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Abstract

We report here a facile one step hydrothermal method to anchor MoO; nanoparticles in graphene.
The bifunctionality of graphene-MoQO; nanoparticles is demonstrated via dye adsorption and
antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic
dye, from water compared to pristine MoO; and graphene. However, it showed negligible adsorption
of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic
property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

1. Introduction

A major global challenge, mostly in developing countries, is to sustain clean and pure water with rapid
industrialization, population growth and exponential improvements in living standards. It is apparent that the
natural water resources are often contaminated by waste organic/inorganic materials and pathogens originating
from unavoidable human activities. Therefore, there is a growing need for affordable technologies for water
preservation and purification.

Synthetic dyes wasted from various industries are most notable examples of organic pollutants in water [ 1—
5]. Large quantities of different types of synthetic dyes (~10° tons in a year) are produced globally and nearly
1.5 x 10’ tons are released into the environment (mostly in water bodies) as waste [1-5]. This situation is more
alarming in countries like China and India where the consumption rate of dyes are higher. It amounts to ~40%-—
45% and ~10% of global consumption for China and India respectively [4, 5]. Removal of these waste dye
pollutants from water is vital for the protection of the ecosystem. One widely used technique for this purpose is
adsorption [6, 7]. Inorganic materials have been extensively investigated for effective adsorption of dyes from
water [6—17]. Although these materials showed excellent adsorption properties, their activity is limited in killing
or inhibiting pathogenic growth [18]. Therefore, it would be extraordinary if the adsorption material shows
antimicrobial activities so that it acts as a bifunctional agent for water purification. Reports on bifunctional
materials are sporadic in this context [6, 19, 20]. One example of such bifunctional material found in the
literature is AgyWQO, [19, 20]. Dutta et al reported utilization of Ag, WO, nanorods for adsorption of various
cationic dyes and also demonstrated the bactericidal effect against both gram-negative and gram-positive
bacterial strains [19]. Later on, Roca et al combined both experimental and theoretical methods to explain the
facet-dependent photocatalytic and antibacterial properties of Ag, WO, crystals [20]. Therefore, bifunctional
materials need global attention and there is an urgent need to explore other novel materials that demonstrate
both these activities simultaneously. One such material example may be molybdenum trioxide (MoO3). MoOs is
an important class of transition metal oxides having its application in wide verity of areas such as optical,
electrochemical, electronics and sensors applications [21-29]. However, there are very limited reports on the
direct adsorption properties of MoOj3 [30, 31]. Ma et al explored the possibility of adsorption of methylene blue
(MB) dye by MoO3; nanobelts [30]. Wang et al demonstrated selective adsorption of organic dyes by 3D
hierarchical architecture of MoOj3 [31]. Itis also noted here that there are only few examples of
photodegradation of organic dyes by MoOj3 [32—39]. Similarly, very few reports are available on the
antimicrobial properties of MoO; [40—42]. Surprisingly, to the best of our knowledge, there are no reports so far

©2016 IOP Publishing Ltd
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where both organic dye adsorption (or degradation) and antibacterial properties are exploited by any MoO3
nanostructures. In view of it, it would be interesting to explore MoO3 nanostructures.

In this context, we report here that MoO3 nanoparticle anchored graphene demonstrates the bifunctionality
towards dye adsorption and antibacterial activities. The MoOj;-graphene showed excellent direct adsorption of a
cationic dye (MB) than an anionic dye methyl orange (MO) compared to pristine graphene and MoOs. The
maximum adsorption capacity of MB by MoOs-graphene is 625 mg g~ ', which is higher than or comparable to
some of the activated carbons and mesoporous carbons. The MoOj;-graphene composite also showed
antibacterial activity towards both gram-positive and gram-negative bacteria. Therefore, it was commented that
MoOs;-graphene acts as a bifunctional agent for water purification.

2. Experimental

MoOj; nanoparticles were anchored to graphene surface by a simple hydrothermal method. The graphene
nanopowder (obtained from Sisco Research Laboratories Pvt. Ltd India) was treated with concentrated HNOj;
for 24 h and washed thoroughly by distilled water. The acid treated graphene (30 mg) was dispersed in 30 ml of
distilled water by ultrasonication. Then, 500 mg of (NH,),MoS, was dissolved in the above solution. The sol was
hydrothermally treated at 160 °C for 12 h. The black product after cooling was recovered by centrifugation and
washed with deionized water and dried at 110 °C. The dried product was calcined at 350 °Cfor 3 hinairata
heating rate of 5 °C min~ . Pristine MoO5 was synthesized by the same protocol without graphene addition.
Graphene-MoO; nanoparticles and pristine MoOj3 are denoted as G-MoQO3 and MoOj respectively.

The materials were characterized by powder x-ray diffraction (Cu-K, radiation, A = 1.5418 A),
transmission electron microscopy (TEM), N, adsorption—desorption (BET) isotherms and Fourier transform
infrared (FTIR) spectroscopy.

For adsorption of MB from water, 0.02 g of G-Mo0O3, MoO3 and graphene were dispersed into 50 ml of MB
solution of different concentrations ranging from 50 to 500 ppm at room temperature. These solutions were
stirred continuously. During this process, samples were collected from the solution at different time intervals
and the concentration of the dye was determined by UV—visible spectroscopy. The same procedure was adopted
for adsorption of MO. The concentrations of MB and MO were analyzed from absorbance at 663 nm and
466 nm wavelength respectively.

The antibacterial activity was evaluated on Staphylococcus aureus (Gram-positive bacteria) and Escherichia
coli (Gram-negative bacteria) by using optical density (ODgo) and colony-forming unit experiments on agar
plates at different incubation times as described in [43, 44].

3. Results and discussion

The representative TEM images of the investigated materials are shown in figure 1. The images of pristine MoO;
indicate that they are crystallized in irregular shape and form aggregates (figures 1(b) and (c)). However, while
performing the synthesis in presence graphene, MoQj crystallized in the form of nanoparticles in the graphene
surface as shown in figures 1(d) and (e). Some of the MoOj3 nanoparticles take the shape of nanospindles

(figure 1(f)). The MoOj3 nanospindles have typical length and diameter of about 50-100 nm and 10-50 nm
respectively. The x-ray diffraction patterns (figure 2(a)) of both MoO3 and G-MoO; can be clearly indexed to a-
MoOj5 phase (JCPDS 05-0508). N, adsorption/desorption isotherms show BET surface areas of 60 m* g~ ' and
68 m”> g~ ' for MoOs and G-MoQj respectively (figure 2(b)).

The possible growth mechanism is illustrated schematically in figure 3. Initially, MoS,2~ subunits from
(NH4),MoS, is expected to graft to the surface functional groups of graphene. Further, the hydrothermal
treatment results in the formation of MoS; nanocrystallites in the graphene surface as follows:

(NH,)>(MoS,) — MoS; + 2NH; + H,S. When the product is heated at 350 °C in air, MoS; nanocrystallites
oxidized to MoO; nanoparticles (figure 3(a)). In absence of graphene, Mo0S, %~ subunits agglomerate themselves
to form bulk MoS; which in turn converts to bulk MoOj (figure 3(b)).

Figure 4(a) shows the adsorption curves of MB, a cationic dye, by G-MoOs. It is observed that G-MoO;
rapidly adsorbs MB at lower concentrations (<250 ppm). It reached more than 95% of adsorption within
30 min for 100 and 250 ppm MB. However, the adsorption rate is 35% for 500 ppm MB. It is interesting to note
the corresponding UV-visible absorption spectra (figures 4(b)—(d)). For example, the peak at 663 nm
immediately vanished while there is emergence of additional broad peak below 400 nm for 70 ppm of MB. This
peak intensity increases continuously with adsorption time. For 250 ppm of MB, 663 nm and 292 peaks
continuously decreases with time and after 30 min, the broad peak below 400 nm starts evolving. However, this
behavior is not observed for 500 ppm of MB. The equilibrium adsorption capacity (q,) was calculated by
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Figure 1. Transmission electron micrographs of (a) graphene, (b) and (c) MoO3, (d)—(f) G-MoOs.
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Figure 2. (a) X-ray diffraction patterns and (b) N, adsorption—desorption isotherms of G-MoO; and MoOs.

(qe = W), where C, is the initial concentration of MB, C, is the equilibrium concentration of MB, Vis the
volume of the solution and W is the mass of G-MoOQj3 taken in the experiment [12, 13]. Figure 5(a) shows the
variation of equilibrium adsorption capacity as a function of the equilibrium concentration of MB in the
solution. The absorption data were fitted to Langmuir isotherm model which states that % =% 4 ﬁ, where

e Im 2m

K, is the Langmuir adsorption constant and g, is the maximum adsorption capacity [12, 13]. Thus, a plot of %

versus C, should be linear as shown in figure 5(b). The maximum adsorption capacity of MB by G-MoOs3 is
evaluated to be 625 mg g~ '. These adsorption values are much higher than reported MoO5 nanostructures

[30, 31]. Itis also higher than or comparable to some of the activated carbons, mesoporous carbon, carbon
nanotubes and graphene [12—17]. Similar high adsorption was shown by WO; nanosheets [45]. It indicates that
G-MoOj; possesses excellent adsorption capacities for MB. The absorption data did not follow the Freundlich
isotherm model which states that Ln g, = Ln k¢ + % Ln C,, where k¢is Freundlich constant and 1/nisan
empirical parameter [12, 13]. The nonlinearity of Lng, versus LnC, is shown in figure 5(c).
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Figure 3. Schematic representation of the growth of (a) G-MoOj3 and (b) pristine MoO3.
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Figure 4. (a) Adsorption rate curves for MB by G-MoQ;, UV-visible absorption spectra of (b) 70 ppm, (c) 250 ppm and (d) 500 ppm
of MB at different absorption times with 0.02 g of G-MoO3.

The kinetics of the adsorption of MB (250 ppm) was also fitted to the pseudo first-order and pseudo second-

order kinetic models. The pseudo first-order model is represented by: log (g, — q,) = log g, — Fkost’ where k
is the rate constant of adsorption, q is the amount of MB adsorbed at time ¢ [12, 13]. The pseudo second-order
model is represented by: qL = ; -+ qi, where k, is the pseudo-second-order rate constant [12, 13]. The
't 2e e

linearity of qi versus ¢ (figure 6(b)) is more pronounced than the linearity of log (g, — g,) versus ¢t (figure 6(a)).
The correlation coefficient (R*) values for first-order and second-order fittings are 0.94 and 0.99 respectively.
Therefore, it is commented that the adsorption of MB onto G-MoO; fits the second-order kinetics.

Figure 7(a) shows the comparison of MB adsorption by G-MoOj3, pristine MoOs and graphene. It is
apparent that adsorption rate is significantly higher for G-MoOj than pristine MoO3 and graphene. Again,

pristine MoO3 shows better adsorption than graphene. It is noted that the surface areas of G-MoO; (68 m? g

4
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Figure 5. (a) Variation of the adsorption capacity as a function of the equilibrium concentration of MB, (b) Langmuir isotherm and (c)
Freundlich isotherm fitting.
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Figure 6. (a) Pseudo first-order kinetic and (b) pseudo-second-order kinetic plots for adsorption of MB (250 ppm) by G-MoO3.

and MoOs (60 m?* g~ ') are almost identical. Therefore, the surface area effect may be ruled out. It is possible that
graphene and MoOj nanoparticles synergistically work to enhance the adsorption capacity.

Adsorption of MB was also confirmed by FTIR spectra. Figures 7(b) and (c) indicates that new peaks
appeared at 1050-1650 cm ™~ (marked by the dotted box) corresponding to the vibrations of MB molecules after
adsorption of MB by G-MoQOj3; and MoOjs. It showed that the MB molecules effectively adsorbed on MoO;
surface. However, no such vibrations of MB can be observed for pristine graphene (figure 7(d)). Therefore, it is
expected that graphene acts as a catalyst in enhancing the adsorption capacity of MoOs.

The graphene-MoO; nanoparticles were also employed to adsorb an anionic dye such as MO. However, the
UV-visible spectra confirm that G-MoQOj3 does not show adsorption of MO (figure 8(a)). It is again supported by
the FTIR spectra obtained from G-MoOj after the adsorption of MO experiment (figure 8(b)). It suggests that
G-MoOj; shows selective adsorption towards cationic dye.

The antibacterial experiments show that the bacteria cultures achieve growth profiles attaining very low cell
concentration of 0.1 OD and 0.7 OD at 12 h incubation for S. aureus and E. coli respectively with G-MoOj at
0.4 mg ml~ ' concentration (figures 9(a) and (b)). It indicates that the bacterial growth is efficiently inhibited by
G-MoOj3. Moreover, the colony forming unit assay of S. aureus and E. coli showed visible growth efficiency of

5
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Figure 7. (a) Comparison of adsorption rate curves for 100 ppm MB with graphene, MoO; and G-MoO3, FTIR spectra of (b)
G-MoO3, (c) MoOj3 and (d) graphene before and after MB adsorption.
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Figure 8. (a) UV-visible absorption spectra of 100 ppm MO at different absorption times with 0.02 g of G-MoOj; and (b) FTIR spectra
G-MoOj; before and after MO adsorption.

above 90% and 80% respectively at 24 h (figures 9(c) and (d). This observation again demonstrates the
bacteriostatic property of G-MoOs [43, 44, 46].

The exact adsorption and antibacterial mechanism is not well understood and a more rigorous study is
required via XPS, NMR, mass spectroscopy and i situ/ ex situ electron microscopy [47]. However, it may be
possible that graphene may induce generation of hydroxyl radicals (-OH) from hydroxyl groups (OH) present in
MoOs; surface. This reactive species in turn reacts with the MB molecule after adsorption on the MoOj; surface
and results in degradation [39, 48—50]. The rate of degradation increases with time and, therefore, the peak
intensity below 400 nm increases continuously with time (figures 4(b) and (c)). Again, it is also well known that
reactive hydroxyl radicals (-OH) oxidize the bacterial cell membrane [18]. Hence, whenever the bacteria comes
in contact with G-MoO:3, it acts as an antibacterial agent due to the presence of hydroxyl radicals (-OH) in the
surface of MoOjs. Therefore, it can be anticipated that graphene acts as a catalyst for adsorption and antibacterial

activities.
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Figure 9. Optical density (600 ,,,) growth profile and cell viability (%) of S. aureus (a) and (c) and E. coli (b), (d) treated with G-MoOs3
at different incubation times.

4, Conclusion

In summary, a simple hydrothermal method to anchor MoO3 nanoparticles in graphene is described. The
nanocomposite demonstrated excellent adsorption of a cationic dye (MB) than an anionic dye (MO). It shows
fast adsorption up to 250 ppm of MB within 30 min. The maximum adsorption capacity of MBis 625 mg g~ .
Again, the graphene-MoO; nanoparticles can serve as an antibacterial agent to inhibit the multiplication of
bacteria cells in water due to the bacteriostatic nature. Therefore, it is termed that graphene-MoQO3 nanoparticles
actas a bifunctional agent for water purification.
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