Digest

Emerging Small Molecule Therapeutic Approaches to Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Dean G. Brown, James Shorter, Heike J. Wobst

PII: S0960-894X(19)30928-X
DOI: https://doi.org/10.1016/j.bmcl.2019.126942
Reference: BMCL 126942

To appear in: Bioorganic & Medicinal Chemistry Letters

Received Date: 28 October 2019
Revised Date: 20 December 2019
Accepted Date: 24 December 2019

Please cite this article as: Brown, D.G., Shorter, J., Wobst, H.J., Emerging Small Molecule Therapeutic Approaches to Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, Bioorganic & Medicinal Chemistry Letters (2019), doi: https://doi.org/10.1016/j.bmcl.2019.126942

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.
Emerging Small Molecule Therapeutic Approaches to Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Dean G. Brown, James Shorter, Heike J. Wobst

Novel treatments are desperately needed for ALS and FTD. A survey of emerging small molecule approaches to ALS therapy is provided, along with a perspective on these opportunities.
Emerging Small Molecule Therapeutic Approaches to Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Dean G. Brown, a, # Jnana Therapeutics, 50 Northern Ave, Boston MA 02210, # Corresponding authors: Tel.: +1-484-639-4153; e-mail: dbrown@jnanatx.com; +1-617-892-1824. E-mail: hwobst@jnanatx.com

Abstract

Novel treatments are desperately needed for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review article, a survey of emerging small molecule approaches for ALS and FTD therapies is provided. These approaches include aberrant liquid-liquid phase separation and stress granule assembly, modulation of RNA-protein interactions, inhibition of TDP-43 phosphorylation, DNA-damage response pathways such as poly(ADP-ribose) polymerases (PARP), RNA-targeting approaches of dipeptide repeat forms of C9ORF72, and novel autophagy activation pathways. This review details the emerging small-molecule tools and leads in these areas, along with a critical perspective on the key challenges facing these opportunities.

Keywords

Amyotrophic lateral sclerosis, frontotemporal dementia, PARP, TDP-43, stress granules

Introduction

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease, with an average life expectancy of ~2-5 years following diagnosis. The incidence of ALS is approximately 3-5 in 100,000, but can be
ALS, ~90-95% are sporadic and ~5-10% are familial, indicating that both genetic and environmental factors contribute to the disease. ALS is an extreme manifestation of a spectrum disorder, of which the other extreme is frontotemporal dementia (FTD), the second most common form of dementia after Alzheimer’s disease. This spectrum is evidenced by the overlap in clinical manifestations of these diseases – ~15% of ALS patients develop FTD-like symptoms while ~15% of FTD patients meet ALS criteria – as well as by their pathological similarities and common genetic causes. To date, there are no approved interventional drugs for the treatment of FTD, and only two for ALS patients: riluzole, a glutamate release inhibitor approved in 1995, and the recently approved edavarone (FDA approval in 2017), a free radical oxygen scavenger previously investigated for cerebral ischemia. Both treatments have limited efficacy in slowing down disease progression, highlighting the urgent need for novel therapies. The purpose of this review article is to give an overview of emerging small molecule therapeutic strategies for the treatment of ALS and FTD that have not yet reached the clinic.

Figure 1. Approved drugs for ALS

1. Riluzole
2. Edavarone

TDP-43 pathology in ALS and FTD

Transactive response DNA binding protein 43 kDa (TDP-43) is an RNA- and DNA-binding protein involved in transcriptional regulation, splicing, miRNA biogenesis and mRNA stability. It has been shown to bind to ~30% of the mouse central nervous system (CNS) transcriptome. TDP-43 is a predominantly nuclear protein but is mislocalized to the cytoplasm of degenerating neurons in ALS and FTD patients, where it forms inclusions of aggregated protein. These TDP-43 inclusions are found in >40% of FTD patients as well as ~97% of ALS patients, making them a crucial pathological hallmark for both diseases. Furthermore, TDP-43 mutations are a rare cause of ALS, with ~1% of sporadic and ~5% of familial ALS cases attributed to TDP-43 missense mutations. Given these strong genetic and histological links between TDP-43 and ALS/FTD, therapies aimed at normalizing TDP-43 function and pathology are
include the following: a) modulating liquid-liquid phase separation of TDP-43, b) preventing aberrant phase transition/aggregation of TDP-43, c) modulating RNA binding to TDP-43, d) modulating post-translational modification such as phosphorylation.

Liquid-liquid phase separation and stress granule assembly

Liquid-liquid phase separation (LLPS) is a dynamic, reversible process whereby macromolecules condensate to form a liquid phase that exists within a dilute phase. This process is evidenced by the formation of so-called liquid droplets in vitro under permissible conditions. RNA-binding proteins associated with ALS have been shown to undergo LLPS, including FUS, hnRNPA1, and TDP-43. LLPS is driven in part by intrinsically disordered regions (IDRs), protein stretches that lack well-defined three-dimensional structures. TDP-43 possesses a C-terminal IDR with a glycine-rich low complexity domain (LCD) responsible for self-association and LLPS. The macromolecular forces that drive the assembly of these structures through IDRs are promiscuous and are thought to consist of non-specific electrostatic, π-π, cation-π and hydrophobic interactions as well as hydrogen bonds. There is increasing evidence that RNA is important for seeding and nucleation in LLPS and that it can influence the size and morphology of condensates. LLPS is hypothesized to drive the formation of membrane-less organelles in the nucleus and cytoplasm, including stress granules (SGs). SGs are transient cytoplasmic structures consisting of non-translating RNAs and RNA-binding proteins formed as a "storage buffer" for components and to conserve cellular energy during states of duress. While LLPS processes such as stress granule formation are reversible, liquid condensates may also undergo irreversible phase transition to a solid state. Among other factors, age has been hypothesized to be an underlying factor in the transition to solid state. It is this liquid-to-solid phase transition that is thought to underlie the formation of insoluble protein aggregates associated with ALS and FTD. Thus, modulating LLPS and aberrant phase transition, regulating the material properties of protein phases, or regulating the formation and composition of structures formed through LLPS such as SGs has been an emerging pre-clinical strategy targeting ALS and FTD. Given the limited understanding of the biological significance of SGs and their impact on disease etiology, the development of tool molecules that can selectively interfere with LLPS and stress...
strategies may be therapeutically viable.

Small molecule approaches to modulating LLPS, SG assembly and aberrant phase transition

In a recent effort to identify small molecule modulators of SG formation, Fang et al. have described a screen in HEK293T and neural precursor cells (NPCs) (~5K compounds), induced to form SGs by treatment with NaAsO$_2$. In this screen, ~100 hits were identified that modulated the formation of SGs including digitoxin, anisomycin as well as a number of compounds with planar scaffolds such as daunorubicin, quinacrine and mitoxantrone (Figure 2). Mitoxantrone is a type II topoisomerase inhibitor approved for the treatment of acute myeloid leukemia as well as certain forms of multiple sclerosis. Further studies revealed that planar compounds such as mitoxantrone, but not non-planar compounds, reduced recruitment of TDP-43 to SGs. In induced pluripotent stem cell-derived motor neurons (iPS-MNs), mitoxantrone also reduced the formation of persistent cytoplasmic TDP-43 puncta induced by long-term (24 h) treatment with puromycin. The authors hypothesized that blocking the recruitment of TDP-43 to stress granules during periods of stress may prevent the subsequent formation of TDP-43 aggregates. Thus, modulation of stress granule composition rather than inhibiting stress granule formation may be a viable therapeutic strategy. In a study by Wheeler et al. mitoxantrone was also found to suppress the recruitment of Fused in Sarcoma (FUS) to SGs and to reduce the number and size of liquid FUS droplets formed in vitro. Like TDP-43, FUS is an RNA-binding protein with broad functions in transcriptional regulation, RNA splicing, mRNA trafficking and miRNA biogenesis. Inclusions of FUS are a pathological hallmark in a subset of FTD cases (FTD-FUS, <10% of all cases) as well as in familial and sporadic ALS cases caused by mutations in FUS (~5% of fALS, ~1% sALS). In the same study, lipoamide and lipolic acid (Figure 2) were also shown to suppress FUS-SG formation. However, in contrast to 3, lipoamide increased the size and number of liquid FUS droplets in vitro, suggesting a different mechanism of action in modifying cellular SG formation to 3. Lipoamide also prevented axonal dieback in mutant FUS motor neurons and rescued motor dysfunction in a FUS Drosophila model of ALS.

Several classes of molecules that modulate SG formation and phase transition of TDP-43 have been described by Aquinnah in a series of patent applications. For example, compound (Figure 2) was able to
to rescue TDP-43-induced neuron death in embryonic mouse hippocampal neurons. Other structurally distinct series have also been reported (e.g. 7, Figure 2), with similar behavior and potency to 6,34,35 Finally, a recent example illustrated that the small molecule “chaperone” trimethylamine N-oxide (TMAO) can enhance TDP-43 LLPS but prevent protein fibrillation in vitro.36 However, while a useful tool to help understand the bulk material processes that regulate LLPS and phase transition, it is unlikely that TMAO would form the basis of a drug discovery campaign given the unspecific nature of the interaction.

Novel assays are being developed to help study the phase transition and trafficking of TDP-43 that may lend themselves to screen for small-molecule modulators. One elegant approach is an optogenetic cell-based model in which TDP-43 inclusion formation is induced by fusing TDP-43 to a blue light-inducible domain (optoTDP-43) that undergoes homo-oligomerization, allowing for spatiotemporal studies of the trafficking and phase transition of TDP-43.37 In this system it was demonstrated that TDP-43 binding to an RNA oligonucleotide with a well-established binding sequence (34 bases with a key UG/GU stretch of 8 bases, \(K_d = 112 \) nM) antagonized TDP-43 inclusion formation and prevented neurotoxicity in optoTDP-43-expressing ReN cell cortical neurons.37 This result is highly encouraging and suggests bait oligonucleotides with TDP-43 binding affinity may be a viable drug discovery approach. While the long RNA nucleotides used in this study do not shed light on whether a small molecule can afford the same outcome, the optoTDP-43 system is easily adaptable to a small molecule screening campaign.

Modulation of TDP-43-RNA interactions

Work by François-Moutal et al. has suggested that a small molecule approach that prevents TDP-43 binding to RNA may reduce neuronal toxicity.38 There are several published crystal and nuclear magnetic resonance (NMR) structures of partial TDP-43 constructs that have enabled efforts towards inhibiting the binding interaction between TDP-43 and RNA, but there are very few examples of this approach. TDP-43 binds to oligonucleotides via its two RNA-recognition motifs, RRM1 and RRM2, through a series of H-bond interactions to a 10-nucleotide stretch of UG-rich clusters in RNA, and TG repeats for binding DNA (Figure 3).25 In their paper, François-Moutal et al. used computational molecular docking models to identify the small molecule rTRD01 8 (Figure 3) that binds to RRM1 and RRM2. The binding was confirmed using NMR and microscale thermophoresis measurements (\(K_d = 89 \) µM). The compound was able to displace \((G_4C_2)_n \) RNA
In the same assay however, 8 was not able to inhibit binding of TDP-43 to (UG)$_6$ repeats. In a TDP-43 Drosophila model, 8 reduced locomotor defects in the larval turning time assay.38 Albeit very weak, this is the first reported example of a small molecule that prevents the binding of RNA or DNA to TDP-43. Several key questions regarding this approach are obvious for small molecule drug discovery: Can a small molecule be optimized to effectively compete with TDP-43's 10-base oligonucleotide recognition sequence? If so, will inhibition of RNA binding lead to a therapeutic effect, and will there be any mechanism-based toxicity if TDP-43 is prevented from binding to RNA or DNA? Further elucidation of the structure of TDP-43 and TDP-43-oligonucleotide interactions novel assay systems is needed to gain more understanding and investigate whether small molecule drug discovery approaches targeting the interaction between TDP-43 and RNA or DNA may provide a therapeutic benefit.

\textbf{Figure 2.} Small molecules which target stress granules (3-7) or TDP-43 RNA recognition motif (8)
Figure 3. TDP-43 bound to UG-rich RNA. UG-rich RNA is depicted in red across both RRM domains (RRM1 and RRM2) in blue (PDB: 4BS2). Image created using Illustrate.

Kinase inhibitors affecting TDP-43 toxicity and pathology

TDP-43 in ALS and FTD pathology shows posttranslational modifications including cleavage, ubiquitination and hyperphosphorylation. TDP-43 contains over 50 potential phosphorylation sites (41 serine, 15 threonine and 8 tyrosine residues), and while it remains unclear whether phosphorylation at S409/410 contributes to aberrant behavior of TDP-43, it is a defining pathological hallmark of TDP-43 inclusions. The impact of phosphorylation on TDP-43 toxicity and aggregation propensity has thus been a particular focus, and kinase inhibitors affecting TDP-43 have been proposed as therapeutic intervention strategies. In two studies, casein kinases 1ε (CK1ε) and 1δ (CK1δ) were shown to increase TDP-43 phosphorylation at S409/410 and promote the formation of TDP-43 aggregates. Furthermore, CK1ε enhanced an eye degeneration phenotype in a TDP-43 Drosophila model. Inhibition of CK1 with small molecule inhibitors (9 and 10, Figure 4) was shown to reduce TDP-43 phosphorylation and aggregation in tunicamycin-treated NSC-34 cells and ethacrynic acid-treated HEK293T cells, and to increase the lifespan in a TDP-43 Drosophila model (11, Figure 4). Cell division cycle 7-related protein kinase (CDC7) has also been found to phosphorylate TDP-43 in vitro as well as in cells and in C. elegans. Inhibition of
protect against neuronal loss in a TDP-43 transgenic C. elegans model.\(^\text{46}\)

In addition to querying the impact of specific kinases on TDP-43 phosphorylation, other studies have investigated the impact of kinase inhibitors on TDP-43 recruitment to SGs. Moujalled et al. have demonstrated that inhibition of cyclin-dependent kinase 2 (CDK2) with olomoucine (\(^\text{13, Figure 4}\)) and of glycogen synthase kinase 3β (GSK3β) with SB 415286 (\(^\text{14, Figure 4}\)) reduced the accumulation of TDP-43 in SGs.\(^\text{47,48}\) However, the effect of CDK2 inhibition on TDP-43 SG localization was not hypothesized to result from changes in TDP-43 phosphorylation status, but rather from its interaction partner hnRNPK, which acts as a recruitment factor for TDP-43 into SGs.

Many key challenges when investigating the therapeutic potential of kinase inhibitors and their effects on TDP-43 phosphorylation, inclusion formation and LLPS remain, including: 1.) gaining a clearer understanding of which, if any, phosphorylation sites on TDP-43 directly promote aberrant pathology. Current literature is much focused on S409/410, but its impact on TDP-43 pathology remains controversial; 2.) understanding whether kinase inhibitors rescue TDP-43 toxicity directly by reducing TDP-43 phosphorylation or by affecting proteins downstream in toxic TDP-43 pathways; 3.) ensuring that the kinase inhibitors have good CNS penetration, since many of the inhibitors described in the literature are ATP-site binders with physical properties which can diminish CNS penetration, such as high numbers of H-bond donors. However, kinases in general are not only a very druggable target class, but vast number of tool compounds are available commercially and in the literature.
PARP inhibitors

Poly(ADP-ribose) polymerases (PARPs) are enzymes that catalyze the formation of polymers of ADP-ribose (poly(ADP-ribose) or PAR), that can be covalently attached to proteins, a process known as PARylation. Seventeen members of the PARP family have been identified. Of these, four (PARP1, PARP2, PARP5a and PARP5b) catalyze the addition of PAR chains, while the other members of the PARP family are either enzymatically inactive or attach a single ADP-ribose to target proteins. The best-studied PARP enzyme is PARP1, a crucial protein in the repair of DNA damage including single-strand breaks (SSBs), double-strand breaks (DSBs) and replication fork damage. DNA damage triggers the recruitment of PARP1 to the affected DNA stretch where it autoPARylates. PARylated PARP1 in turn recruits and PARylates DNA damage repair proteins. PARP1 is responsible for >90% of cellular PARylation, with PARP2 providing between ~5-10%. An abnormal build-up of PAR polymers is toxic to cells, and clearance of these polymers is believed to be an important regulatory mechanism in cellular homeostasis.

PARP inhibitors have become an important new therapeutic class in oncology, with four drugs currently on the market (olaparib 15, rucaparib 16, niraparib 17 and talazoparib 18, Figure 5) and more compounds...
cers with defective homologous recombination (HR), one pathway by which DSBs are repaired. Since mutations in several DNA repair genes such as breast cancer type 1 susceptibility proteins 1 and 2 (BRCA1 and BRCA2) render HR non-functional, PARP inhibitors work effectively in patients carrying these mutations. In addition to its role in cancer treatment, PARP inhibition may also provide a therapeutic avenue for neurodegenerative diseases including Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and ALS. Recently, McGurk et al. demonstrated that nuclear PAR is elevated in spinal cord motor neurons of ALS patients without known mutations as well as those carrying ATXN2 mutations and C9ORF72 hexanucleotide repeat expansion mutations, two genes previously linked to ALS. Furthermore, small molecule PARP inhibitors have demonstrated efficacy in TDP-43 cellular models of ALS. In one study, the PARP inhibitor veliparib rescued TDP-43-induced cell death in rat primary spinal cord cultures. Furthermore, Duan et al. recently demonstrated that either PARP1 knockout or olaparib (at 5 μM screening concentration) reduced PAR levels and rescued TDP-43-induced death of NSC-34 cells. Conversely, knockdown of PAR glycohydrolase (PARG), which catabolizes PAR, increased levels of PAR and exacerbated cell death in TDP-43-expressing cells. In another study, XAV939, a potent inhibitor of tankyrase 2 (also known as PARP5B) and weaker inhibitor of tankyrase-1 (PARP5A), PARP1 and PARP2 reduced the accumulation of TDP-43 in cytoplasmic foci. Structurally, tankyrases are distinguished from other members of the PARP family by the presence of long repeat ankyrin units, which are involved in protein binding, as well as a sterile alpha motif (SAM). These results suggest that both PARP1/2 as well as tankyrase may be important targets in regulating the TDP-43 pathology in ALS. The mechanism by which PARP inhibitors protect against TDP-43 toxicity may be through downregulation of PAR. In vitro studies have demonstrated that PAR promotes LLPS of TDP-43 and that the nuclear localization sequence of TDP-43 contains PAR-binding motifs that target TDP-43 to stress granules. Inhibition of PARP1/2 was shown to reduce TDP-43 recruitment to stress granules and both inhibition of PARP1/2 and tankyrase was shown to suppress the formation of cytoplasmic TDP-43 inclusions. The wealth of marketed PARP inhibitors may present an attractive opportunity and the potential for drug-repurposing. However, the currently marketed drugs are approved for oncology indications where the purpose is to stop unregulated cell proliferation. This purpose is not the case for ALS, where preservation...
of degenerating motor neurons is the primary goal. Key fundamental questions will need to be answered to determine whether the currently approved antiproliferative drugs will provide efficacy in ALS clinical trials within acceptable therapeutic margins. At present, the signs are encouraging that several PARP inhibitors can rescue toxicity in ALS cell models; however, the drug concentrations tested in these cellular models greatly exceeded biochemical IC\textsubscript{50} values for PARP inhibition. For example, veliparib 19 was reported to have low nM potency in PARP biochemical screens (Figure 5) and an equally low nM potency in a cellular PARylation assay (IC\textsubscript{50} = 2 nM).63 However, TDP-43-induced toxicity in mixed rat spinal cord cultures was only rescued at a veliparib concentration of 5 µM. The same is true for olaparib 15, which demonstrated a rescue of TDP-43 in NSC-34 cell model at 5 µM, but has low single digit nM biochemical activity against PARP1 and PARP2 (Figure 5) and concentrations ~100 nM have been reported to completely block PARP1 activity in a cellular PARylation assay.64 This raises important questions, such as: How relevant is the concentration required to rescue TDP-43-induced cell death in predicting efficacy in an ALS patient population? Is the potency disconnect due to other targets or unknown disease pathways in ALS which are yet to be uncovered? As this field rapidly progress, these questions should be at the forefront of research teams working in the area.
Figure 5. Approved PARP inhibitors olaparib 15, rucaparib 16, niraparib 17, talazoparib 18, veliparib 19 and the tankyrase inhibitor 20, XAV939. TNKS1 = tankyrase 1/PARP5A; TNKS 2= tankyrase 2/PARP5B

C9ORF72-targeting strategies

The most frequent known cause of familial and sporadic ALS as well as FTD are G₄C₂ hexanucleotide repeat expansions in intron 1 of the C9ORF72 gene.65 While in healthy individuals, the repeat length is typically <30, repeat lengths of >1,000 can be observed in C9ORF72-linked ALS and FTD.66,67 C9ORF72 mutations account for approximately 7% and 6% of sporadic ALS and FTD, respectively, as well as for 37% of familial ALS and 24% of familial FTD cases.68 There are three hypothesized disease mechanisms for this ALS-associated gene:69 Loss of function of C9ORF72, gain of toxic function from repeat RNA or gain of toxic functions from dipeptide repeat proteins, which form in a process called repeat-associated non-ATG (RAN) translation. RAN translation occurs in all three reading frames both on the sense and antisense strands, leading to the translation of five dipeptide repeats (DPRs) (poly-GA, poly-PA, poly-GP, poly-PR, poly-GR).70
structure and a quadruplex structure (termed G-quadruplex, formed through stacked layers of four guanine residues stabilized by a central cation) (Figure 6a and 6b). Several studies have identified small molecules that bind to the hairpin and G-quadruplex structures. Su et al. have described a chemical screen of 132 small molecules against (G₄C₂)₈ derived from known CGG binders, using a dye (TO-PRO-1) assay, in which displacement of a fluorescent RNA intercalator from RNA was measured. Compounds 21, 22, and 23 (Figure 7) were found to bind the hairpin form with Kᵥ values of 9.7 µM, 10 µM and 16 µM, respectively. Furthermore, 21 and 22 suppressed the expression of poly-GP and poly-GA as well as nuclear RNA foci in HEK293 cells and motor neurons. In a follow-up study, Wang et al. performed a chemical similarity search to identify 40 compounds with chemical similarity to 21. Several new and more potent compounds 24, 25, 26 (Figure 7) were subsequently identified that bound to the G₄C₂ repeat hairpin structure, and inhibited RAN translation in a cellular reporter assay. Compound 26 was the most selective for inhibiting RAN translation over canonical translation reported in the paper, and also serves to illustrate that the pyridinium moiety is not required for activity. In a different approach Simone et al. used a fluorescence resonance energy transfer (FRET)-based G-Q melting assay to screen a library of 138 small molecules and identified three compounds 27, 28 and 29 (Figure 7) that bound to and stabilized the G-quadruplex. These quadruplex-binding molecules were shown to reduce RNA foci and poly-GP formation in patient-derived iPS-MNs. Furthermore, one molecule 29 was found to reduce the levels of poly-PR and slightly improve survival in a C9ORF72 (G₄C₂)₃₆ Drosophila model. Compounds such as these may serve as useful tools to help develop the field, but it should be noted that quaternary ammonium compounds that have the propensity to intercalate may have selectivity and safety issues, and thus should be carefully studied to prove their therapeutic viability.
Figure 6. a) Cartoon depiction of RNA hairpin in equilibrium with RNA G-quadruplex. b) NMR structure of G-quadruplex from C9orf72 PDB ID: 5OPH, rendered with JSMol.
Several papers have focused on identifying modifiers of DPR toxicity. In a phenotypic screening approach of >4,000 compounds Corman et al. treated U2OS cells with synthetic PR₂₀ peptide and quantified cell survival by nuclear count. Three hits were identified in the screen, the bromodomain inhibitors PFI-1 30 and bromosporine 31, and sodium phenylbutyrate 32 (Figure 8). 30 and 32 were further shown to rescue PR₂₀-induced embryonic lethality in zebrafish. In another study utilizing the toxic effects of DPRs, Kramer et al. conducted CRISPR screens in immortalized cells treated with PR₂₀ peptide as well as in primary mouse neurons infected with lentiviral PR₅₀ to identify modulators of poly-PR toxicity. As the hits in the
al. pretreated cells with Integrated Stress Response (ISR) Inhibitor (ISRIB) 33 (Figure 8) prior to PR$_{20}$ treatment and found that it protected cells against poly-PR toxicity. In another study, ISRIB ameliorated nucleocytoplasmic transport deficits induced by overexpression of cytoplasmic TDP-43 or PR$_{50}$ and rescued an eye degeneration phenotype in a Drosophila G$_4$C$_2$ hexanucleotide repeat expansion model.78 Interestingly, Cheng et al demonstrated that inhibition of the ISR with ISRIB or a PERK inhibitor also rescued the stress-induced upregulation of RAN translation.79 Thus, as dipeptide repeats themselves lead to upregulation of the ISR, the authors suggested that RAN translation fuels a feed-forward loop, where RAN-translated dipeptide repeats trigger a stress response that in turn causes increased RAN translation. Thus, ISRIB and other small molecules that inhibit the ER stress response may provide a potential therapeutic avenue for C9-ALS/FTD, by breaking this feed-forward loop.

Figure 8. Examples of compounds 30-33 found in phenotypic screens of PR$_{20}$-induced toxicity.

C9ORF72 and DNA damage response
Several studies have shown that DNA damage and the DNA damage response are upregulated in iPSC-MNs and postmortem samples from C9ORF72 ALS patients. Patient motor neurons had an increase in the phosphorylated histone member AX (γH2AX) and increased activation of the tumor suppressor p53-binding protein (p53) pathway including ataxia telangiectasia and Rad3-related protein (ATR). In addition, increased phosphorylation of ataxia telangiectasia mutated (ATM) and increased expression of growth arrest and DNA damage gene (GADD45) were detected compared to control neurons. Lentiviral expression of GR$_{80}$ but not GA$_{80}$ increased expression of γH2AX, p53 activation and DNA double strand breaks and induced the production of reactive oxygen species (ROS). The increase in ROS and associated DNA damage was partially rescued when C9ORF72 motor neurons were treated with Trolox, a water-soluble antioxidant related to vitamin E. While no studies have been published to date investigating the effects of inhibiting DNA damage response in C9-ALS/FTD neurons, this therapeutic angle could provide an exciting opportunity. Potent small molecule inhibitors of several key DNA damage response enzymes exist that could interrogate the therapeutic potential of interfering with DNA damage signaling such as ATM inhibitors, ATR inhibitors, and PARP1 inhibitors (Figure 5).
Autophagy mechanisms

Autophagy is an essential cellular mechanism that enables the clearance of damaged organelles, viral particles and aggregated proteins. Well-established activators of autophagy such as rapamycin work as inhibitors of mammalian target of rapamycin complex 1 (mTORC1), resulting in activation of a number of cellular catabolism factors such as Unc-51 like autophagy activating kinase 1 and 2 (ULK1 and ULK2) and transcription factor EB (TFEB). Rapamycin has been shown to rescue cytoplasmic TDP-43 mislocalization in vitro and in vivo and to reduce neuronal loss, cognitive impairment and motor phenotypes in a TDP-43 mouse model, and is currently in a phase 2 clinical trial for the treatment of ALS. However, mTOR inhibitors fail to effectively stimulate autophagy in neurons, which could limit their efficacy in neurodegenerative diseases.

Figure 9. Small molecules targeting TDP-43 through autophagy mechanisms
In addition to mTOR1, novel mechanisms of autophagy activation are being uncovered. Indeed, two phenothiazines and related phenoxazines that promote autophagy of TDP-43 in neurons have emerged.90 Fluphenazine (35), methotrimeprazine (36) and 10-(4′-(N-diethylamino)butyl)-2-chlorophenoxazine (37, NCP) were shown to activate autophagy in a live cell autophagic flux assay (Figure 9). Furthermore, all three compounds decreased TDP-43 protein levels, inclusions and cytoplasmic mislocalization, and improved neuronal survival in vitro.90 In another study Nomura et al. discovered EN6 38 (Figure 9), a covalent modifier of Cys277 in the ATP6V1A subunit of the lysosomal v-ATPase, by screening a small molecule library of covalent molecules using an autophagy flux assay in mouse embryonic fibroblasts and HEK293 cells.91 In an inducible GFP-TDP-43 U2OS cell line 38 reduced the formation of TDP-43 aggregates by 75%. Mechanistically, the authors demonstrated that inhibition of the ATP6V1A subunit of the lysosomal v-ATPase worked by first decoupling v-ATPase from Ragulator-Rag GTPase, followed by release of mTORC1 into the cytoplasm and inactivation. Thus, this mechanism represents a mTOR1 selective pathway which works independently from the mTOR1-selective rapamycin/rapalog inhibitors or the ATP-site mTOR1/2 inhibitors.

In addition, several other mTOR-independent activators of autophagy have been recently reported. Jo et al. have described inhibitors of MEK5 (39, Figure 9) that activate the autophagy-lysosome pathway and suppress TDP-43 toxicity in mouse neuronal N2a cells.92 The authors established that this mechanism of autophagy was independent of mTOR signaling, as treatment of cells with MEK inhibitor did not affect phosphorylation of mTOR or ULK1. Furthermore, co-treatment with 39 and rapamycin resulted in a higher LC3-II/LC3-I ratio than treatment with either 39 or rapamycin alone. Another emerging target in the autophagy pathway is the transcription factor TFEB, a master regulator of autophagy that drives expression of autophagy and lysosomal genes.93 Trehalose 40 (Figure 9), a protector against cellular stress in yeast,94 was shown to promote autophagy by inhibiting Akt kinase, which phosphorylates TFEB, thus repressing its nuclear translocation.95,96 Activation of TFEB with trehalose reduced TDP-43 accumulation in vitro.97

Summary

Decades of research have only yielded two therapies for the treatment of ALS, and none for FTD. However, preclinical studies of basic and translational disease biology have yielded an impressive array of novel...
these approaches will make their way into the clinic, from building more in-depth knowledge into the links between fundamental biology and neurodegeneration (e.g. in the case of LLPS) to turning chemical starting points with target affinities into highly potent molecule entities (e.g. in the case of TDP-43/RNA interactions or direct G-quadruplex binders). Many of the approached outlined above stem from oncology projects, and as such will require experimental evidence demonstrating that the anti-proliferative effects can be separated from any therapeutic benefit to neurodegeneration. While a high rate of attrition from preclinical concept to clinical trial is to be expected, the breadth of different therapeutic approaches provide hope that some of the therapeutic strategies discussed in this review will ultimately provide novel treatments for ALS and FTD patients.

References

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: