PAPER

MoO₃ nanoparticle anchored graphene as bifunctional agent for water purification

To cite this article: Homen Lahan et al 2016 Mater. Res. Express 3 105003

View the article online for updates and enhancements.

INCLUSIVE PUBLISHING TRUSTED SCIENCE

> Improved photocatalytic degradation of methylene blue and rhodamine G dye under UV-radiation by rGO-MoO₃
> Ruhinaz Ushal, Bilal Ahmed, Arvind Singh et al.

PURPOSE-LED

PUBLISHING^{*}

- Efficient non-fullerene organic solar cells employing aqueous solution-processed MoO₃ as a hole-transporting layer Yaozhao Li, Peng Li, Minghao Qu et al.
- A facile one pot synthesis of MoO₃ on reduced graphene oxide (RGO) and electrochemical studies for energy applications

Krishnamurthy G and Veeresha G

UNITED THROUGH SCIENCE & TECHNOLOGY

Materials Research Express

PAPER

RECEIVED 27 January 2016

CrossMark

REVISED 5 March 2016

ACCEPTED FOR PUBLICATION 18 April 2016

PUBLISHED 7 October 2016

MoO₃ nanoparticle anchored graphene as bifunctional agent for water purification

Homen Lahan¹, Raju Roy², Nima D Namsa² and Shyamal K Das¹

¹ Department of Physics, Tezpur University, Assam, India, 784028

 2 $\,$ Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India, 784028

E-mail: namsa@tezu.ernet.in and skdas@tezu.ernet.in

Keywords: graphene, MoO3, nanocomposites, adsorption

Abstract

We report here a facile one step hydrothermal method to anchor MoO₃ nanoparticles in graphene. The bifunctionality of graphene-MoO₃ nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO₃ and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO₃ nanoparticles exhibited bacteriostatic property against both Gram-negative (*E. coli*) and Gram-positive (*S. aureus*) bacteria.

1. Introduction

A major global challenge, mostly in developing countries, is to sustain clean and pure water with rapid industrialization, population growth and exponential improvements in living standards. It is apparent that the natural water resources are often contaminated by waste organic/inorganic materials and pathogens originating from unavoidable human activities. Therefore, there is a growing need for affordable technologies for water preservation and purification.

Synthetic dyes wasted from various industries are most notable examples of organic pollutants in water [1-5]. Large quantities of different types of synthetic dyes (~10⁶ tons in a year) are produced globally and nearly $1.5 \times 10^{\circ}$ tons are released into the environment (mostly in water bodies) as waste [1–5]. This situation is more alarming in countries like China and India where the consumption rate of dyes are higher. It amounts to \sim 40%– 45% and ~10% of global consumption for China and India respectively [4, 5]. Removal of these waste dye pollutants from water is vital for the protection of the ecosystem. One widely used technique for this purpose is adsorption [6, 7]. Inorganic materials have been extensively investigated for effective adsorption of dyes from water [6-17]. Although these materials showed excellent adsorption properties, their activity is limited in killing or inhibiting pathogenic growth [18]. Therefore, it would be extraordinary if the adsorption material shows antimicrobial activities so that it acts as a bifunctional agent for water purification. Reports on bifunctional materials are sporadic in this context [6, 19, 20]. One example of such bifunctional material found in the literature is Ag₂WO₄ [19, 20]. Dutta et al reported utilization of Ag₂WO₄ nanorods for adsorption of various cationic dyes and also demonstrated the bactericidal effect against both gram-negative and gram-positive bacterial strains [19]. Later on, Roca et al combined both experimental and theoretical methods to explain the facet-dependent photocatalytic and antibacterial properties of Ag₂WO₄ crystals [20]. Therefore, bifunctional materials need global attention and there is an urgent need to explore other novel materials that demonstrate both these activities simultaneously. One such material example may be molybdenum trioxide (MoO_3). MoO_3 is an important class of transition metal oxides having its application in wide verity of areas such as optical, electrochemical, electronics and sensors applications [21–29]. However, there are very limited reports on the direct adsorption properties of MoO₃ [30, 31]. Ma et al explored the possibility of adsorption of methylene blue (MB) dye by MoO₃ nanobelts [30]. Wang et al demonstrated selective adsorption of organic dyes by 3D hierarchical architecture of MoO_3 [31]. It is also noted here that there are only few examples of photodegradation of organic dyes by MoO₃ [32-39]. Similarly, very few reports are available on the antimicrobial properties of MoO_3 [40–42]. Surprisingly, to the best of our knowledge, there are no reports so far

where both organic dye adsorption (or degradation) and antibacterial properties are exploited by any MoO₃ nanostructures. In view of it, it would be interesting to explore MoO₃ nanostructures.

In this context, we report here that MoO_3 nanoparticle anchored graphene demonstrates the bifunctionality towards dye adsorption and antibacterial activities. The MoO_3 -graphene showed excellent direct adsorption of a cationic dye (MB) than an anionic dye methyl orange (MO) compared to pristine graphene and MoO_3 . The maximum adsorption capacity of MB by MoO_3 -graphene is 625 mg g⁻¹, which is higher than or comparable to some of the activated carbons and mesoporous carbons. The MoO_3 -graphene composite also showed antibacterial activity towards both gram-positive and gram-negative bacteria. Therefore, it was commented that MoO_3 -graphene acts as a bifunctional agent for water purification.

2. Experimental

 MoO_3 nanoparticles were anchored to graphene surface by a simple hydrothermal method. The graphene nanopowder (obtained from Sisco Research Laboratories Pvt. Ltd India) was treated with concentrated HNO₃ for 24 h and washed thoroughly by distilled water. The acid treated graphene (30 mg) was dispersed in 30 ml of distilled water by ultrasonication. Then, 500 mg of $(NH_4)_2MoS_4$ was dissolved in the above solution. The sol was hydrothermally treated at 160 °C for 12 h. The black product after cooling was recovered by centrifugation and washed with deionized water and dried at 110 °C. The dried product was calcined at 350 °C for 3 h in air at a heating rate of 5 °C min⁻¹. Pristine MoO₃ was synthesized by the same protocol without graphene addition. Graphene-MoO₃ nanoparticles and pristine MoO₃ are denoted as G-MoO₃ and MoO₃ respectively.

The materials were characterized by powder x-ray diffraction (Cu-K_{α} radiation, $\lambda = 1.5418$ Å), transmission electron microscopy (TEM), N₂ adsorption–desorption (BET) isotherms and Fourier transform infrared (FTIR) spectroscopy.

For adsorption of MB from water, 0.02 g of G-MoO₃, MoO₃ and graphene were dispersed into 50 ml of MB solution of different concentrations ranging from 50 to 500 ppm at room temperature. These solutions were stirred continuously. During this process, samples were collected from the solution at different time intervals and the concentration of the dye was determined by UV–visible spectroscopy. The same procedure was adopted for adsorption of MO. The concentrations of MB and MO were analyzed from absorbance at 663 nm and 466 nm wavelength respectively.

The antibacterial activity was evaluated on *Staphylococcus aureus* (Gram-positive bacteria) and *Escherichia coli* (Gram-negative bacteria) by using optical density (OD_{600}) and colony-forming unit experiments on agar plates at different incubation times as described in [43, 44].

3. Results and discussion

The representative TEM images of the investigated materials are shown in figure 1. The images of pristine MoO₃ indicate that they are crystallized in irregular shape and form aggregates (figures 1(b) and (c)). However, while performing the synthesis in presence graphene, MoO₃ crystallized in the form of nanoparticles in the graphene surface as shown in figures 1(d) and (e). Some of the MoO₃ nanoparticles take the shape of nanospindles (figure 1(f)). The MoO₃ nanospindles have typical length and diameter of about 50–100 nm and 10–50 nm respectively. The x-ray diffraction patterns (figure 2(a)) of both MoO₃ and G-MoO₃ can be clearly indexed to α -MoO₃ phase (JCPDS 05-0508). N₂ adsorption/desorption isotherms show BET surface areas of 60 m² g⁻¹ and 68 m² g⁻¹ for MoO₃ and G-MoO₃ respectively (figure 2(b)).

The possible growth mechanism is illustrated schematically in figure 3. Initially, $MOS_4{}^{2-}$ subunits from $(NH_4)_2MOS_4$ is expected to graft to the surface functional groups of graphene. Further, the hydrothermal treatment results in the formation of MOS_3 nanocrystallites in the graphene surface as follows: $(NH_4)_2(MOS_4) \rightarrow MOS_3 + 2NH_3 + H_2S$. When the product is heated at 350 °C in air, MOS_3 nanocrystallites oxidized to MOO_3 nanoparticles (figure 3(a)). In absence of graphene, $MOS_4{}^{2-}$ subunits agglomerate themselves to form bulk MOS_3 which in turn converts to bulk MOO_3 (figure 3(b)).

Figure 4(a) shows the adsorption curves of MB, a cationic dye, by G-MoO₃. It is observed that G-MoO₃ rapidly adsorbs MB at lower concentrations (<250 ppm). It reached more than 95% of adsorption within 30 min for 100 and 250 ppm MB. However, the adsorption rate is 35% for 500 ppm MB. It is interesting to note the corresponding UV–visible absorption spectra (figures 4(b)–(d)). For example, the peak at 663 nm immediately vanished while there is emergence of additional broad peak below 400 nm for 70 ppm of MB. This peak intensity increases continuously with adsorption time. For 250 ppm of MB, 663 nm and 292 peaks continuously decreases with time and after 30 min, the broad peak below 400 nm starts evolving. However, this behavior is not observed for 500 ppm of MB. The equilibrium adsorption capacity (q_e) was calculated by

 $\left(q_e = \frac{(C_o - C_e)V}{W}\right)$, where C_o is the initial concentration of MB, C_e is the equilibrium concentration of MB, V is the volume of the solution and W is the mass of G-MoO₃ taken in the experiment [12, 13]. Figure 5(a) shows the variation of equilibrium adsorption capacity as a function of the equilibrium concentration of MB in the solution. The absorption data were fitted to Langmuir isotherm model which states that $\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{K_2 q_m}$, where K_2 is the Langmuir adsorption constant and q_m is the maximum adsorption capacity [12, 13]. Thus, a plot of $\frac{C_e}{q_e}$ versus C_e should be linear as shown in figure 5(b). The maximum adsorption capacity of MB by G-MoO₃ is evaluated to be 625 mg g⁻¹. These adsorption values are much higher than reported MoO₃ nanostructures [30, 31]. It is also higher than or comparable to some of the activated carbons, mesoporous carbon, carbon nanotubes and graphene [12–17]. Similar high adsorption was shown by WO₃ nanosheets [45]. It indicates that G-MoO₃ possesses excellent adsorption capacities for MB. The absorption data did not follow the Freundlich isotherm model which states that Ln $q_e = \text{Ln } k_f + \frac{1}{n} \text{Ln } C_e$, where k_f is Freundlich constant and 1/n is an empirical parameter [12, 13]. The nonlinearity of Ln q_e versus Ln C_e is shown in figure 5(c).

Figure 4. (a) Adsorption rate curves for MB by G-MoO₃, UV-visible absorption spectra of (b) 70 ppm, (c) 250 ppm and (d) 500 ppm of MB at different absorption times with 0.02 g of G-MoO₃.

The kinetics of the adsorption of MB (250 ppm) was also fitted to the pseudo first-order and pseudo secondorder kinetic models. The pseudo first-order model is represented by: $\log(q_e - q_t) = \log q_e - \frac{k}{2.303}t$, where k is the rate constant of adsorption, q is the amount of MB adsorbed at time t [12, 13]. The pseudo second-order model is represented by: $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$, where k_2 is the pseudo-second-order rate constant [12, 13]. The linearity of $\frac{t}{q_t}$ versus t (figure 6(b)) is more pronounced than the linearity of $\log(q_e - q_t)$ versus t (figure 6(a)). The correlation coefficient (R^2) values for first-order and second-order fittings are 0.94 and 0.99 respectively. Therefore, it is commented that the adsorption of MB onto G-MoO₃ fits the second-order kinetics.

Figure 7(a) shows the comparison of MB adsorption by G-MoO₃, pristine MoO₃ and graphene. It is apparent that adsorption rate is significantly higher for G-MoO₃ than pristine MoO₃ and graphene. Again, pristine MoO₃ shows better adsorption than graphene. It is noted that the surface areas of G-MoO₃ (68 m² g⁻¹)

Freudlich isotherm fitting.

and MoO_3 (60 m² g⁻¹) are almost identical. Therefore, the surface area effect may be ruled out. It is possible that graphene and MoO_3 nanoparticles synergistically work to enhance the adsorption capacity.

Adsorption of MB was also confirmed by FTIR spectra. Figures 7(b) and (c) indicates that new peaks appeared at $1050-1650 \text{ cm}^{-1}$ (marked by the dotted box) corresponding to the vibrations of MB molecules after adsorption of MB by G-MoO₃ and MoO₃. It showed that the MB molecules effectively adsorbed on MoO₃ surface. However, no such vibrations of MB can be observed for pristine graphene (figure 7(d)). Therefore, it is expected that graphene acts as a catalyst in enhancing the adsorption capacity of MoO₃.

The graphene-MoO₃ nanoparticles were also employed to adsorb an anionic dye such as MO. However, the UV–visible spectra confirm that G-MoO₃ does not show adsorption of MO (figure 8(a)). It is again supported by the FTIR spectra obtained from G-MoO₃ after the adsorption of MO experiment (figure 8(b)). It suggests that G-MoO₃ shows selective adsorption towards cationic dye.

The antibacterial experiments show that the bacteria cultures achieve growth profiles attaining very low cell concentration of 0.1 OD and 0.7 OD at 12 h incubation for *S. aureus* and *E. coli* respectively with G-MoO₃ at 0.4 mg ml⁻¹ concentration (figures 9(a) and (b)). It indicates that the bacterial growth is efficiently inhibited by G-MoO₃. Moreover, the colony forming unit assay of *S. aureus* and *E. coli* showed visible growth efficiency of

G-MoO₃ before and after MO adsorption.

above 90% and 80% respectively at 24 h (figures 9(c) and (d). This observation again demonstrates the bacteriostatic property of $G-MoO_3$ [43, 44, 46].

The exact adsorption and antibacterial mechanism is not well understood and a more rigorous study is required via XPS, NMR, mass spectroscopy and *in situ/ex situ* electron microscopy [47]. However, it may be possible that graphene may induce generation of hydroxyl radicals (\cdot OH) from hydroxyl groups (OH) present in MoO₃ surface. This reactive species in turn reacts with the MB molecule after adsorption on the MoO₃ surface and results in degradation [39, 48–50]. The rate of degradation increases with time and, therefore, the peak intensity below 400 nm increases continuously with time (figures 4(b) and (c)). Again, it is also well known that reactive hydroxyl radicals (\cdot OH) oxidize the bacterial cell membrane [18]. Hence, whenever the bacteria comes in contact with G-MoO₃, it acts as an antibacterial agent due to the presence of hydroxyl radicals (\cdot OH) in the surface of MoO₃. Therefore, it can be anticipated that graphene acts as a catalyst for adsorption and antibacterial activities.

4. Conclusion

In summary, a simple hydrothermal method to anchor MoO_3 nanoparticles in graphene is described. The nanocomposite demonstrated excellent adsorption of a cationic dye (MB) than an anionic dye (MO). It shows fast adsorption up to 250 ppm of MB within 30 min. The maximum adsorption capacity of MB is 625 mg g⁻¹. Again, the graphene-MoO₃ nanoparticles can serve as an antibacterial agent to inhibit the multiplication of bacteria cells in water due to the bacteriostatic nature. Therefore, it is termed that graphene-MoO₃ nanoparticles act as a bifunctional agent for water purification.

Acknowledgment

SKD thanks the financial support from Science and Engineering Research Board, Department of Science and Technology, Government of India (Grant No.: YSS/2015/000765)

References

- [1] Hao Z and Iqbal A 1997 Chem. Soc. Rev. 26 203
- [2] Zollinger H 2003 Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments 3rd revised edn (New York: VCH)
- [3] Robinson T, McMullan G, Marchant R and Nigam P 2001 Bioresour. Technol. 77 247
- [4] Linak E, Fink U, Kishi A and Guan M 2014 Chemical Economics Handbook (Dyes, ISH)
- [5] Ghaly A E, Ananthashankar R, Alhattab M and Ramakrishnan V V 2014 J. Chem. Eng. Process Technol. 5 1000182
- [6] Qu X, Alvarez P J J and Li Q 2013 Water Res. 47 3931
- [7] Sanghi R and Bhattacharya B 2002 Color Technol. 118 256
- [8] Zhu T, Chen J S and Lou X W 2012 J. Phys. Chem. 116 6873
- [9] Xu C, Wang Y, Zhao P, Chen H and Liu Y 2015 Mater. Lett. 159 64
- [10] Wang X, Ding J, Yao S, Wu X, Feng Q, Wang Z and Geng B 2014 J. Mater. Chem. 2 15958
- [11] Liu B X, Wang J S, Wu J S, Li H Y, Li Z F, Zhou M L and Zuo T Y 2014 J. Mater. Chem. 2 1947
- [12] Ramesha G K, Kumara A V, Muralidhara H B and Sampath S 2011 J. Colloid Interface Sci. 361 270
- [13] Liu T et al 2012 Colloids Surf. B 90 197
- [14] Attia A A, Rashwan W E and Khedr S A 2006 Dyes Pigments 69 128
- [15] Wang S B, Zhu Z H, Coomes A, Haghseresht F and Lu G Q 2005 J. Colloid Interface Sci. 284 440
- [16] Li J T, Li B L, Wang H C, Bian X B and Wang X M 2011 *Carbon* 49 1912
- [17] Khoerunisa F et al 2012 J. Phys. Chem. C 116 11216
- [18] Oveisi H, Rahighi S, Jiang X, Nemoto Y, Beitollahi A, Wakatsuki S and Yamauchi Y 2010 Chem. Asian J. 5 1978
- [19] Dutta D P, Singh A, Ballal A and Tyagi A K 2014 Eur. J. Inorg. Chem. 33 5724
- [20] Roca R A et al 2015 Catal. Sci. Technol. 5 4091
- [21] Balendhran S, Walia S, Nili H, Ou J Z, Zhuiykov S, Kaner R B, Sriram S, Bhaskaran M and Kalantar K 2013 Adv. Funct. Mater. 23 3952
- [22] Wang C, Irfan I, Liu X and Gao Y 2014 J. Vac. Sci. Technol. 32 040801
- [23] Noerochim L, Wang J Z, Wexler D, Chao Z and Liu H K 2013 J. Power Sources 228 198

[24] Yang X, Ding H, Zhang D, Yan X, Lu C, Qin J, Zhang R, Tang H and Song H 2011 Cryst. Res. Technol. 46 1195

[25] Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q and Zhang H 2015 Adv. Mater. 27 4695

[26] Yang X, Lu C, Qin J, Zhang R, Tang H and Song H 2011 Mater. Lett. 65 2341

- [27] Zhou J, Song J, Li H, Feng X, Huang Z, Chen S, Ma Y, Wang L and Yan X 2015 New J. Chem. 39 8780
- [28] Yang X, Tang H, Zhang R, Song H and Cao K 2011 Cryst. Res. Technol. 46 409
- [29] Zheng L, Xu Y, Jin D and Xie Y 2009 Chem. Mater. 21 5681
- [30] Ma Y, Jia Y, Jiao Z, Wang L, Yang M, Bi Y and Qi Y 2015 Mater. Lett. 157 53
- [31] Wang M, Song X, Cheng X L, Zhou X, Zhang X, Cai Z, Xu Y M, Gao S, Zhao H and Huo L H 2015 RSCAdv. 5 85248
- [32] Cheng L, Shao M, Wang X and Hu H 2009 Chem. Eur. J. 15 2310
- [33] Chen Y, Lu C, Xu L, Ma Y, Hou W and Zhu J J 2010 Cryst. Eng. Commun. 12 3740
- [34] Chithambararaj A, Sanjini N S, Velmathi S and Bose A C 2013 Phys. Chem. Chem. Phys. 15 14761
- [35] Zhou Y F et al 2015 Mater. Lett. 154 132
- [36] Zhong M, Wei Z, Meng X, Wu F and Jingbo L 2014 Eur. J. Inorg. Chem. 20 3245
- [37] Rakkesh A R and Balakumar S 2015 J. Nanosci. Nanotechnol. 15 4316
- [38] Chithambararaj A, Winston B, Sanjini N S, Velmathi S B and Chandra A 2015 J. Nanosci. Nanotechnol. 15 4913
- [39] Manivela A, Lee G J, Chen C Y, Chen J H, Mac S H, Horng T L and Wu J J 2015 Mater. Res. Bull. 62 184
- [40] Krishnamoorthy K, Premanathan M, Veerapandian M and Kim S J 2014 Nanotechnology 25 31510
- [41] Krishnamoorthy K, Veerapandian M, Yun K and Kim S J 2013 Colloid Surf. B 112 521
- [42] Zollfrank C, Gutbrod K, Wechsler P and Guggenbichler J P 2012 Mater. Sci. Eng. C 32 47
- [43] Erb T J, Kiefer P, Hattendorf B, Gunther D and Vorholt J A 2012 Science 337 467
- [44] Yu L, Zhang Y T, Zhang B and Liu J D 2014 Sci. Rep. 44551
- [45] Luo J Y, Cao Z, Chen F, Li L, Lin Y R, Liang B W, Zeng Q G, Zhang M, Hea X and Li C 2013 Appl. Surf. Sci. 287 270
- [46] Cosgrove S E 2006 Clin. Infectious Diseases 42 82
- [47] Wang X, Mei L, Xing X, Liao L, Lv G, Li Z and Wu L 2014 Appl. Catal. B 160 211
- [48] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C and Herrmann J M 2001 Appl. Catal. B 31 145
- [49] Huang G, Zhang C, Long Y, Wynn J, Liu Y, Wang W and Gao J 2013 *Nanotechnology* 24 395601
- [50] Oliveira L C A, Gonçalves M, Guerreiro M C, Ramalho T C, Fabris J D, Pereira M C and Sapag K 2007 Appl. Catal. A 316 117