nucleosome, something that is achieved by the presence of one, two or three methyl groups⁸. Because much of the genome must be blocked (the effects are general rather than local) a distributive mechanism is appropriate, and, as the modification has to be frequent, then di- and trimethylated isoforms will arise through rebinding of the enzyme to already methylated nucleosomes. In this case, the degree of methylation is of no significance, and the code, if we can call it that, is a simple binary switch in which H3K79 methylation prevents Sir3 binding and lack of methylation allows it³. Unfortunately, this elegantly simple model may prove to be the exception, not the rule. The identification of two Dot1 homologs in *Trypanosoma*, each selective for either di- or trimethylation²⁰, suggests that Dot1-mediated functions may be less straightforward in higher eukaryotes.

- 1. Turner, B.M. Nat. Cell Biol. 9, 2–6 (2007).
- Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. *Nat. Struct. Mol. Biol.* 14, 1025–1040 (2007).
- 3. Frederiks, F.T.M. *et al. Nat. Struct. Mol. Biol.* **15**, 550–557 (2008).
- McGinty R.K., Jaehoon, K., Chatterjee, C., Roeder, R.G. & Muir, T.W. *Nature* advance online publication 30 April 2008 (doi:10.1038/nature06906).
- Ng, H.H. *et al. Genes Dev.* **16**, 1518–1527 (2002).
 van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. *Cell* **109**, 745–756 (2002).
- 7. Carmen, A.A., Milne, L. & Grunstein, M. J. Biol. Chem.

277, 4778–4781 (2002).

- Altaf, M. *et al. Mol. Cell* 28, 1002–1014 (2007).
 Fingerman, I.M., Li, H.C. & Briggs, S.D. *Genes Dev.* 21,
- 2018–2029 (2007). 10. Krogan, N.J. *et al. Mol. Cell* **11**, 721–729 (2003).
- 11. Lee, J.S. *et al. Cell* **131**, 1084–1096 (2007).
- 12. Ezhkova, E. & Tansey, W.P. *Mol. Cell* **13**, 435–442 (2004).
- 13. Ng, H.H., Xu, R.M., Zhang, Y. & Struhl, K. J. Biol.
- Chem. 277, 34655–34657 (2002).
- 14. Botuyan, M.V. et al. Cell 127, 1361–1373 (2006).
- Shi, Y. & Whetstine, J.R. *Mol. Cell* 25, 1–14 (2007).
 Shahbazian, M.D., Zhang, K. & Grunstein, M. *Mol. Cell* 19, 271–277 (2005).
- 19, 271–277 (2003).
 17. Dou, Y. et al. Nat. Struct. Mol. Biol. 13, 713–719 (2006).
- (2000).
 18. Nightingale, K.P. *et al. J. Biol. Chem.* 282, 4408–4416 (2007).
- Sawada, K. et al. J. Biol. Chem. 279, 43296–43306 (2004).
- Janzen, C.J., Hake, S.B., Lowell, J.E. & Cross, G.A. *Mol. Cell* 23, 497–507 (2006).

Escaping amyloid fate

Blake E Roberts & James Shorter

Small molecules that safely antagonize amyloidogenesis are desperately needed for many devastating disorders that plague humankind, including Alzheimer's and Parkinson's diseases. New work brings important mechanistic insights into how one promising candidate, (–)-epigallocatechin-3-gallate (EGCG), diverts amyloid- β and α -synuclein down innocuous folding trajectories at the expense of the deleterious states populated during amyloidogenesis.

Successful protein folding is key to all life. Yet, a significant portion of eukaryotic proteomes, perhaps even 30%, comprises proteins that are either entirely unfolded or contain large regions (~40 amino acids or more) of intrinsic disorder¹. Such proteins are often the culprits behind debilitating and increasingly prevalent neurodegenerative diseases^{2,3}. For example, tau and amyloid- β (A β) in Alzheimer's disease (AD) and α -synuclein (α -syn) in Parkinson's disease (PD) all seem to transition from a natively unfolded state through heterogeneous oligomers to the generic 'cross- β ' form of amyloid fibers^{2,3}. There are no effective treatments for any of these conditions. However, hope remains in the vastness of unexplored chemical space⁴, which may harbor small molecules able to derail amyloidogenesis. Indeed, promising small-molecule candidates are beginning to emerge^{5–7}, although the mechanisms by which they inhibit the amyloidogenesis of initially

Blake E. Roberts and James Shorter are in the Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Philadelphia 19104, USA. e-mail: jshorter@mail.med.upenn.edu unstructured proteins remain largely obscure. Elegant work by Ehrnhoefer *et al.*⁸ provides mechanistic insight into the largely uncharted territory of how small molecules might preclude amyloid formation and propagation by natively unfolded proteins.

The challenges facing potential smallmolecule antagonists of amyloidogenesis are daunting to say the least. First, it is inherently difficult for small molecules of limited steric bulk to prevent protein-protein interactions where the binding energy is distributed among dozens of amino acids and thousands of square angstroms of contact area9. Second, contact sites are often relatively flat, providing few opportunities for small-molecule insertion, and frequently have a high degree of plasticity that can accommodate a small molecule and remain unperturbed⁹. For amyloids, these issues are exacerbated by the exceptional stability of their intermolecular contacts, which generally require boiling in SDS or high denaturant concentrations (for example, 8 M urea) to be disrupted². Furthermore, once initiated, amyloidogenesis can cascade out of control because amyloid fibers self-template their own 'cross- β ' structure by recruiting nonamyloid copies of the same protein to fiber ends and converting them to the amyloid form². Even more problematic is the ability of amyloidogenic

proteins to access multiple, structurally distinct amyloid forms^{10,11}, which in some cases are distinguished by distinct sets of intermolecular contacts¹⁰. An effective small molecule would need to target all of these. Additionally, en route to fiber formation, amyloidogenic proteins often populate an ensemble of diverse oligomeric states, many of which seem to be highly toxic^{3,12}. Thus, not only must smallmolecule antagonists prevent fiber formation, they must do so in a manner that prevents the accumulation of toxic preamyloid conformers. Finally, if the foregoing was not enough, for the neurodegenerative amyloidoses, there is the accompanying conundrum of traversing the 'blood-brain barrier', which sharply limits the size and nature of the small molecule¹³.

Despite these challenges, one small molecule, (–)-epigallocatechin-3-gallate (EGCG; **Fig. 1a,b**), may surprise us in its ability to safely prevent amyloidogenesis. The major polyphenol in green tea, EGCG has risen to fame for its antioxidant and potential antitumor activities¹⁴, but more recently has begun to enter the spotlight of the amyloid world. EGCG has emerged as a potent inhibitor of tau, Aβ, α -syn and polyglutamine fibrillization *in vitro*^{5,6}. Furthermore, EGCG antagonizes polyglutamine aggregation and toxicity in both yeast and fly models of Huntington's disease⁵.

In this issue, Ehrnhoefer et al.⁸ probe the mechanisms by which EGCG inhibits AB and α -syn fibrillization. At concentrations equimolar with A β and α -syn, EGCG effectively inhibits spontaneous fibrillization and has significant inhibitory activity at substoichiometric concentrations. Remarkably, EGCG seems to interact with natively unfolded forms of AB and α -syn and divert them into stable oligomeric forms that resist solubilization by SDS. Using a clever method originally developed to detect quinoproteins, Ehrnhoefer et al.8 show that EGCG binds extremely tightly to A β and α -syn, as well as to other unfolded proteins. The interaction is tight enough to survive SDS-PAGE and does not seem to reflect a covalent modification of the polypeptide⁸. The minimal number of AB and α -syn monomers that must be bound by EGCG to inhibit fibrillization remains unclear. However, EGCG clearly traps A β and α -syn in monomeric and oligomeric forms with diminished ability to participate in amyloidogenesis (Fig. 1c). By stabilizing these assembly-incompetent forms, EGCG effectively precludes fiber assembly and neatly sidesteps many of the apparent challenges facing smallmolecule antagonists of amyloidogenesis. This is reminiscent of how small molecules that stabilize the native tetrameric structure of transthyretin potently inhibit amyloidogenesis¹⁵.

In their natively unfolded state, α -syn monomers are highly dynamic and rapidly sample an ensemble of distinct transient conformations¹⁶. A subset of these involve an interaction between the C-terminal domain (residues 110-130) and the C-terminal part of the hydrophobic NAC region (residues 85-95)¹⁶. This interaction may be autoinhibitory for fiber assembly, as it could obstruct the NAC region (residues 61-95) from entering the solventinaccessible cross- β core (residues 39–101) of mature α -syn fibers¹⁷. CD analysis revealed that EGCG maintained α -syn in predominantly unstructured forms⁸. Thus, EGCG probably stabilizes natural α -syn conformations that are autoinhibitory for fiber assembly. Moreover, NMR data revealed a progressive broadening of particular resonances with increasing EGCG concentrations⁸. As EGCG induced formation of SDS-resistant α -syn oligomers, up to 50% of the resonances disappeared from the spectra⁸. Notably, resonances in the NAC region remained visible, implying that this region does not drive EGCG-induced oligomerization⁸. Resonances for four residues in the C-terminal domain disappeared at lower EGCG concentrations, indicating that EGCG might cause C-terminal domains to cluster and oligomerize⁸. Nucleation of α -syn and A β fibers probably occurs in structurally malleable oligomers that reorganize to establish the

Figure 1 Structure and mode of action of EGCG. (a) Chemical structure of EGCG. (b) Space-filling model of EGCG reveals a nonplanar structure. (c) In the absence of EGCG, α -syn or A β amyloid fibers assemble after a lag phase during which a dynamic ensemble of natively unfolded monomeric and molten oligomeric species form. The intermolecular contacts that nucleate fiber assembly are probably established within molten oligomers. Once formed, fibers stimulate their own assembly by recruiting and converting monomers at their ends. EGCG rapidly converts natively unfolded monomers and oligomers to autoinhibited forms that are nontoxic and unable to participate in fiber formation.

intermolecular contacts that spark assembly^{18–20} (**Fig. 1c**). By cogently locking α -syn and A β into extremely stable, alternative oligomeric forms, EGCG probably prevents the conformational rearrangements within oligomers required to nucleate assembly (**Fig. 1c**).

Importantly, the unstructured oligomers induced by EGCG did not seed fiber assembly, reinforcing the idea that they are the product of an alternative pathway that proceeds more rapidly than fiber formation⁸. The exploitation of alternative pathways is a successful strategy used by molecular chaperones and protein-remodeling factors to antagonize amyloidogenesis. For example, the chaperonin TRiC promotes the formation of alternative, nontoxic polyglutamine oligomers that are assembly incompetent²¹, and the protein-remodeling factor Hsp104 converts Sup35 prions to noninfectious amyloidlike forms²². An interesting possibility is that EGCG-induced oligomers are more susceptible to disassembly by molecular chaperones or protein-remodeling factors than toxic oligomers. The collaboration and potential synergy between small molecules and molecular chaperones²³, which is virtually unexplored, may prove to be a powerful

adversary that is able to counter diverse neurodegenerative disorders.

Crucially, the oligometic forms of A β and α -syn induced by EGCG were not toxic to PC12 cells in culture, in contrast to A β and α -syn fibers⁸. However, whether EGCG can mitigate A β and α -syn toxicity in a more diseaserelevant setting remains unclear. Yet, there is reason to be hopeful. A conformation-specific antibody, A11, which recognizes a transient, highly toxic oligomeric state common to many amyloidogenic proteins¹², did not detect EGCG-induced oligomers. Indeed, EGCG promoted the remodeling of preformed A11reactive oligomers of A β and α -syn, indicating an ability to eliminate perhaps the most toxic species that accumulate during AB and α -syn amyloidogenesis¹². Equally promising is the observation that EGCG inhibits A β or α -syn assembly seeded by preformed fibers. Thus, EGCG-induced conformers are not substrates for conformational conversion. Furthermore, the ability to block seeded polymerization is of great importance from a therapeutic standpoint because considerable amounts of amyloid fibers are likely to have accumulated by the time a disease is diagnosed. Intriguingly, although not an approved therapeutic option, anecdotal evidence of the ability of green tea to remedy various amyloid diseases, such as light-chain amyloidosis, have begun to appear²⁴.

It remains unclear whether EGCG can remodel mature amyloid fibers in a similar way to other small molecules⁷. However, once again there is reason to be optimistic. EGCG may take advantage of Le Châtelier's principle to disassemble amyloids and prevent conformational conversion by shifting the equilibrium dramatically toward nonamyloid conformers. Amyloid fibers seem to dynamically exchange monomers from their ends by the spontaneous dissociation and reassociation of monomers over a biologically relevant timeframe (days)²⁵. Given that EGCG inhibits seeded polymerization, it is possible, perhaps even probable, that it might inhibit the reassociation of dissociated monomers with fiber ends and drive the equilibrium toward soluble forms.

One must keep in mind, however, that EGCG binds to unfolded proteins in a nonselective fashion⁸, which may have unanticipated pleiotropic consequences *in vivo*. Indeed, this property might explain the diverse activities attributed to EGCG¹⁴.

EGCG might inhibit the amyloidogenesis of many polypeptides that begin in a natively unfolded state. However, such broad specificity may be undesirable, because mounting evidence suggests that amyloids and prions have also been captured during evolution for beneficial purposes²⁶. Pmel17 amyloids mediate melanosome biogenesis and particular CPEB prions might promote synaptic changes associated with memory²⁶. Nonetheless, the studies by Ehrnhoefer et al.⁸ provide an important foundation to understand the interactions between small molecules and natively unfolded proteins, and may facilitate the design of more potent and selective compounds with activity against exclusively deleterious amyloids.

ACKNOWLEDGMENTS

We thank A. Gitler, M. Lemmon, S. Vashist, E. Sweeny and H. Wang for comments on the manuscript.

- 1. Fink, A.L. Curr. Opin. Struct. Biol. 15, 35-41 (2005).
- Nelson, R. & Eisenberg, D. Adv. Protein Chem. 73, 235–282 (2006).
- Skovronsky, D.M., Lee, V.M.-Y. & Trojanowski, J.Q. Annu. Rev. Pathol. Mech. Dis. 1, 151–170 (2006).
- Dobson, C.M. Nature 432, 824–828 (2004).
 Ehrnhoefer, D.E. et al. Hum. Mol. Genet. 15, 2743–2751 (2006).

- Masuda, M. et al. Biochemistry 45, 6085–6094 (2006).
 Wang, H. et al. Proc. Natl. Acad. Sci. USA 105,
- 7159–7164 (2008). 8. Ehrnhoefer, D.E. *et al. Nat. Struct. Mol. Biol.* **15**,
- 558–566 (2008). 9. Wells, J.A. & McClendon, C.L. *Nature* **450**, 1001–1009
- (2007). 10. Krishnan, R. & Lindquist, S.L. *Nature* **435**, 765–772 (2005).
- 11. Petkova, A.T. *et al. Science* **307**, 262–265 (2005).
- 12. Kayed, R. et al. Science 300, 486–489 (2003).
- 13. Pardridge, W.M. NeuroRx 2, 3-14 (2005).
- 14. Yang, C.S., Maliakal, P. & Meng, X. Annu. Rev. Pharmacol. Toxicol. 42, 25–54 (2002).
- 15. Hammarstrom, P., Wiseman, R.L., Powers, E.T. & Kelly, J.W. *Science* **299**, 713–716 (2003).
- Bertoncini, C.W. et al. Proc. Natl. Acad. Sci. USA 102, 1430–1435 (2005).
- Del Mar, C., Greenbaum, E.A., Mayne, L., Englander, S.W. & Woods, V.L., Jr. Proc. Natl. Acad. Sci. USA 102, 15477–15482 (2005).
- Conway, K.A. et al. Proc. Natl. Acad. Sci. USA 97, 571–576 (2000).
- Bitan, G. et al. Proc. Natl. Acad. Sci. USA 100, 330–335 (2003).
- 20. Cheon, M. et al. PLoS Comput. Biol. 3, e173 (2007).
- 21. Behrends, C. et al. Mol. Cell 23, 887–897 (2006).
- 22. Shorter, J. & Lindquist, S. Mol. Cell 23, 425–438 (2006).
- Evans, C.G., Wisen, S. & Gestwicki, J.E. J. Biol. Chem. 281, 33182–33191 (2006).
- Mereles, D., Wanker, E.E. & Katus, H.A. *Clin. Res. Cardiol.* published online, doi:10.1007/s00392-008-0649-6 (3 March 2008).
- 25. Carulla, N. et al. Nature 436, 554-558 (2005).
- Shorter, J. & Lindquist, S. Nat. Rev. Genet. 6, 435–450 (2005).

Endo-siRNAs: yet another layer of complexity in RNA silencing

Timothy W Nilsen

Organisms possessing RNA-dependent RNA polymerase activity are known to produce endogenous small interfering RNAs (esiRNAs). It had been thought that organisms such as flies and mammals lacking this activity would not produce esiRNAs. However, it has now been shown that a functional esiRNA pathway is present in such animals; the esiRNAs are derived from a variety of endogenous double-stranded RNA substrates.

The world of small-RNA silencing phenomena has just become markedly larger with the recent publication of seven complementary papers (five in *Nature*^{1–5}, one in *Science*⁶ and one in this issue of *Nature Structural & Molecular Biology*⁷) that collectively document an additional silencing pathway in *Drosophila melanogaster* and mammals. This pathway involves the synthesis and processing of endogenous double-stranded RNAs (dsRNAs) to yield functional small

interfering RNAs (siRNAs) that serve to silence transposable elements in both germ cells and somatic tissues, and some specific mRNAs. It is also possible that these endo-siRNAs, esiRNAs, have a role in heterochromatin formation analogous to the function of some endogenous siRNAs in plants and fission yeast.

To date, esiRNAs have been detected only in organisms that possess RNA-dependent RNA polymerases (RDRPs): plants, *Caenorhabditis elegans* and fission yeast. Because these polymerases transcribe single-stranded RNA (ssRNA) to make dsRNA and are essential for the production of esiRNAs, it was thought that organisms that did not have RDRPs would not use an esiRNA pathway owing to the lack of endogenous dsRNA. However, it is well known that there are other sources of dsRNAs besides those generated by RDRPs (**Fig. 1**). These include long hairpin structures generated by the transcription of palindromic sequences and dsRNAs generated by the annealing of complementary RNAs synthesized by convergent transcription units. Indeed, these dsRNAs have now been shown to be the source of esiRNAs in both *D. melanogaster* and mice^{1–7}.

In both organisms, extensive studies in many laboratories have revealed three distinct RNA silencing pathways, each using distinct small RNAs and a distinct set of protein factors. The Piwi-interacting RNA (piRNA) pathway is involved in silencing transposons in the germ line, and piRNAs are bound to the Piwi class of argonaute proteins; it is not yet clear how these RNAs and proteins exert their silencing

Timothy W. Nilsen is at the Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106-4973, USA. e-mail: twn@case.edu