contains
wildcard ∗. If so, send the message “j delete fail” to
S1 and S2. If not, the data matching Xj is searched
and deleted, and the message “j delete completed”
is sent to S1 and S2. If the server is corrupted, send
(j,Lde(EDBs, Xj)) to A′, if the user is corrupted,
send (j,Xj ,Lde(EDBs, Xj))to A′.

• Updates: When receiving the update command
(Update,X ), send the message “update com-
pleted” to S1 and S2. If the server is cor-
rupted, send Lupdate(1

2λ, EDBs,X ) to A′; if the
user is corrupted and is a data owner, send
(j,Xj ,Lupdate(1

2λ, EDBs,X )) to A′, where, j is
the corrupted user id, and Xj is the index vector
uploaded by the user.

The procedure in the ideal environment is the same as
that in the real-world environment. After all commands have
been executed, A′ sends any message to Z , which outputs
1 bit. We define an abstract leakage profile for subsequent
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InitGlobal:

S1 and S2 perform secure two-party computation, compute (MSK1,MSK2, EDB)← f(r1, r2), r1
$←− (0, 1)2λ, r2

$←−
(0, 1)2λ. λ is the security parameter. S1 and S2 store r1 and r2 respectively. f(r1, r2):

1) Compute MSK ← SHV E.Setup(r1 ⊕ r2).
2) Compute (MSK1,MSK2)← SS.Share(MSK, 2, 2).
3) Create an empty encrypted database EDB.
4) Output (EDB,MSK1) to S1, (EDB,MSK2) to S2.

Figure 2. The details of InitGlobal.

Upload:
Servers S1, S2, and user Ui do the following steps to upload data:

1) Ui computes
((Xi1, F ilei1), (Xi2, F ilei2))← SS.Share((Xi, F ilei), 2, 2).

Xi = xi||ri, where xi is the index vector corresponding to Filei and ri
$←− (0, 1)λ is a random string used to

verify identity, both generated by Ui.
2) Ui sends (xi1, F ilei1) to S1, (xi1, F ilei1) to S2.
3) S1 and S2 perform secure two-party computation, compute:

EFilei ← f((xi1, F ilei1,MSK1), (xi2, F ilei2,MSK2)).

f((xi1, F ilei1,MSK1), (xi2, F ilei2,MSK2)):

a) Compute (xi, F ilei,MSK)← SS.Recover((xi1, F ilei1,MSK1), (xi2, F ilei2,MSK2))
b) Compute EFilei ← SHV E.Enc(MSK,Filei,xi)

Figure 3. The details of Upload.

Download:
User Ui and the two servers perform the following steps to retrieve the required data securely:

1) User Ui generates query vector qi and computes (qi1, qi2)← SS.Share(qi, 2, 2), sends qi1 to S1 and qi2 to S2.
2) S1 and S2 perform secure two-party computation, compute

((tk1, EF1), (tk2, EF2))← f((MSK1, qi1), (MSK2, qi2)).

f((MSK1, qi1), (MSK2, qi2)):

a) Compute (MSK, qi)← SS.Recover((MSK1, qi1), (MSK2, qi2)).
b) Compute tk ← SHV E.KeyGen(MSK, qi||∗λ), where ∗ is a wildcard.
c) For ∀EFilei ∈ EDB, compute flag ← SHV E.Query(EFilei, tk), if flag �=⊥, add EFilei into

EFi.
d) Compute (tk1, tk2)← SS.Share(tk, 2, 2; r1 ⊕ r2), (EF1, EF2)← SS.Share(EF, 2, 2; r1 ⊕ r2)
e) Output (tk1, EF1) to S1 and (tk2, EF2) to S2.

3) S1 sends (tk1, EF1) to Ui and S2 sends (tk2, EF2) to Ui.
4) Ui computes tk ← SS.Recover(tk1, tk2), EF ← SS.Recover(EF1, EF2) and F ← SHV E.Query(EF, tk).

Figure 4. The details of Download.

proof, as

Λ = (Linit,Lup,Ldown,Lde,Lupdate)

= (LI
initial,LI

add,LI
query,LI

delete, (LI
query,LI

add,LI
delete))

= (pattIinitial, patt
I
add, patt

I
query, (patt

I
query, patt

I
add,

pattIdelete)).

I means Ideal World, L means leakage profile, and patt
means leakage pattern.

Theorem 1. Our proposed scheme is λ-secure if for all PPT

adversary A, there exists a PPT adversary A′ such that in
all PPT independent environment Z , for all str ∈ {0, 1}∗,

|Pr[RealZ,A(λ) = 1]− Pr[IdealΛZ,A′(λ) = 1]| ≤ negl(λ)

Proof. First, we simulate the view of adversary A ideally
and then prove that there is no difference between the view
of the adversary in the real world and the view of the
adversary in the ideal world, thus proving that if SS is λ-
security, our scheme is also λ-security. A′ is a simulator of
A in the ideal world. SI is a simulator of ideal environment
satisfying λ-security. Let us talk about it by case.
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Delete:
User Ui and the two servers perform the following steps to delete related data securely:

1) User Ui computes (Xi1,Xi2) ← SS.Share(Xi, 2, 2), where Xi = xi||ri, xi is the index vector of the data to
be deleted, and ri is the random string uploaded for verification when the user uploads data.

2) Ui sends Xi1 to S1 and Xi2 to S2.
3) S1 and S2 perform secure two-party computation, compute

a) Compute (Xi,MSK)← SS.Recover((Xi1,MSK1), (Xi2,MSK2)).
b) Compute tkDelete ← SHV E.KeyGen(MSK,Xi), and make sure there is no wildcard ∗ in Xi;

otherwise, end the delete operation as Ui is not the owner of the data to be deleted.
c) For ∀EFilei ∈ EDB, compute flag ← SHV E.Query(EFilei, tkDelete), if flag �=⊥, delete EFilei.

4) S1 sends message ”Delete Completed” to Ui.

Figure 5. The details of Delete.

Update:
Both servers and all data owner users execute the protocol to update the key as follows:

1) Two servers issue an update request to the data owners, and the data owners sends the data index vector to S1

and S2, assuming the index set is X = {X1, ...,Xm} (if the user does not want to save a file, the corresponding
index vector of the file can not be uploaded, which is equivalent to deleting the file). Users compute (X1,X2)←
SS.Share(X , 2, 2), and send X1 to S1 and X2 to S2.

2) S1 and S2 perform secure two-party computation, compute

(MSK1,MSK2, EDB′)← f((X1, r
′
1,MSK1), (X2, r

′
2,MSK2)), r

′
1

$←− (0, 1)2λ, r′2
$←− (0, 1)2λ.

S1 and S2 store r′1 and r′2 respectively. f((X1, r
′
1,MSK1), (X2, r

′
2,MSK2)):

a) Compute MSK′ ← SHV E.Setup(r′1 ⊕ r′2).
b) Compute X ← SS.Recover(X1,X2), MSK ← SS.Recover(MSK1,MSK2).
c) For ∀xi ∈ X , compute

tk ← SHV E.KeyGen(xi,MSK),

F ilei ← SHV E.Query(EFilei, tk),

EF ile′i ← SHV E.Enc(MSK′, F ilei,xi), F ilei �=⊥ .

d) Compute (MSK′
1,MSK′

2)← SS.Share(MSK′, 2, 2).
e) Output (EDB′,MSK′

1) to S1, (EDB′,MSK′
2) to S2.

3) S1 deletes r1 and EDB. S2 deletes r2 and EDB.

Figure 6. The details of Update.

Server Corruption. The server participates in the execution
of all sub-protocols, so A′ can access all the information in
the process. The simulation is as follows:

• Simulation of InitGlobal: Simulate a secure two-
party computation, compute

EDB ← SI(LI
initial(1

2λ)),

(MSK1,MSK2)← SS.Share(02λ, 2, 2).

Send MSK1 to S1 and MSK2 to S2.
• Simulation of Upload: Simulate a secure two-party

computation, compute

EFilei ← SI(LI
add(MSK,Filei,xi).

Send EFilei to S1 and S2.
• Simulation of Download: Simulate a secure two-

party computation, compute

(tk, EF )← SI(LI
query(MSK, qi)),

(tk1, tk2)← SS.Share(tk, 2, 2),

(EF1, EF2)← SS.Share(EF, 2, 2).

Send (tk1, EF1) to S1 and (tk2, EF2) to S2.
• Simulation of Delete: Simulate a secure two-party

computation, compute

tkDelete ← SI(LI
delete(MSK,Xi))

• Simulation of Update: Compute

(MSK ′
1,MSK ′

2)← SS.Share(12λ, 2, 2).

Simulate a secure two-party computation, compute

EDB′ ← SI(Lupdate(X ),MSK,MSK ′, EDB).

Send EDB′ to S1 and S2.

Next, we use the following game sequence to prove that A’s
view of the ideal world is no different from that of the real
world.
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• G(0): Run the RealZ,A(2λ) experiment.
• G(1): Simulate secure two-party computation, with

the rest aligned with G(0). Obviously, the adver-
sary’s view will not be affected by this change.

• G(2): Replace r1⊕r2 with the 2λ-bit random string
r in InitGlobal. The rest is the same as G(1). Since
A′ corrupts at most one server, and the distribution
probability of r and r1 ⊕ r2 is the same, A′ cannot
tell the difference between them, ensuring that the
change does not affect the view of A′.

• G(3): Replace r1⊕r2 with the 2λ-bit random string
r in Download. The rest is the same as G(2).
Similarly, the change does not affect the view of
A′.

• G(4): Replace r′1⊕r′2 with the 2λ-bit random string
r′ in Update. The rest is the same as G(3). Simi-
larly, the change does not affect the view of A′.

• G(5): Replace the encrypted database EDB with
the following simulated database:

– In InitGlobal, replace MSK and EDB with
12λ,

EDB ← SI(LI
initial(1

2λ)).

– In Upload, replace EFilei with

EFilei ← SI(LI
add(MSK,Filei,xi).

– In Download, replace (tk, EF ) with

tkDelete ← SI(LI
delete(MSK,Xi)).

(tk, EF )← SI(LI
query(MSK, qi)),

– In Delete, replace tkDelete with

tkDelete ← SI(LI
delete(MSK,Xi)).

– In Update, relapce EDB′ and MSK ′ with

EDB′ ← SI(Lupdate(X ),MSK,MSK ′, EDB),

and 12λ.

The rest is the same as G(4). The replacement of
MSK does not affect A′’s view. In addition, the λ-
security of ideal environment ensures that all simu-
lated upload, download, delete and update operations
are indistinguishable from real-world environment.
Thus, G(5) is equivalent to FIdeal.

User Corruption. If the user is not a data owner, the user
only participates in the Download protocol. A′ can only
obtain the data obtained by the user. Emulation can be done
during each Download by simulating secure two-party com-
putation, computing (tk, EF ) ← SI(LI

query(MSK, qi)),
(tk1, tk2) ← SS.Share(tk, 2, 2) and (EF1, EF2) ←
SS.Share(EF, 2, 2), and sending ((tk1, tk2), (EF1, EF2))
to Ui. A′ can get (qi, tk, EF ) from Ui.

If the user is a data owner, the simulation is as follows:

• Simulation of Upload: Sample and store Xi
$←−

{0, 1}2λ as the data index vector of Ui. A′ can get
(Filei,Xi) from Ui.

• Simulation of Delete: A′ can get Xi from Ui. Ui

sends Xi to S1 and S2.
• Simulation of Update: Ui sends Xi to S1 and S2.
A′ can get Xi from Ui.

Next, we use the following game sequence to prove that A’s
view of the ideal world is no different from that of the real
world.

• G(0) and G(1) are the same as in the server corrup-
tion case.

• G(2): Compute

(tk′, EF ′)← SI(LI
query(MSK, qi)),

(tk′1, tk
′
2)← SS.Share(tk, 2, 2),

(EF ′
1, EF,2 )← SS.Share(EF, 2, 2).

In Download, use (tk′1, tk
′
2) and (EF ′

1, EF ′
2) in-

stead of (tk1, tk2) and (EF1, EF2). The rest is the
same as G(1). Since I is λ-security, this guarantees
that the above changes will not affect the view of
A′.

• G(3): Compute

SI(LI
delete(MSK,Xi))

instead of Delete. The rest is the same as G(2).
Since I is λ-security, this guarantees that the above
changes will not affect the view of A′.

• G(4): Compute

(MSK ′
1,MSK ′

2)← SS.Share(12λ, 2, 2).

EDB′ ← SI(Lupdate(X ),MSK,MSK ′, EDB),

to replace that in Update. The rest is the same as
G(3). Since I is λ-security, this guarantees that the
above changes will not affect the view of A′. Thus,
G(4) is equivalent to FIdeal.

Notation Meaning
λ security parameter
n number of users
m number of multiplications over group G

m′ number of non-wildcard elements in a bloom filter [22]
TM time of a multiplication
TE time of an exponential calculation
Tp time of a power ooperation
TP time of a bilinear pair operation

TPRF time taken to compute a pseudo-random function
TXOR time taken to perform an exclusive-or operation over λ
TEnc time taken to compute a ciphertext
TDec time taken to decrypt a ciphertext

TABLE 1. NOTATIONS FOR THEORETICAL ANALYSIS
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6. Performance Analysis

We first give a list of notations needed in this section
for our theoretical analysis in Table 1.

We use theoretical analysis to evaluate our scheme,
evaluate the efficiency of data encryption and decryption,
comparing with [10] and [12]. The analysis results are
shown in the table 2. According to the time consumption
of SHVE’s algorithms [20], we can deduce the time cost of
our scheme.

Scheme Data Upload Data Download
Proposed (m)TPRF O(m′) + 2λ+

2((m′)TXOR + TDec)
[10] (4n− 1)TM+ (2n)TE + 4TP+

(4n+ 6)TE + TEnc 2TEnc + TDec

[12] TP + nTp + TM 2(TP + TM + 2Tp)
TABLE 2. TIME COST OF DATA UPLOAD AND DOWNLOAD.

Data upload and data download are the two most fre-
quently used sub-protocols in this solution. It can be seen
from Table 2, that the time cost of this scheme in data
uploading and downloading is better than [10] and [12]. In
our scheme, the time spent uploading and downloading data
is independent of the number of users. When there are nu-
merous users, the overhead of [10] and [12] is considerable.
Exponential operation and bilinear pair operation are two
time-consuming operations. The schemes proposed by [10]
and [12] require multiple exponential operations and bilinear
pair operations, but our scheme does not use exponential
operation, which leads to relatively small time cost.

7. Conclusion

In this paper, we combine secret sharing, secure two-
party computation, with searchable encryption to design a
localized internal-oriented data sharing scheme, which is
secure under certain leakage circumstances. In our proposed
scheme, the data privacy holds during the entire sharing
procedure. Additionally, our proposed scheme prevents the
malicious deletion by adopting verification mechanism. To
further strengthen system security, our proposed scheme
supports the key update and retrial vector update. In the
future, we will consider to improve its architecture and
functions and design for other scenarios, such as smart
medical care and resident information management.
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